博碩士論文 89326016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.145.16.6
姓名 吳關佑(Kuan-Yu Wu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 線管式與填充床式電漿反應器破壞SF6之初步研究
(Removal of SF6 from Gas Streams via Dielectric Barrier Discharge and Combined Plasma Catalysis Technologies)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 全氟化物(PFCs, Perfluorinated Compounds)為全球溫暖化潛勢極高之氣體,且存活於大氣中之時間達千年以上,因此造成地球溫暖化問題逐漸受到重視;而為有效控制日益嚴重之全球溫暖化現象,於1997年12月日本京都所召開的溫室效應氣體管制會議中,便將包括PFCs及CO2、CH4、HPFCs、N2O等氣體列為管制項目。PFCs的排放控制方式除了提高製程中之利用率外,尚可採用替代化學物、回收再利用和破壞削減等方法;而相較於替代化學物開發的不易、回收再利用的高成本,破壞削減是現階段控制PFCs之主要方法。本研究嘗試以實驗室規模之介電質放電系統,針對PFCs中之SF6進行低溫電漿處理,並藉由反應氣體組成、供電電壓、供電頻率及氧氣含量等重要參數進行控制,探討線管式與填充床式放電系統對SF6轉化率和產物生成之影響。實驗結果顯示,於添加氧氣之線管式反應器系統中,SF6之轉化率隨供電電壓及供電頻率上升而增加;當氣流中之氧含量增加時,SF6之轉化率隨之上升,然而過量的氧氣將不利於SF6之轉化。當供給電壓為20kV、供電頻率為150Hz、壓力為1atm、操作溫度為293K、氣體組成為[SF6]/[O2]/[Ar]/[N2] = 300 ppmv:12 %:40 %:N2 balance時,所獲得之SF6轉化率為91 %。當反應器結合觸媒填充床時,供給電壓為20kV、供電頻率為150Hz、壓力為1atm、操作溫度為293K、氣體組成為[SF6]/[O2]/[Ar]/[N2] = 300 ppmv:20 %:40 %:N2 balance時,所獲得之SF6轉化率為73 %。就產物之分析而言,於線管式與填充床式反應器皆選擇氣體組成較單純的情況作分析。SF6轉化反應之主要生成的產物以SO2、SO2F2及SOF4為主。系統耗能部份,線管式與填充床式反應器系統所需之操作能量隨供電電壓、供電頻率增加而升高;而填充床式反應器將有效降低系統操作所需之能量。本研究已證實介電質放電系統結合觸媒填充床轉化SF6之技術確實可行,深具發展潛力。
摘要(英) Perfluorinated compounds (PFCs) have great potentials in causing global warming and they may exist in the atmosphere for thousands of years. Therefore, emission of PFCs and its associated global warming attract more and more public attention. To effectively alleviate the increasingly deteriorated phenomenon, the Kyoto Environmental Regulatory Council in 1997 reached a consensus to abate CO2, CH4, PFCs, HPFCs, N2O emissions. In addition to increase the efficiency of utilizing PFCs, the semiconductor industry applied alternative chemicals, recovery/recycle systems and abatement techniques. Owing to difficult development in alternative chemicals and high cost in recovery/recycle systems, the abatement techniques turns to be the primary way to control PFCs emission at present stage. This study investigates the feasibility of applying dielectric barrier discharge (DBD) technology for destroying and removing PFCs from gas streams. The target PFCs selected for this study is SF6, which is commonly used in semiconductor industry as etching carrier or in power industry as insulator. A bench-scale experimental apparatus has been designed and constructed in this study for evaluating the effectiveness of DBD for SF6 removal. Dependencies of removal efficiency achieved with DBDs on operating parameters including applied voltage, composition of the gas stream, applied frequency and oxygen concentration, and power consumption are also investigated. Experimental results indicate that operating the system at higher oxygen gases and applied voltage can enhance the removal efficiency of SF6 achieved with DBD. However, high concentrations of O2 in the gas stream may actually decrease the removal efficiency due to their electronegative properties. More than 91% removal efficiencies have been achieved with this apparatus for SF6 when 20 kV is applied for the gas stream containing [SF6]/[O2]/[Ar]/[N2] = 300 ppmv: 12%: 40%: N2 balance at 293 K, 1atm. In addition, 73% removal efficiencies for SF6 have been achieved with this apparatus combined with catalysts for the gas stream containing [SF6]/[O2]/[Ar]/[N2] = 300 ppmv: 20%: 40%: N2 balance at 293 K, 1atm. The energy yield of SF6 achieved with plasma combined catalysis(CPC) were significantly higher than this apparatus without packed catalysts. With the application of DBD, SF6 molecules can be dissociated and oxidized to other smaller molecules (i.e. SO2, SO2F2 and SOF4). This preliminary study demonstrates the feasibility of applying a novel technology for destroying and removing PFCs from gas streams. Further research should be carried out to identify and quantify the final by-products for better understanding of the removal mechanisms.
關鍵字(中) ★ 全氟化物
★ 六氟化硫
★ 溫室效應
★ 電漿破壞
關鍵字(英) ★ dielectric barrier discharge (DBD)
★ perfluorinat
論文目次 第一章 前言 1
第二章 文獻回顧 4
2.1 全氟化物 4
2.1.1 全氟化物之基本特性 4
2.1.2 全氟化物之應用 6
2.1.3 全氟化物之管制 9
2.2 PFCS去除方法 10
2.3 電漿原理 21
2.4 SF6氣體 24
2.4.1 SF6氣體的基本特性 24
2.4.2 SF6氣體在工業之上應用 25
2.5 電漿系統中SF6之反應機制 28
2.6 介電質放電法 (DBD, DIELECTRIC BARRIER DISCHARGE) 36
第三章 實驗方法及設備 39
3.1 實驗設備 41
3.1.1 氣體供應系統 41
3.1.2 操作參數控制系統 42
3.1.3 介電質放電系統 43
3.2 實驗方法 46
第四章 結果與討論 52
4.1 線管式DBD轉化SF6 52
4.1.1 Ar濃度對於SF6去除效率的影響 52
4.1.2 氧氣含量對SF6去除效率的影響 55
4.1.3 供電頻率對SF6去除效率的影響 57
4.2 填充床式反應器(CPC)轉化SF6 64
4.2.1 氧氣濃度對於SF6去除效率的影響 66
4.2.2 頻率對於SF6去除效率的影響 67
4.2.3 添加C2H4對於SF6去除效率的影響 69
4.3 產物分析 71
4.4 觸媒表面分析 86
4.5 系統耗能探討 90
4.5.1 線管式反應器 90
4.5.2 填充床式反應器 92
4.5.3 反應器耗能與系統耗能之比較 93
4.5.4 能量效率評估 95
第五章 結論與建議 98
5.1 結論 98
5.2 建議 99
參考文獻 102
參考文獻 Anderson H. M., Merson J.A., and Light R. W., "A Kinetic Model for Plasma Etching in a SF6/O2 RF Discharge," IEEE Trans. Plasma Sci., vol. PS-14, 156-164,1986
Belhaouari J. B., Gonzales J. S., and Gleizes A., "Simulation of a Decaying SF6 Arc Plasma: Hydrodynamics and Kinetics Coupling Study," J. Phys. D, vol. 31, pp. 1219-1231, 1998
Breitbarth, F. W., Berg, D., Dumke, K., Tiller, H. -J. “Investigation of the Low-pressure Plasma-chemical Conversion of Fluorocarbon Waste Gases”, Plasma Chem. Plasma Porcess, 17, 39-57, 1997
Chang M. B. and Yu S. J., “An Atmospheric-Pressure Plasma Process for C2F6 Removal”, Environmental Science & Technology, 35, 1587, 2001
Chapman B., “Glow Discharge Processes”, A Wiley-Interscience Publication, Canada, 297, 1980
David Y.E., “Capture and Recycle: A New Option for Emission Reductionof Sulfur Hexafluoride in Magnesium Melting,” (paper presented at International Symposium on Recycling of Waste Materials, September, 1999).
Derdourl A., Casanovas J., Grob R., and Mathien J., “Spark Decomposition of SF6/H2O Mixtures,” IEEE. Trans. Electr. Insul. Vol. 24, No. 6, pp.1147-1157, 1989
Donaldson, D.J.; Sloan, J.J., “Energy Distributions in the HF and CO Products of the Reaction of F Atoms with HCO,” J. Chem. Phys. 82, 1873, 1985
Dorai R., “Modeling of Plasma Remediation of NOx Using Global Kinetic Models Accounting for Hydrocarbons”, Thesis for the Degree of Master of Science in Chemical Engineering, University of Illinois at Urbana-Champaign, 2000
Edelson D. and Flamm D. L., "Computer Simulation of a CF4 plasma Etching Silicon," J. Appl. Phys., vol, 56, pp. 1522-1531, 1984
Fiala A., Kiehlbauch M., Mahnovski S., and Graves D. B., “Model of Point-of-Use Plasma Abatement of Perfluorinated Compounds with an Inductively Coupled Plasma”, Journal of Applied Physics, 86, 152, 1999.
Flippo B. G. and Jones R. F., “Abatement of Fluorine Emissions Utilizing an ATMI CDO Model 863 with Steam Injection”, Journal of the Semiconductor Safety Association, 1, 2001
Fujimi M., Suwa G. and Nagano K., “PFC Emissions Reductions in the Semiconductor Operations Division at Seiko Epson Corporation”, ISESH 8th Annual Conference, Kenting, Taiwan, 2001
Hartz C. L., Bevaan J. W., Jackson M. W., and Wofford B. A., “Innovative Surface Wave Plasmas Reactor Technique for PFC Abatement”, Environmental Science & Technology, 32, 682, 1998
Herron J. T. and Van Brunt R. J., "Zonal Model for Corona Discharge-Induced Oxidation of SF6 in SF6/O2/H2O Gas Mixtures", Proc. 9th Int. Symp. On Plasma Chemistry, University of Bari, Italy, 1989.
Hitachi S. T. and Hitachi S. k., “Catalytic Decomposition of PFC”, A Partnership for PFC Emissions Reductions, Technical Program Present, Texas, 1998
Hung M. C., Yang C. L., Wu P. H., Pan S. M. and Huang Y. S., “Reduction of NF3 Usage for Optimal AMAT HDP Clean Recipe”, ISESH 8th Annual Conference, Kenting, Taiwan, 2001
Ibuka S., Japan’s Use of ClF3, A Partnership for PFC Emissions Reductions, Technical Program Present, Texas, 1998
IS, “Long-Term Evaluation of the Litmas ‘Blue’ Plasma Device for Point-of-Use (POU) Perfluorocompound and Hydrofluorocarbon Abatement,” International SEMATECH Technology Transfer # 99123865B-ENG., 2000
Karecki S. M., Pruette L. C., and Reif R., “Reduction of Global Warming Emissions in a Dielectric Etch Application through Use of Iodofluorocarbon”, A Partnership for PFC Emissions Reductions, Technical Present, Texas, 1998
Levy R. A., Zaitsev V. B., Aryusook K., Ravindranath C., Sigal V., Misra A., Kesari S., Rufin D., Sees J., and Hall L., “Investigation of CF3I as an Environmental Benign Dielectric Etchant”, Journal of Materials Research, 13 (9), 2643, 1998
Liao M. Y., Wong K., McVittie J. P., and Saraswat K. C., “Abatement of Perfluorocarbons with an Inductively Coupled Plasma Reactor,” Journal of Vacuum Science & Technology, B17 (6), 2638, 1999
Marinelli L., Worth W., “Global Warming: A White Paper on the Science, Policies and Control Technologies that Impact the U.S. Semiconductor Industry”, Technology Transfer # 93112074A-TR SEMATECH, 1994
Novak J. P. and Frechette M. F., "Transport Coefficients of SF6 and SF6-N2 Mixturs from Revised Data, "J. Appl. Phys., vol. 55, pp.107-119, 1984
Occupational Safety and Health Administration (OSHA). January 19, 2000 .http://www.oshaslc.gov/dts/chemicalsampling/toc/tocchemsamp.html
Polak L. and Lebedev Y. A., Plasma Chemistry. Cambridge, UK:Cambridge International Science. Principles of Plasma Discharges and Materials Processing, M. A. Lieberman and A. J. Lichtenberg, Eds. New York: Wiley, 1994
Pruette L. C., Karecki S. M., and Reif R., “Evaluation of Trifluoroacetic Anhydride as an Alternative Plasma Enhanced Chemical Vapor Deposition Chamber Clean Chemistry”, Journal of Vaccum Science & Technology, A16 (3), 1577, 1998
Qwentes, (2002/3/15), Fluorcarbons and Sulfur Hexafluoride http://www.fluorocarbons.org/applications/others/metalcasting/main apply/main.htm
Raizer Y. P., Allen J. E. and Kisin V. I., “Gas Discharge Physics”, ISBN: 3-540-19462-2 Springer-Verlag Berlin Heidelberg Present, Texas, 1991
Sum S.P., “Evaluation of C3F8 as a Cleaning Gas in a Novellus Concept Two Sequel Tool, SEMATECH TT Document #97053282A-TR, May 31, 1997
Seeley A., Chandler P., Cottle S., and Mawle P., “Effective PFC Gas Abatement in a Production Environment”, Semiconductor Fabtech-10th Edition, BOC Edwards Exhaust Management Systems, Nailsea, UK, 1997
Shih M., Lee W.-J., Chen C.Y. and Tsai C.H. (2001) “Decomposition of SF6 in the O2/Ar Plasma Environment,” The 2001 Conference on Aerosol Science and Technology, Yu-Lin County, Taiwan.
USEPA, (2000) GLOBAL Warming Site: National Emissions-HFCs, SF6.PFCs.http://www.epa.gov/globalwarming/emissions/national/xfcs-sf6.html
USEPA, (2002) Byproducts of Sulfur Hexafluoride (SF6) Use in the Electric Power Industy, http://www.epa.gov/high gwpl/sf6/index.html
Van Brunt R. J. and Herron J. T., “Plasma Chemical Model for Decomposition of SF6 in a Negative Glow Corona Discharge”, Physica Scripta, vol.T53, pp.9-29, 1994
Wallington, T. J.; Hurley, M. D.; Shi, J.; Maricq , M. M.; Sehested, J.; Nielsen, O. J.; Ellermann, T., “A Kinetic Study of the Reaction of Fluorine Atoms with CH3F, CH3Cl, CH3Br, CF2H2, CO, CF3H, CF3CHCl2, CF3CH2F, CHF2CHF2, CF2ClCH3, CHF2CH3, and CF3CF2H at 295K,” Int. J. Chem. Kinet. 25, 651-665, 1993
Worth W. F., “Reducing PFC Emissions: A Tech. Update”, Future Fab International, Environmental/ Health and Safety, 57, 2000
Xu X., Rauf S., and Kushner M. J., “Plasma Abatement of Perfluorocompounds in Inductively Coupled Plasma Reactors”, Journal of Vaccum Science & Technology A: Vaccum, Surfaces and Films, 18 (1), 213, 2000
Yu S. J. and Chang M. B., “Oxidative Conversion of PFC via Processing with Dielectric Barrier Discharges”, Plasma Chemistry and Plasma Processing, 21 (3), 311, 2001
鄭昆山,能源政策與產業結構之法制調整,國科會/環保署NSC88-EPA-Z-029-001,民國88年。
周崇光,“積體電路製程尾氣控制技術之應用與發展”,2000產業環保工程實務技術研討會,民國89年11月。
余榮彬,“半導體工業全氟化物排放控制技術與機會”,TSIA專題報導摘選,民國88年4月。下載http://www.tsia.org.tw/cnewletter9.htm.
舒碧霞 (2000),“廢氣減量半導體業壓力大”。下載於:http://news.pchome.com.tw/ttimes/science/20000802/index-20000802113003513841.html
張君正 (1998),“半導體製造廠排放地球溫暖化氣體狀況”,一九九八工業減廢暨永續發展研討會論文集。
游生任 (2000),「以介電質放電技術轉化四氟甲烷及六氟乙烷之初步研究」,碩士論文,國立中央大學環境工程研究所,中壢,民國89年6月。
呂榮峰 (2001),「BaTiO3填充床電漿反應器破壞CF4之初步研究」,碩士論文,國立中央大學環境工程研究所,中壢,民國90年6月。
指導教授 張木彬(Moo Been Chang) 審核日期 2002-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明