博碩士論文 89346003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.219.14.35
姓名 劉志忠(Chih-Chung Liu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 零價鐵反應牆應用於三氯乙烯還原脫氯之整合研究
(Integrated Study on the Reductive Dechlorination of Trichloroethylene by Zero-Valent Iron Reactive Barrier)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之目的,係探討零價鐵材料特性與不同水質條件對三氯乙烯(trichloroethylene, TCE)還原脫氯的影響,及提升零價鐵反應牆去除TCE的方法,最後結合生物反應牆之整合研究,以建立完整的零價鐵反應牆整治受TCE污染之地下水現地處理模式。
實驗結果顯示,經過酸洗前處理後之零價鐵,由XPS分析結果發現,鐵的主能階束縛能接近零價的狀況,顯示表面較易釋出電子。此外,可減少表面的不純物,且酸洗後的鐵表面鐵氫氧化物,轉變為易水解之α-FeOOH,同時也減少鐵表面γ-Fe2O3型態的鈍化膜,因而提升TCE的降解能力。當二價鐵離子存在於經酸洗前處理之零價鐵時,二價鐵離子形成氫氧化亞鐵沈澱物,覆蓋於鐵粉表面,降低TCE的降解速率,然而,若存在於未經酸洗前處理之零價鐵時,會吸附至鐵粉表面,將鐵表面鈍化膜轉化成具半導體特性的Fe3O4,允許零價鐵表面釋放之電子通過,與TCE發生氧化還原反應。硫酸根的影響除與二價鐵作用相似之外,還可能與氫氧化亞鐵迅速地發生反應,移除生成於鐵粉表面之氫氧化亞鐵沈澱物,提升TCE的降解速率;硝酸根優先被零價鐵還原,與TCE發生競爭抑制效應,直到硝酸根還原成氨氮;腐植酸對TCE降解速率的影響最大,係因為腐植酸持續累積在零價鐵表面,減少鐵表面可反應位置。
通電可促進零價鐵反應牆對TCE的還原脫氯反應,主要係因為陽極端水的電解反應發生,產生氫離子,對陽極附近及後端的鐵顆粒,產生酸洗的效果,改善零價鐵表面的反應性。就電極設置位置而言,陽極應設置在前端的鐵反應牆內,陰極則需設置於後端的石英砂段,以此方式,當電位梯度為1.0 V/cm,在25天的長期通電操作下,TCE的去除率維持100%,顯示此方法具有長時間操作效能。
採自疑受TCE污染場址的現地土壤,其中土壤原生菌可以甲苯為生長基質,好氧共代謝的方式去除TCE,且直接好氧氧化氯乙烯。生物管柱實驗結果顯示,當管柱操作至30天時,管柱前端5cm處,對污染物的去除率均可達99%以上,且未有其他含氯中間產物的生成或累積。土壤原生菌鑑定結果發現,Burkholderia cepacia ATCC及Burkholderia sp.菌種為優勢菌,此皆具有好氧共代謝TCE的能力。整合零價鐵反應牆及生物反應牆整治受TCE污染的方法,可以完全降解TCE及其含氯的中間產物,以確保處理後之地下水水質的穩定。
摘要(英) The purposes of this study were to investigate the characteristics of the zero-valent iron (ZVI) and various groundwaters quality that may affect the reductive dechlorination of trichloroethylene (TCE). Also, techniques, enhanced TCE removal by ZVI reactive barrier, and the combination of biobarrier would be examined to establish the treatment model of remediation of TCE-contaminated groundwater by ZVI reactive barrier at in-situ field.
Experimental results indicated that the binding energy of Fe 2p on the iron surface was close to the condition of zero valent after acid-washing by XPS analysis, meaning electron released easily from the iron surface. Also, the impurities on the iron surface were reduced and conformation of iron hydroxides was changed to more hydrated α-FeOOH form and reduced the passivation ofγ-Fe2O3 simultaneously, therefore, enhancing the reductive dechlorination of TCE. The efficiency of TCE degradation decreased with the increase in ferrous concentration due to the production of ferrous hydroxide on the surface of acid-washed ZVI. However, ferrous were adsorbed onto the surface of unacid-washed ZVI and transformed to magnetite (Fe3O4). Thus, these permitted electrons to pass through precipitates from iron surface and allowed reductive dechlorination of TCE to occur in bulk solution. The effect of sulfate was similar to ferrous function. But, the sulfate could also react with the ferrous hydroxides and remove the precipitates coated on the iron surface, enhancing the TCE degradation. Nitrate would be preferentially reduced by ZVI so that the competition effect with TCE would appear until nitrate was reduced to ammonium. Effect of humic acid on the TCE degradation was apparent because the humic acid continuously accumulated on the iron surface, therefore the reaction sites of iron surface were decreased obviously.
The direct current was externally supplied to ZVI reactive barrier was feasible to enhance TCE degradation because the surface of the iron particles was acid-washed by H+, owing to water oxidation around the anode and promoted the reactivity of the surface iron. An anode electrode should be placed in contact with the iron filling near the inlet of the column, and then a cathode was located on the top of the column in that the TCE removal efficiency reached 100% and maintained this high level after 25 days with 1.0V/cm of potential gradient applied, displaying excellent potential for development in long-term operations.
Results of batch tests indicated that aerobic co-metabolism with toluene as growth substrate could effectively biodegrade TCE by indigenous soil cells, which were sampled from a doubtful TCE-contaminated site. These indigenous microorganisms could biodegrade vinyl chloride (VC) directly under an aerobic condition. In addition, results of soil microcosm column tests demonstrated that the concentrations of TCE and VC in the column effluent decreased with the increase of operation time. The removal efficiencies of TCE and VC were greater than 99% after 30 days of operation time and no other chlorinated byproducts were detected while TCE and VC were biodegraded. The predominant species were identified as both Burkholderia cepacia ATCC and Burkholderia sp. that were ability to biodegraded TCE by aerobic co-metabolism. The process of iron wall associated with biobarrier could degrade TCE and their chlorinated intermediates completely, thus obtaining the stable groundwater quality.
關鍵字(中) ★ 零價鐵
★ 三氯乙烯
★ 還原脫氯
★ 地下水水質
★ 通電
★ 生物反應牆
關鍵字(英) ★ TCE
★ zero-valent iron
★ reductive dechlorination
★ groundwater quality
★ electricity supplied
★ biobarrier
論文目次 摘要
目錄 I
圖目錄 IV
表目錄 IX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與內容 3
第二章 文獻回顧 6
2.1 零價鐵整治技術之發展沿革 6
2.2 零價鐵滲透性反應牆技術之應用與發展 8
2.2.1 滲透性反應牆技術簡介 8
2.2.2 滲透性反應牆現地應用現況 17
2.3 零價鐵去除污染物之理論基礎與機制 20
2.3.1 轉化作用 20
2.3.2 固定化作用 25
2.3.3 零價鐵表面電子轉移模式 27
2.4 零價鐵還原脫氯TCE之研究現況 30
2.4.1 零價鐵降解TCE之研究現況 30
2.4.2 地下水水質條件對零價鐵降解污染物之影響 42
2.4.3 通電提升零價鐵反應牆降解TCE之影響 47
2.5 零價鐵反應牆結合生物反應牆之研究現況 53
2.5.1 含氯乙烯類化合物生物復育機制 54
2.5.2 生物反應牆與結合零價鐵反應牆之研究現況 58
第三章 實驗設備、材料與方法 61
3.1 研究流程 61
3.2 實驗方法與步驟 63
3.2.1 零價鐵酸洗前處理與降解TCE之批次實驗 63
3.2.2 不同水質特性對零價鐵降解TCE批次實驗 66
3.2.3 通電提升零價鐵反應牆降解TCE之操作方式 69
3.2.4 土壤微生物降解TCE及VC實驗 75
3.3 實驗材料與設備 81
3.3.1 實驗材料 81
3.3.2 實驗設備 88
3.4 分析方法 91
3.4.1 有機物分析 91
3.4.2 無機離子分析 93
3.4.3 微生物菌相分析與菌種鑑定 95
第四章 結果與討論 100
4.1 酸洗前處理對零價鐵表面特性及降解TCE的影響 100
4.1.1 TCE及氯離子濃度之變化 100
4.1.2 鐵粉表面微觀觀察與沈澱物物種鑑定 103
4.2 水質條件對零價鐵還原脫氯TCE的影響 109
4.2.1 二價鐵離子對零價鐵還原脫氯TCE的影響 109
4.2.2 硫酸根對零價鐵還原脫氯TCE的影響 120
4.2.3 硝酸根對零價鐵還原脫氯TCE的影響 126
4.2.4 腐植酸對零價鐵還原脫氯TCE的影響 130
4.2.5 不同水質條件影響之綜合討論 134
4.3 通電提升零價鐵反應牆降解TCE之研究 142
4.3.1 通電對石英砂管柱降解TCE的影響 143
4.3.2 零價鐵反應牆通電降解TCE 147
4.3.3 不同操作參數 150
4.3.4 長時間操作的可行性 160
4.4 零價鐵反應牆結合生物反應牆降解TCE之探討 163
4.4.1 甲苯分解菌與土壤原生菌對甲苯、TCE及VC降解能力 163
4.4.2 生物反應牆降解TCE與VC 164
4.4.3 土壤原生菌菌種鑑定與生物反應牆微生物菌相分析 169
4.4.4 結合零價鐵反應牆與生物反應牆之長期操作特性 181
第五章 結論與建議 189
5.1 結論 189
5.2 建議 191
參考文獻 193
附錄A 本研究重要名詞全名與縮寫 216
附錄B 零價鐵反應牆實驗配置圖 219
附錄C 奈米級零價鐵與複合金屬降解TCE 之研究 221
附錄D 甲苯分解菌與土壤原生菌對TCE 及VC 降解能力之研究 246
附錄E GC-FID 分析C2-C4 碳氫化合物檢量線 254
參考文獻 1.Agrawal, A. and P. G. Tratnyek, “Reduction of Nitro Aromatic Compounds by Zero-Valnet Iron Metal,” Environmental Science and Technology, 30(1), pp. 153-160(1996).
2.Amann, R. I., W. Ludwig, and K. H. Schleifer, “Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation,” Microbiology Review, 59(1), pp.143-169(1995).
3.Appleton, E. L., “A Nickel-Iron Wall Against Contaminated Groundwater,” Environmental Science and Technology, 30(12), pp. 536-539(1996).
4.Archer, W. L., “Aluminum-1,1,1-Trichloroethane. Reactions and Inhibition,” Industrial Engineering Chemistry Product Research and Development, 21(4), pp.670-672(1982).
5.Archer, W. L., and E. L. Simpson, “Chemical Profile of Polychloroethanes and Polychloroalkenes,” Industrial Engineering Chemistry Product Research and Development, 16(2), pp.158-162(1977).
6.Arnold, W. A., and A. L. Roberts, “Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles,” Environmental Science and Technology, 34(9), pp.1794-1805(2000).
7.Arnold, W. A., and A. L. Roberts, “Pathways of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Zn(0),” Environmental Science and Technology, 32(19), pp.3017-3025(1998).
8.Arnon, S., E. Adar, Z. Ronen, A. Negidat, A. Yakirevich, and R. Nativ, “Biodegradation of 2,4,6-Tribromophenol during Transport in Fractured Chalk,” Environmental Science and Technology, 39(3), pp.748-755(2005).
9.Bedient, P. B., H. S. Rifai, and C. J. Newell, Ground Water Contamination: Transport and Remediation, 2nd Ed, Prentice-Hall, Inc, London, pp. 90-92(1999).
10.Bigg T., and S.J.Judd, “Zero-Valent Iron for Water Treatment,” Environmental Technology, 34(3), pp.514-521(2000).
11.Blowes, D.W., C. J. Ptacek, A. G. Benner, W. T. Mcrae, T. A. Bennett, and R. W. Puls, ”Treatment of Inorganic Contaminants Using Permeable Reactive Barriers,” Journal of Contaminant Hydrology, 45(1-2), pp.123–137(2000).
12.Blowes, D.W., C. J. Ptacek, and J. L. Jambor, “In-Situ Remediation of Chromate Contaminated Groundwater Using Permeable Reactive Walls,” Environmental Science and Technology, 31(12), pp.3348–3357(1997).
13.Burris, D. R., T. J. Campbell, and V. S. Manoranjan, “Sorption of Tricholroethylene and Tetracholroethylene in a Batch Reactive Metallic Iron-Water System,” Environmental Science and Technology, 29(11), pp. 2850-2855(1995).
14.Campbell, T. J., D. R. Burris, A. L. Roberts, and J. R. Wells, “Trichloroethylene and Terachloroethylene Reduction in a Metallic Iron-Water-Vapor Batch System,” Environmental Toxicology and Chemistry, 16(4), pp.625-630(1997).
15.Casey, F. X. M., S. K. Ong, and R. Horton, “Degradation and Transformation of Trichloroethylene in Miscible-Displacement Experiments through Zerovalent Metals,” Environmental Science and Technology, 34(23), pp.5023-5029(2000).
16.Charlet, L., E. Liger, and P. Gerasimo, “Decontamination of TCE-and U-Rich Waters by Granular Iron: Role of Sorbed Fe(II),” Journal of Environmental Engineering-ASCE, 124(1), pp.25-30(2005).
17.Chen, J. L., S. R. Al-Abed, J. A. Ryan, and Z. B. Li, “Effects of pH on Dechlorination of Trichloroethylene by Zero-Valent Iron,” Journal of Hazardous Materials, B83(3), pp.243-254(2001).
18.Cheng, I. F., R. Muftikian, Q. Fernando, and N. Korte, “Reduction of Nitrate to Ammonia by Zero-Valent Iron”, Chemosphere, 35(11), pp.2689-2695(1997).
19.Cheng, I.F., Q. Fernando, and N. Korte, “Electrochemical Dechlorination of 4-Chlorophenol to Phenol,” Environmental Science and Technology, 31(4), pp.1074-1078 (1997).
20.Cheng, S. F., and S. C. Wu, “Feasibility of Using Metals to Remediate Water Containing TCE,” Chemosphere, 43(8), pp.1023-1028(2001).
21.Cheng, S. F., and S. C. Wu, “The Enhancement Methods for the degradation of TCE by Zero-Valent Metals,” Chemosphere, 41(8), pp.1023-1028(2001).
22.Clark, C. J., X. C. Chen, and S. Babu, “Degradation of Toxaphene by Zero-Valent Iron and Bimetallic Substrates,” Journal of Environmental Engineering-ASCE, 131(12), pp.1733-1799(2005).
23.Cornell, R. M., and U. Schwertmann, The Iron Oxides, VCH Publishers, New York, 1996.
24.Criddle, C. S., and P. L. McCarty, “Electrolytic Model System for Reductive Dehalogenation in Aqueous Environments,” Environmental Science and Technology, 25(5), pp.973-978(1991).
25.Crow D. R., Principles and Applications of Electrochemistry, 4th Ed. Chapman & Hall Press, New York, pp. 53-63, 101-105 (1998).
26.Dercov?, K., L. Haluška, and Š. Bal?ž, “Degradation of Polychlorinated Biphenyls (PCB) in Different Soils by Inoculated Alcaligenes xylosoxidans,” International Biodeterioration and Biodegradation, 37(3-4), pp.251(1996).
27.Devlin, J. F., D. Katic, and J. F. Barker, “In Situ Sequenced Bioremediation of Mixed Contaminants in Groundwater,” Journal of Contaminant Hydrology, 69(3-4), pp.233-261(2004).
28.Dolan, M. E., and P. L. McCarty, “Small-Column Microcosm for Assessing Methane-Stimulated Vinyl Chloride Transformation in Aquifer Samples,” Environmental Science and Technology, 29(8), pp. 1892-1897(1995).
29.Doong, R. A., and S. C. Wu, “Reductive Dechlorination of Chlorinated Hydrocarbons in Aqueous-Solutions Containing Ferrous and Sulfide Ions,” Chemosphere, 24(8), pp.1063-1077(1992).
30.Eaton, A. D., L. S. Clesceri, and A. E. Greenberg, Standard Methods for Examination of Water and Wastewater. 19th Edition. United Book Press, Inc., Baltimore, Maryland, 1995.
31.Ellis, M. J., M. Prud?ncio, F. E. Dodd, R. W. Strange, G. Sawer, R. R. Eady, and S. S. Hasnain, “Biochemical and Crystallographic Studies of the Met144Ala, Asp92Asn and His254Phe Mutants of the Nitrite Reductase from Alcaligenes xylosoxidans Provided Insight into the Enzyme Mechanism,” Journal of Molecular Biology, 316(1), pp.51-64(2002).
32.Farrell, J., N. Melitas, M. Kason, and T. Li, “Investigation of the Long-Term Performance of Zero-Valent Iron for Reductive Dechlorination of Trichloroethylene” Environmental Science and Technology, 34(3), pp.5149-521(2000).
33.Farrell, J., N. Melitas, M. Kason, and T. Li, “Investigation of the Long-Term Performance of Zero-Valent Iron for Reductive Dechlorination of Trichloroethylene” Environmental Science and Technology, 34(3), pp.5149-521(2000).
34.Fennelly, J. P., and A. L. Roberts, “Reaction of 1,1,1-Trichloroethane with Zero-Valent Metals and Bimetallic Reductants,” Environmental Science and Technology, 32(13), pp.1980-1988(1998).
35.Ferris, M. J., G. Muyzer, and D. M. Ward, “Denaturing Gradient Gel-Electrophoresis Profiles of 16S Ribosomal-RNA-Defined Populations Inhabiting a Hot-Spring Microbial Mat Community,” Applied and Environmental Microbiology, 62(2), pp.340-346(1996).
36.Fiedor, J. N., W. D. Bostick, R. J. Farabek, and J. Farrell, “Understanding the Mechanism of Uranium Removal from Groundwater by Zero-Valent Iron Using X-ray Photoelectron Spectroscopy,” Environmental Science and Technology, 32(10), pp.1466-1473(1996).
37.Fountain, J. C., “Technology for Dense Nonaqueous Phase Liquid Source Zone Remediation,” Ground-Water Remediation Technologies Analysis Center, TE-98-02(1998).
38.Francova, F., M. Mackova, T. Macek, and M. Sylvestre, “Ability of Bacterial Biphenyl Dioxygenases from Burkholderia sp. LB400 and Comamonas testosteroni B-356 to Catalyse Oxygenation of ortho-Hyrogxychlorobiphenyls Formed from PCBs by Plants,” Environmental Pollution, 127(1), pp.41-48(2004).
39.Freeman, D. L., and S. D. Herz, “Use of Ethylene and Ethane as Primary Substrates for Aerobic Cometabolism of Vinyl Chloride,” Water Environment Research, 68(3), pp. 320-328(1996).
40.Gavaskar, A. R., “Design and Construction Techniques for Permeable Reactive Barriers,” Journal of Hazardous Materials, 68(1-2), pp.41–71(1999).
41.Gavaskar, A. R., N. Gupta, B. M. Sass, R. J. Janosy, and D. O’Sullivan, Permeable Barriers for Groundwater Remediation: Design, Construcion, and Monitoring, Battelle Press, Columbus, Ohio, pp.21-26 (1998).
42.Geiger, C. L., N. E. Ruiz, C. A. Clausen, D. R. Reinhart, and J. W. Quinn, “Ultrasound Pretreatment of Elemental Iron: Kinetic Studies of Dehalogenation Reaction Enhancement and Surface Effects,” Water Research, 36(5), pp.1342-1350(2002).
43.Gerritse, J., V. Renard, J. Visser, and J. C. Gottschal, “Complete Degradation of Tetrachloroethene by Combining Anaerobic Dechlorinating and Aerobic Methanotrophic Enrichment Cultures,” Applied Microbiology Biotechnology, 43(5), pp. 920-928(1995).
44.Gillham, R. W., “SNERC Chair Research at the University of Waterloo,” Permeable Reactive Barrier Update, EnvironMetal Technologies, pp.2(2004).
45.Gillham, R. W., “Ten-Year and Counting,” Permeable Reactive Barrier Update, EnvironMetal Technologies, pp.2(2002).
46.Gillham, R. W., and S. F. O’Hannesin, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron,” Ground Water, 32(6), pp. 958-967 (1994).
47.Gotpagar, J., E. Grulke, T. Tsang, and D. Bhattacharyya, “Reducitve Dehalogenation of Trichloroethylene Using Zero-Valent Iron”, Environmental Progress, 16(2), pp.137-143(1997).
48.Grathwohl, P., and G. Teutsch, “In-Situ Remediation of Persistant Organic Contaminants in Groundwater,” International Conference on Groundwater Quality Protection, pp.85-99 (1997).
49.Grittini, C., M. Malcomson, Q. Fernando, and N. Korte, “Rapid Dechlorination of Polychlorinated Biphenyls on the surface of a Pd/Fe Bimetallic System,” Environmental Science and Technology, 29(11), pp.2898-2900(1995).
50.Gui, L., R. W. Gillham, and M. S. Odziemkowski, “Reduction of N-Nitrosodimethylamine with Granular Iron and Nickel-Enhanced Iron. 1. Pathways and Kinetics,” Environmental Science and Technology, 34(16), pp.3489-3494(2000).
51.Haluška, L., G. Barančikov?, Š. Bal?ž, K. Dercov?, B. Vrana, M. Paz-Weisshaar, E. Furčiov?, and P. Bielek, “Degradation of PCB in Different Soils by Inoculated Alcaligenes xylosoxidans,” the Science of the Total Environment, 175(3), pp.275-285(1995).
52.Harazono, K., N. Yamashita, N. Shinzato, Y. Watanabe, T. Fukatsu, and R. Kurane, “Isolation and Characterization of Aromatics-degradation Microorganisms from the Gut of the Lower Termite Coptotermes formosanus,” Bioscience, Biotechnology, and Biochemistry, 67(4), pp.889-892(2003).
53.Heuer, H., M. Krsek, P. Barker, K. Smalla, and E. M. H. Wellington, “Analysis of Actinomycete Communities by Specific Amplification of Genes Encoding 16S Ribosomal-RNA and Gel Electrophoretic Separation in Denaturing Gradients,” Applied and Environmental Microbiology, 63(8), pp.3222-3241(1997).
54.Hill, T. C. J., K. A. Walsh, J. A. Harris, and B. F. Moffett, “Using Ecological Diversity Measures with Bacterial Communities,” FEMS Microbiology Ecology, 43(1), pp.1-11(2003).
55.Hinteregger, C., and F. Steichsbier, “Isolation and Characterization of Achromobacter xylosoxidans T7 Capable of Degrading Toluidine Isomers,” Journal of Basic Microbiology, 41(3-4), pp.159-170(2001).
56.Hrapovic, L., B. E. Sleep, D. J. Major, and E. D. Hood, “Laboratory Study of Treatment of Trichloroethene by Chemical Oxidation Followed by Bioremediation,” Environmental Science and Technology, 39(8), pp.2888-2897(2005).
57.Huang, C. P., H. W. Wang, and P. C. Chiu, “Nitrate Reduction by Metallic Iron,” Water Research, 32(8), pp.2257-2264(1998).
58.Huang, Y. H., and T. C. Zhang, “Kinetics of Nitrate Reduction by Iron at Near Neutral pH,” Journal of Environmental Engineering-ASCE, 128(7), pp.604-611(2002).
59.Hundal, L. S., J. Singh, E. L. Bier, P. J. Shea, S. D. Comfort, and W. L. Powers, “Removal of TNT and RDX from Water and Soil Using Iron Metal,” Environmental Pollution, 97(1-2), pp.55-64(1997).
60.Jencova, V., Strnad, H. Z. Chodora, P. Ulbrich, W. J. Hickeym, and V. Paces, “Chlorocatechol Catabolic Enzymes from Achromobacter xylosoxidans A8,” International Biodeterioration and Biodegradation, 54(1), pp.175-181(2004).
61.Johnson, T. L., M. M. Scherer, and P. G. Tratnyek, “Kinetics of Halogenated Organic Compound Degradation by Iron Metal,” Environmental Science and Technology, 30(8), pp.2634-2640(1996).
62.Kao, C. M., S. C. Chen, and M. C. Su, “Laboratory Column Studies for Evaluating a Barrier System for Providing Oxygen and Substrate for TCE Biodegradation,” Chemosphere, 44(5), pp.925-934(2001).
63.Kim Y. H. and E. R. Carraway, “Dechlorination of Pentachlorophenol by Zero Valent Iron and Modified Zero Valent Irons,” Environmental Science and Technology, 34(10), pp.2014-2017(2000).
64.Klausen, J., S. P. Tr?ber, S. B. Haderlein, and R. P. Schwarzenbach, “Reduction of Substituted Nitrobenzene by Fe(II) in Aqueous Mineral Suspensions,” Environmental Science and Technology, 29(9), pp.2396-2404(1995).
65.Kohn, T., and A. L. Robert, “The Effect of Silica on the Degradation of Organohalides in Granular Iron Columns,” Journal of Contaminant Hydrology, 83(1-2), pp.70-88(2006).
66.Korte, N.E., O.R. Westm, B. Gu, J.L. Zutman, and Q. Fernando, “The Effect of Solvent Concentration on the Use of Palladized-Iron for the Step-Wise Dechlorination of Polychlorinated Biphenyls in Soil Extracts,” Waste Management, 22(3), pp.343-349(2002).
67.Kulikov, S.M., Plekhanov V.P., Tsyganok A.I., Schlimm C. and E. Heitz, “Electrochemical Reductive Dechlorination of Chloroorganic Compounds on Carbon Cloth and Metal-Modified Carbon Cloth Cathode,” Electrochimica Acta, 41(4), pp.527-531(1996).
68.Leahy, J. G., A. M. Byrne, and R. H. Olsen, “Comparison of Factors Influencing Trichloroethylene Degradation by Toluene-Oxidizing Bacteria,” Applied and Environmental Microbiology, 62(3), pp.825-833(1996).
69.Li, F., C. Vipulanandan, and K. K. Mohanty, “Microemulsion and Solution Approaches to Nanoparticle Iron Production for Degradation of Trichloroethylene,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 223(1-3), pp.103-112(2003).
70.Li, T., and J. Farrell, “Reductive Dechlorination of Trichloroethene and Carbon Tetrachloride Using Iron and Palladized-Iron Cathodes,” Environmental Science and Technology, 34(1), pp.173-179(2000).
71.Li, X., and C. Shang, “Role of Humic Acid and Quinone Model Compounds in Bromate Reductive by Zerovalent Iron,” Environmental Science and Technology, 39(4), pp.1092-1100(2005).
72.Lien, H. L. and W. X. Zhang, “Hydrodechlorination of Chlorinated Ethanes by Nanoscale Pd/Fe Bimetallic Particles,” Journal of Environmental Engineering-ASCE, 131(1), pp4-10(2005).
73.Lien, H. L. and W. X. Zhang, “Nanoscale Iron Particles for Complete Reduction of Chlorinated Ethenes,” Colloids and Surface A: Physicochemical Engineering, 191(1), pp. 97-105(2001).
74.Lien, H. L. and W. X. Zhang, “Transformation of Chlorinated Methanes by Nanoscale Iron Particles,” Journal of Environmental Engineering-ASCE, 125(11), pp1042-1047(1999).
75.Liu, Y., F. Yang, P. L. Yue, and G. Chen, “Catalytic Dechlorination of Chlorphenols in Water by Palladium/Iron,” Water Research, 35(8), pp. 1887-1890(2001).
76.Lo, I. M. C., C. S. C. Lam, and K. C. K. Lai, “Hardness and Carbonate Effects on the Reactivity of Zero-Valent Iron for Cr(VI) Removal,” Water Research, 40(3), pp.595-605(2006).
77.Lovelace, K. A., “Evaluating the Technical Impracticability of Groundwater Cleanup”, 1997 International Conference on Groundwater Quality Protection, Taipei, pp. 165-179 (1997).
78.Lu, C. J., and M. S. Lee, “The Effect of Toluene on the Cometabolic Trichloroethylene Removal from Soil,” Journal of the Chinese Institute of Environmental Engineering, 13(1), pp. 7-15(2003).
79.Lu, C. J., C. M. Lee, and M. S. Chung, “The Comparison of Trichloroethylene Removal Rates by Methane- and Aromatic-Utilizing Microorganisms,” Water Science and Technology, 38(7), pp.19-24 (1998).
80.Ma, H., O’Loughlin, E. J., and D. R. Burris, “Factors Affecting Humic-Nickel Complex Mediated Reduction of Trichloroethene in Homogeneous Aqueous Solution,” Environmental Science and Technology, 35(4), pp.717-724(2001).
81.Mackenzie, P. D., D. P. Horney, and T. M. Sivavec, “Mineral Precipitation and Porosity Losses in Granular Iron Column,” Journal of Hazardous. Materials, 68(1), pp.1-17(1999).
82.Maithreepala, R. A., and R. A. Doong, “Reductive Dechlorination of Carbon Tetrachloride in Aqueous Solutions Containing Ferrous and Copper Ions,” Environmental Science and Technology, 38(24), pp.6676-6684(2004).
83.Malachowsky, K. J., T. J. Phelps, A. B. Teboli, D. E. Minnikin, and D. C. White, “Aerobic Mineralization of Trichloroethylene, Vinyl Chloride, and Aromatic Compounds by Rhodococcus species,” Applied and Environmental Microbiology, 60(2), pp. 542-548(1994).
84.Matheson, L. J., and P. G. Tratnyek, “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal,” Environmental Science and Technology, 28(1), pp.2045-2053(1994).
85.Meade, M. J., R. L. Waddell, and T. M. Callahan, “Soil Bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp. denitrificans Inactivate Triclosan in Liquid and Solid Substrates,” FEMS Microbiology Letter, 204(1), pp.45-48(2001).
86.Miyoshi, K., Y. Kamegaya, and M. Matsumura, “Electrochemical Reduction of Organohalogen Compound by Noble Metal Sintered Electrode,” Chemosphere, 56(1), pp.187-193(2004).
87.Muftikian, R., K. Nebesny, Q. Fernando, and N. Korte, “X-ray Photoelectron Spectra of the Palladium-Iron Bimetallic Surface Used for the Rapid Dechlorination of Chlorinated Organic Environmental Contaminants,” Environmental Science and Technology, 30(12), pp.3593-3596(1996).
88.Muftikian, R., Q. Fernando, and N. Korte, “A Method for the Rapid Dechlorination of Low Molecular Weight Chlorinated Hydrocarbons in Water,” Water Research, 29(10), pp. 2432-2439(1995).
89.Nelson, M. J. K., S. O. Montgomery, and P. H. Pritchard, “Trichloroethylene Metabolism by Microorganisms that Degrade Aromatic Compounds,” Applied and Environmental Microbiology, 54(2), pp.604-606 (1988).
90.Nielsen D. R., A. J. Daugulis, and P. J. McLellam, “Quantifiying Maintenance Requirements from the Steady-State Operation of a Two-Phase Partitioning Bioscrubber,” Biotechnology and Bioengineering, 99(2), pp.248-258(2005a).
91.Nielsen, D. R., A. J. Daugulis, and P. J. McLellan, “Transient Performance of a Two-Phase Partitioning Bioscrubber Treating a Benzene-Contaminated Gas Stream,” Environmental Science and Technology, 39(22), pp.8971-8977(2005b).
92.Nogales, B., E. R. B. Moore, E. Llobet-Brossa, R. Rossello-Mora, R. Amann, and K. N. Timmis, “Combined Use of 16S Ribosomal DNA and 16S rRNA to Study the Bacterial Community of Polychlorinated Biphenyl-Polluted Soil,” Applied and Environmental Microbiology, 67(4), pp.1874-1884(2001).
93.Nyer, E. K., “Dnapl-Stop the Madness,” Ground Water Monitoring and Remediation, 19(1), pp.62-66(1999).
94.O’Hannesin, S. F. and Gillham, R. W., “Long-Term Performance of an In Situ “Iron Wall” for Remediation of VOCs,” Ground Water, 36(1), pp. 164-169 (1998).
95.O’Loughlin, E. J., D. R. Burris, and C. A. Delcomyn, “Reductive Dechlorination of Trichoroethene Mediated by Humic-Metal Complexes,” Environmental Science and Technology, 33(7), pp.1145-1147(1999).
96.Odziemkowski, M. S., L. Gui, and R. W. Gillham, “Reduction of N-Nitrosodimethylamine with Granular Iron and Nickel-Enhanced Iron. 2. Mechanistic Studies,” Environmental Science and Technology, 34(16), pp.3495-3500(2000).
97.Odziemkowski, M. S., T. T. Schuhmacher, R. W. Gillham, and E. J. Reardon, “Mechanism of Oxide Film Formation on Iron in Simulating Groundwater Solutions: Raman Spectroscopic Studies,” Corrosion Science, 40(2/3), pp. 371-389(1998).
98.Oh, S. Y., P. C. Chiu, B. J. Kim, and D. K. Cha, “Enhancing Fenton Oxidation of TNT and RDX through Pretreatment with Zero-Valent Iron,” Water Research, 37(17), pp.4275-4283(2003).
99.Oldenhuis, R., J. Y. Oedzes, J. J. Van Der Waarde, and D. B. Janssen, “Kinetics of Chlorinated Hydrocarbons Degradation by Methylosins Trichosporium OB3b and Toxicity of Trichloroethylene,” Applied and Environmental Microbiology, 57(1), pp. 7-14(1991).
100.Palmer, C. J., and R. L. Johnson, “Physical Processes Controlling the Transport of Non-aqueous Phase Liquids in the Subsurface,” Seminar Publication: Transport and Fate of Contaminants in the Subsurface, Chapter 3, EPA-625-4-89-019, pp. 23-28 (1989).
101.Powell, R. M., and R. W. Puls, “Permeable Reactive Subsurface Barriers for Interception and Remediation of Chlorinated Hydrocarbon and Chromium (VI) Plumes in Ground Water,” U.S. EPA Remedial Technology Fact Sheet. EPA/600/F-97/008(1997).
102.Powell, R. M., R. W. Puls, S. K. Hightower, and D. A. Sabatini, “Coupled Iron Corrosion and Chromate Reduction: Mechanisms for Subsurface Remediation”, Environmental Science and Technology, 29(8), pp. 1913-1922(1995).
103.Quan, Z., S. K. Rhee, J. W. Bae, J. H. Baek, Y. H. Park, and S. T. Lee, “Bacterial Community Structure in Activated Sludge Reactors Treating Free or Metal-Complexed Cyanides,” Journal of Microbiology and Biotechnology, 16(2), pp.232-239(2006).
104.Reardon, E. J, “Anaerobic Corrosion of Granular Iron: Measurement and Interpretation of Hydrogen Evolution Rates”, Environmental Science and Technology, 29(12), pp.2936-2945(1995).
105.Reinecke, F., T. Groth, K. P. Heise, W. Joentgen, N. M?ller, and Steinb?chel, “Isolation and Characterization of an Achromobacter xylosoxidans strain B3 and other Bacteria Capable to Degrade the Synthetic Chelating Agent Iminodisuccinate,” FEMS Microbiology Letter, 188(1), pp.41-46(2000).
106.Reynold, T. J., “Ten-Year Performance of the Borden Iron Wall,” Permeable Reactive Barrier Update, EnvironMetal Technologies, pp.1(2002).
107.Reynolds, G. W., J. T. Hoff, and R. W. Gillham, “Sampling Bias Caused by Materials Used to Monitor Halocarbons in Groundwater,” Environmental Science and Technology, 24(1), pp.135–142(1990).
108.Rhodes, F. H., and J. T. Carty, “The Corrosion of Certain Metals by Carbon Tetrachloride,” Industrial and Engineering Chemistry, 17(9), pp.909-911(1925).
109.Ritter, K., M. S. Odziemkowski, and R. W. Gillham, “An In situ Study of the Role of Surface Films on Granular Iron in the Permeable Iron Wall Technology,” Journal of Contaminant Hydrology, 55(2), pp.87-111(2002).
110.Ritter, K., M. S. Odziemkowski, R. Simpgraga, R. W. Gillham, and D. E. Irish, “An In situ Study of the Effect of Nitrate on the Reduction of Trichloroethylene by Granular Iron,” Journal of Contaminant Hydrology, 65(1-2), pp.121-136(2003).
111.Robert A. L., L. A. Totten, W. A. Arnold, D. R. Burris, and T. J. Campbell, “Reductive Elimination of Chlorinated Ethlyenes by Zero-Valent Metals,” Environmental Science and Technology, 30(8), pp.2654-2659(1996).
112.Robinsion, K. G., J. G. Pieters, J. Sanseverino, C. D. Cox, C. L. Wright, C. L. Cheng, and C. S. Sayler, “Microbial Oxidation and Bioluminescence Response for Toluene and Trichloroethylene,” Water Science and Technology, 38(7), pp.1-8(1998).
113.Roehl, K. E., T. Meggyes, F. G. Simon, and D. I. Stewart, Long-term Performance of Permeable Reactive Barriers, 1st Ed, Elsevier B.V., London (2005).
114.Roh Y., S. Y. Lee, M. P. Elless, and H. S. Moon, “Electro-Enhanced Remediation of Trichloroethene- Contaminted Groundwater Using Zero-Valent Iron,” Journal of Environmental Science and Health A, 35(7), pp.1061-1076(2000).
115.Roh, Y., S. Y. Lee, and M. P. Elless, “Characterization of Corrosion Products in the Permeable Reactive Barriers,” Environment Geology, 40(1-2), pp.184-194 (2000).
116.Ruangchainikom, C., C. H. Liao, J. Anotai, and M. T. Lee, “Characteristics of Nitrate Reduction by Zero-Valent Iron Powder in the Recirculated and CO2-bubbled System,” Water Research, 40(2), pp.195-204(2006).
117.Ruiz, N., S. Seal, and D. Reinhart, “Surface Chemical Reactivity in Slected Zero-Valent Iron Samples Used in Groundwater Remediation,” Journal of Hazardous Material, 80(1-3), pp.107-117(2000).
118.Sch?fer, A., and E. J. Bouwer, “Toluene Induced Cometabolism of cis 1,2-Dichloroethylene and Vinyl Chloride under Conditions Expected Downgradient of a Permeable Fe(0) Barrier,” Water Research, 34(13), pp.3391-3399(2000).
119.Scherer, M. M., S. Richter, R. L. Valentine, and P. J. J. Alvarez, “Chemistry and Microbiology of Permeable Reactive Barriers for In Situ Groundwater Clean up,” Critical Reviews in Environmental Science and Technology, 30(3), pp.364-411(2000).
120.Schlicker, O., M. Ebert, M. Fruth, M. Weidner, W. W?st, and A. Dahmike, “Degradation of TCE with Iron: the Role of Competing Chromate and Nitrate Reduction”, Ground Water, 38(3), pp403-409(2000).
121.Schreier C. G. and M. Reinhard, “Catalytic Hydrodehalogenation of Chlorination Ethylenes Using Palladium and Hydrogen for the Treatment of Contaminated Water,” Chemosphere, 31(6), pp.3475-3487(1995).
122.Schwertmann U., U. Gasser, and H. Sticher, “Chromium for Iron Substitution in Synthetic Goethites,” Geochimica et Cosmochimica Acta, 53(6), pp.1293-1297(1989).
123.Shie, S. S., C. T. Huang, and H. S. Leu, “Characteristics of Achromobacter xylosoxidans Bacteremia in Northern Taiwan,” Journal of Microbiology Immunology Infection, 38(4), pp.277-282(2005).
124.Shoe, S., S. H. Lee, Y. Y. Chang, K.Y. Hwang, and J. Khim, “Rapid Reductive Destruction of Hazardous Organic compounds by Nanoscale Fe0,” Chemosphere, 42(4), pp.367-372(2001).
125.Siantar, D. P., C. G. Schreier, C. Chou, and M. Reinhard, “Treatment of 1,2-Dibromo-3-Chloropropane and Nitrate-Contaminated Water with Zero-Valent Iron or Hydrogen/Palladium Catalysis,” Water Research, 30(10), pp. 2315-2322(1996).
126.Simon, F. G., and T. Meggyes, “Removal of Organic and Inorganic Pollutants from Groundwater Using Permeable Reactive Barriers: Part I. Treatment Processes for Pollutants,” Land Contaminant and Reclamation, 8(2), pp.103-116(2000).
127.Slater, G. F., B. S. Lollar, R. A. King, and S. O’Hannesin, “Isotopic Fractionation during Reductive Dechlorination of Trichloroethene by Zero-Valent Iron: Influence of Surface Treatment,” Chemosphere, 49(8), pp.587-596(2002).
128.Snoeyink, V. L., and D. Jenkins, Water Chemistry, Wiley, New York (1980).
129.Stumm, W., Chemistry of the Solid-Water Interface, John Wiley & Sons, Inc., New York, pp.204-205(1992).
130.Su, C., and R. W. Puls, “Kinetics of Trchloroethene Reduction by Zero Valent Iron and Tin: Pretreatment Effect, Apparent Activation Energy, and Intermediate Products,” Environmental Science and Technology, 33(1), pp. 163-168(1999).
131.Sun, A. K., and T. K. Wood, “Trichloroethylene Degradation and Mineralization by Pseudomonads and Methylosinus trichlosporium OB3b,” Applied Microbiology and Biotechnology, 45(1-2), pp.248-256 (1996).
132.Takenaka, S., S. Okugawa, M. Kadowaki, S. Murakami, and K. Aoki, “The Metabolic Pathway of 4-Aminophenol in Burholderia sp. Strain AK-5 Differs from that of Aniline and Aniline with C-4 Substituents,” Applied and Environmental Microbiology, 69(9), pp.5410-5413(2003).
133.T?mara, M. L., and E. C. Butler, “Effects of Iron Purity and Groundwater Characteristics on Rates and Products in the Degradation of Carbon Tetrachloride by Iron Metal,” Environmental Science and Technology, 38(6), pp. 1866-1876 (2004).
134.Totten, L. A., and A. L. Robert, “Calculated One- and Two-Electron Reduction Potentials and Related Molecular Descriptors for Reduction of Alkyl and Vinyl Halides in Water,” Critical Reviews in Environmental Science and Technology, 31(2), pp.175-221(2001).
135.Tratnyek, P. G., M. M. Scherer, B. Deng, and S. Hu, “Effects of Natural Organic Matter, Anthropogenic Surfactants, and Model Quinones on the Reduction of Contaminants by Zero-Valent Iron,” Water Research, 35(18), pp.4435-4443(2001).
136.U.S. Army Corps of Engineers, “Design Guidance for Application of Permeable Barriers to Remediate Dissolved Chlorinated Solvents,” DG 1110-345-11(1997).
137.U.S. EPA, “Permeable Reactive Barrier Technologies for Contaminant Remediation,” Office of Research and Development and Office of Solid Waste and Emergency Response, EPA/600/R-98/125(1998).
138.U.S. EPA, “Field Applications of In Situ Remediation Technologies: Permeable Reactive Barrier,” Office of Solid Waste and Emergency Response, EPA-542-R-99-002(1999a).
139.U.S. EPA, “Groundwater Cleanup: Overview of Operation Experience at 28 sites,” Office of Solid Waste and Emergency Response, EPA-542-R-99-006(1999b).
140.U.S. EPA, “Engineered Approaches to in Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications,” Office of Solid Waste and Emergency Response, EPA-542-R-00-008 (2000).
141.U.S. EPA, “Field Applications of in Situ Remediation Technologies: Permeable Reactive Barriers,” Office of Solid Waste and Emergency Response, Technology Innovation Office (2002).
142.van-Borm, S., A. Burschinger, and J. J. Boomsma, “Tetraponera Ants Have Gut Symbionts Related to Nitrogen-fixing Root-nodule Bacteria,” Proceedings of the Royal Society of London. Series B, 269(1504), pp.2023-2327(2002).
143.Verce, M. F., C. K. Gunsch, A. S. Danko, and D. L. Freeman, “Cometabolism of cis-1,2-Dichloroethylene by Aerobic Cultures Grown on Vinyl Chloride as the Primary Substrate,” Environmental Science and Technology, 36(10), pp.2171-2177(2002).
144.Verce, M. F., R. L. Ulrich, and D. L. Freeman, “Characterization of an Isolate that Uses Vinyl Chloride as a Growth Substrate under Aerobic Conditions,” Applied and Environmental Microbiology, 66(8), pp. 3535-3542(2000).
145.Vogel, T. M., and P. L. McCarty, “Rate of Abiotic Formation of 1,1-Dichloroethylene from 1,1,1-Trichloroethane in Groundwater,” Journal of Contaminant Hydrology, 1(4), pp.299-308(1987).
146.Vogel, T. M., C. S. Criddle, and P. L. McCarty, “Critical Review Transformations of Halogenated Aliphatic Compounds,” Environmental Science and Technology, 21(8), pp.722-736(1987).
147.Wackett, L. P. and D. T. Gibson, “Degradation of Trichloroethylene by Toluene Dioxygenase in Whole-Cell Studies with Pseudomonas putida F1,” Applied and Environmental Microbiology, 54(7), pp.1703-1708 (1988).
148.Wang, C. B., and W.X. Zhang, “Sythesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs,” Environmental Science and Technology, 31(7), pp.2154-2156(1997).
149.Weber, E. J., “Iron-Mediated Reductive Transformation: Investigation of Reaction Mechanism,” Environmental Science and Technology, 32(2), pp.716-719(1996).
150.Weber, S., P. Leuschner, P. K?mpfer, W. Dott, and J. Hollender, “Degradation of Estradiol and Ethinyl Estradiol by Activated Sludge and by a Defined Mixed Culture,” Applied Microbial and Cell Physiology, 67(1), pp.106-112(2005).
151.Webster, S. J., B. C. Stark, and K. R. Pagilla, “Enhancement of 2,4-dinitrotoluene Biodegradation by Burkholderia sp. in Sand Bioreactors Using Bacterial Hemoglobin Technology,” Biodegradation, 15(3), pp.161-171(2004).
152.Westerhoff, P., and J. James, “Nitrate Removal in Zero-Valent Iron Packed Columns,” Water Research, 37(8), pp.1818-1830(2003).
153.Williams, A. G. B., and M. M. Scherer, “Kinetics of Cr(VI) Reduction by Carbonate Green Rust,” Environmental Science and Technology, 35(17), pp.3488-3494(2001).
154.Williams, A. G. B., and M. M. Scherer, “Spectroscopic Evidence for Fe(II)-Fe(III) Electron Transfer at the Iron Oxide-Water Interface,” Environmental Science and Technology, 38(18), pp.4782-4790(2004).
155.Wilson, E. K., “Zero-Valent Metals Provide Possible Solution to Groundwater Problems,” Civil and Environmental, 7(3), pp.19-22 (1995).
156.Winter, R. B., K. M. Yen, and B. D. Ensley, “Efficient Degradation of Trichloroethylene by a Recombinant Escherichia coli,” Bio/Technology, 7(2), pp.282-285(1989)
157.Xenidis, A., A. Moirou, and I. Paspaliaris, “Reactive Materials and Attenuation Processes for Permeable Reactive Barriers,” Mineral Wealth, 123(1), pp.35-48(2002).
158.Yeom, S. H., and A. J. Daugulis, “Benzene Degradation in a Two-Phase Partitioning Bioreactor by Alcaligenes xylosoxidans Y234,” Process Biochemistry, 36(8-9), pp.765-772(2001).
159.Zawaideh, L. L., and T. C. Zhang, “The Effects of pH and Addition of an Organic Buffer (HEPES) on Nitrate Transformation in Fe-Water Systems”, Water Science and Technology, 38(7), pp.107-115 (1998).
160.Zhang, T. C., and Y. H. Huang, “Effects of Surface-Bound Fe2+ on Nitrate Reduction and Transformation of Iron Oxide(s) in Zero-Valent Iron Systems at Near-Neutral pH,” Journal of Environmental Engineering-ASCE, 132(5), pp.527-536(2006).
161.Zhang, W. X., C. B. Wang, and H. L. Lien, “Treatment of Chlorinated Organic Contaminants with Nanoscale Bimetallic Particle,” Catalysis Today, 40(4), pp.387-395(1998).
162.王正全,「鈀奈米粒子之製備與應用」,博士論文,國立成功大學化學工程學系,台南(2001)。
163.王俊元,「無機離子對零價鐵還原脫氯祛除水中三氯乙烯之影響」,碩士論文,國立中央大學環境工程研究所,中壢(2003)。
164.先崎哲夫,「還元?理有機?素化合物?理(第3報)-?粉??????????理(2)」,工業用水,四月版,第29-35頁(1991)。
165.先崎哲夫、熊谷裕男,「還元?理有機?素化合物除去(第2報)-?粉?理-),工業用水,六月版,第19-25頁(1989)。
166.先崎哲夫、熊谷裕男,「還元?理有機?素化合物除去-?粉1, 1, 2, 2-?理-」,工業用水,六月版,第2-7頁(1988)。
167.吳軒,「零價金屬錫與鈀錫雙金屬對水中四氯化碳還原脫氯反應之研究」,碩士論文,國立台灣大學環境工程研究所,台北(2005)。
168.宋秉育,「辛基苯酚之分解:分解菌和生物復育之菌相研究」,碩士論文,國立中央大學生命科學研究所,中壢(2004)。
169.車明道,「-奈米獵殺-奈米科技於土壤及地下水污染復育之發展與應用」,台灣土壤及地下水環境保護協會簡訊,第十期,第7-11頁(2003)。
170.洪旭文,「歐洲土壤與地下水污染整治計畫介紹」,台灣土壤及地下水環境保護協會簡訊,第十期,第12-14頁(2003)。
171.翁士奇,「奈米級零價鐵及銅鐵雙金屬還原水中硝酸鹽之研究」,碩士論文,國立台灣大學環境工程研究所,台北(2005)。
172.陳孝行、徐宏德、鄭自祐、唐志慧,「以創新奈米鐵金屬製備技術應用於硝酸鹽氮去除之研究」,中華民國境工程學會第十六屆年會暨學術研討會論文摘要集,台南(2004)。
173.陳家洵,「台灣地區地下水污染之討論」,現代化研究,第12期,第49-55頁(1997b)。
174.陳家洵,「地下水污染之討論」,應用倫理研究通訊,第3期,第19-23頁(1997a)。
175.楊金鐘、涂秀娟、洪志雄,「奈米級鈀/鐵雙金屬對於水溶液中TCE之降解反應動力初步探討」,中華民國境工程學會第十七屆年會暨學術研討會論文摘要集,中壢(2005a)。
176.楊金鐘、張德光,「電動力法結合奈米級鈀/鐵雙金屬懸浮液對於三氯乙烯降解成效探討」,中華民國境工程學會第十七屆年會暨學術研討會論文摘要集,中壢(2005b)。
177.楊金鐘、洪志雄、張德光,「奈米級零價鐵及鐵鈀雙金屬對於三氯乙烯降解成效初步探討」,中華民國境工程學會第十六屆年會暨學術研討會論文摘要集,台南(2004a)。
178.楊金鐘、許菁珊,「奈米級零價鐵對於水體中之硝酸鹽去除效率探討」,中華民國境工程學會第十六屆年會暨學術研討會論文摘要集,台南(2004b)。
179.廖軒斐,「零價鐵反應牆外加電壓去除水中三氯乙烯之研究」,碩士論文,國立中央大學環境工程研究所,中壢(2002)。
180.劉景文,「零價鐵去除水中六價鉻之研究」,碩士論文,國立台灣大學環境工程研究所,台北(2005)。
181.劉詔文,「生物反應牆袪除地下水中三氯乙烯和氯乙烯之研究」,碩士論文,國立中央大學環境工程研究所,中壢(2004)。
182.蔡政勳,「零價鐵反應牆處理三氯乙烯污染物之反應行為研究」,碩士論文,國立中央大學環境工程研究所,中壢(2000)。
183.蔡璨樺,「零價鐵技術袪除三氯乙烯之研究」,碩士論文,國立中央大學環境工程研究所,中壢(2000)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2006-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明