博碩士論文 90326005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.145.68.101
姓名 蔡子健(Tzu-Chien Tsai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 大氣氣膠含水率粒徑分布之研究
(Atmospheric Aerosol Water Content and diameter distribution research)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
在氣膠的吸濕特性研究中,大氣氣膠吸收的水量及粒徑分布的轉移具有很大的意義,因此,了解大氣氣膠隨相對溼度改變在粒徑及含水量上的影響是格外的重要;另外,由於氣膠本身的化學成分也會影響氣膠吸濕特性,因此,即時獲得氣膠的化學成分也是必要的。
本研究成功的建立一套量測大氣乾、濕氣膠粒徑分布系統,此套系統以人工氣膠(NH4)2SO4進行量測,結果顯示乾、濕氣膠粒徑有明顯的差異,而系統量測到的粒徑增長倍數與文獻中的數值相當接近,顯示了本系統的可行性。
本研究在台北市南港區進行大氣氣膠即時量測,發現大氣氣膠的粒徑分部大多是以雙峰型態分布,主要的峰值粒徑在90~100nm及20~30nm,只有少數時間轉變為單峰分布;大氣氣膠體積增長百分比與大氣相對濕度有明顯的相關性存在,但與大氣中硫酸銨濃度的變化相關性較不明顯。
本研究所使用的ISORROPIA模式主要是將吸濕性物質視為硫酸銨進行推估,但實際所量測到的大氣氣膠體積增長百分比與硫酸銨的濃度變化並沒有明顯的關係,此結果說明了實際大氣的吸濕性物種並非完全以硫酸銨為主,而是有其他的吸濕性物質存在,另外,含水量較高個案在粒徑100~500nm的體積增長變化比氣膠含水量低的個案高出許多,此結果顯示大氣氣膠吸濕性物質主要存在於100~500nm之間。
另外,量測的濕氣膠質量濃度與模式所推估的濕氣膠質量濃度有很好的一致性(R2=0.74),但量測值在絕對量上較高,可能來自於SMPS數目濃度高估以及其它成分氣膠存在所影響。
摘要(英) Abstract
Atmospheric aerosol water content and diameter shift are very important in hygroscopic research, so find out relative humidity influence aerosol water content and diameter change especially important. Aerosol chemical components also affect hygroscopic characteristic, so get really time aerosol chemical components are necessary.
This work successful establish the system in measuring wet and dry particles diameter distribution, and used artificial aerosol (NH4)2SO4 to test the system, result show wet and dry particles have difference in diameter distribution, and measured data growth factor agree with reference value, it mean this system is feasible.
The sampling site is at Taipei Nan-Gang region, aerosol diameter distribution display bimodal growth, the modal diameter at 90~100nm and 20~30nm, sometime change one modal distribution. Atmospheric aerosol in volume increasing percentage has well correlation with atmospheric relative humidity, but not well with ammonium sulphate concentration.
This work regards ammonium sulphate as main hygroscopic components in apply ISORROPIA model. In fact, aerosol volume increasing percentage has not well correlation with ammonium sulphate concentration. It means ammonium sulphate not full hygroscopic components in atmosphere; there are some hygroscopic components exist at atmosphere. In case study shows higher water content case has more volume increasing percentage than lower water content case at 100~500nm, the result mean hygroscopic components distribution range at 100~500nm.
On the side, measuring wet aerosol mass concentration has well concentration with simulating (R2=0.74), but some difference at absolute value. It could be from SMPS higher estimate or others aerosol components influence.
關鍵字(中) ★ 含水量
★ 粒徑分布
★ 氣膠
關鍵字(英) ★ diameter distribution
★ Aerosol
★ water content
論文目次 目錄……………………………………………..…………..Ⅷ
圖目錄…………………………………………………….…………….Ⅹ
表目錄………………………………………………………………..ⅩⅡ
第1章 前言 1
1.1研究動機 1
1.2研究目標 3
第2章 文獻回顧 4
2.1 大氣氣膠來源及特性 4
2.1.1大氣氣膠來源 4
2.1.2 大氣氣膠化學組成與粒徑分布 5
2.2 大氣氣膠水溶性離子形成及粒徑分布 7
2.2.1 大氣氣膠水溶性離子形成 7
2.2.2 大氣氣膠水溶性離子粒徑分布 8
2.3. 影響氣膠含水特性因子 10
2.3.1溫度 10
2.3.2相對濕度 10
2.3.3氣膠物種組成 12
2.4 量測氣膠吸濕特性相關研究 14
2.4.1 TDMA法 14
2.4.2 EDB(Electrodynamic Balance)法 20
2.4.3 GC-TCD法 21
2.5 氣膠對人體健康影響 22
第3章 研究設備與方法 24
3.1 乾、濕氣膠量測設備研發 24
3.1.1 研究緣起 24
3.1.2 量測原理 24
3.1.3 乾、濕氣膠粒徑量測設備 25
3.1.4 量測步驟 29
3.2 分析方法與原理 32
3.2.1次微米氣膠粒徑分布監測儀SMPS 32
3.2.2 Nafion Dryer特性 37
3.2.3 IC-Online 39
3.3 氣膠組成模式 40
3.3.1 ISORROPIA模式 40
第4章 結果與討論 45
4.1 系統測試 45
4.1.1人工氣膠(NH4)2SO4測試結果 45
4.2 人工氣膠(NH4)2SO4吸濕特性 49
4.2.1 不同相對濕度下(NH4)2SO4粒徑分布情形 49
4.2.2 (NH4)2SO4含水量探討 52
4.2.2.1 量測(NH4)2SO4水溶液密度變化 52
4.2.2.2 模式與量測值含水量比較 53
4.3 即時量測大氣氣膠吸濕特性 56
4.3.1 採樣規劃與分析原則 56
4.3.2 大氣氣膠吸濕特性探討 57
4.4 模式推估含水量與粒徑分布變化 74
4.4.1 含水量與粒徑分布相關探討 74
4.4.2模式與量測濕氣膠質量濃度比較 77
第5章 結論與建議 79
參考文獻………………………..………………………………………82
附錄一…………………………………………………………………..91
參考文獻 參考文獻
Bassett, M., Seinfeld, J.H., 1983. Atmospheric equilibrium model ofsulfate and nitrate aerosols Ⅱ. Particle size analysis. Atmospheric Environment 18, 1163-1170.
Baumgardner, D., Clarke, A., 1998. Changes in aerosol properties with relative humidity in the remote southern hemisphere marine boundary layer. Journal of Geophysical Research 103, 16525-16534.
Berg, O.H., Swietlicki, E., Krejci, R., 1998. Hygroscopic growth of
aerosol particles in the marine boundary layer over the Pacific and Southern Oceans during the First Aerosol Characterization Experiment (ACE 1). Journal of Geophysical Research 1013, 16535-16545.
Bromley, L.A., 1973. Thermodynamic properties of strong electrolytes in aqueous solutions. American Institute of Chemical Engineering Journal 19, 313-320.
Busch, B., Sprengard-Eichel, C., Kandler, K., Schutz, L., 1999. Hygroscopic properties and watersoluble Fraction of atmospheric particles in the diameter range from 50 nm to 3.0 μm during the aerosol characterization experiment in Lindenberg. Journal of Aerosol Science 30, S513-S514.
Cavert, J.C., Stockwell, W.R., 1983. Acid generation in the troposphere by gas-phase chemistry. Environment Science and Technology, 428-443.
Chen, S.J., Fang, G.C., Lin, C.C., Hsieh, L.T., 1997. Dry deposition and particle size distributions of nitrate and sulfate in ambient air. Toxicological and Environmental Chemistry 62, 110-121.
Chow, J.C., 1992. A neighborhood-scale study of PM10 source contribution in Rubidoux California. Atmosphere Environment 26A, 693-706.
Chow, J.C., Watson, J.G., Fujuta, E.M., Lu, Z., Lawson, D.R., 1994. Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmosphere Environment 28, 2061-2080.
Covert, D.S., Heintzenberg, J., 1993. Size distributions and chemical
properties of aerosol at Ny Alesund, Svalbard. Atmosphere Environment 27A, 2989-2997.
Dick, W.D., 1998. Multiangle light scattering techniques for measuring shape and refractive index of submicron atmospheric particles. Ph.D. Thesis, Department of Mechanical Engineering. Minneapolis, MU, University of Minnesota.
Cruz, C.N., Pandis, S.N., 2000. Deliquescence and hygroscopic
growth of mixed inorganic—organic atmospheric aerosol.
Environmental Science and Technology 34, 4313–4319.
Dua, S.K., Hopke, P.K., 1996. Hygroscopic growth of assorted indoor aerosol. Aerosol Science and Technology 24, 151-160.
Ferron, G.A., Karg, E., Busch, B., Heyder, J., 1999. Hygroscopicity of
ambient particles, Journal of Aerosol Science 30, S19-S20.
Ge, Z., Wexler, A.S., Johnston, M.V., 1998. Deliquescence behavior of multicomponent aerosols. Journal of Physical Chemistry 102A, 173-180.
Hänel, G., 1976. The properties of atmospheric aerosol particlea as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Advaces in Geophysics 19, 73-188.
Hansson, H.-C., Rood, M.J., Covert, D.S., 1990. Experimental determination of the hygroscopic properties of organically coated aerosol particles. Journal of Aerosol Science 21, S241-S244.
Hansson, H.-C., Wiedensohler, A., Koloutsou-Vakakis, S., Hameri, K., Orsini, D., Widensohler, A., 1998. NaCl aerosol particle hygroscopicity dependence on mixing with organic compounds. Journal of Atmosphere Chemistry 31, 321-346.
Harrison, R.M., Msibi, M.I., Kitto, A.M.N., Yamulki, S., 1994. Atmosphere chemical transformations of nitrogen compounds measure in the North Sea Experiment, September 1991. Atmosphere Environment 28, 1593-1599.
Kerminen, V.M., Pakkanen, T.A., Hillamo, R.E., 1997. Interactions between inorganic trace gases and supermicrometer particles at a coastal site. Atmosphere Environment 31, 2753-2765.
Kim, Y.P., Seinfeld, J.H., Saxena, P., 1993a. Atmospheric gas-aerosol equilibrium Ⅰ. Thermodynamic model. Aerosol Science and Technology 19, 157-181.
Kim, Y.P., Seinfeld, J.H., Saxena, P., 1993b. Atmospheric gas-aerosol equilibrium Ⅱ. Analysis of common approximations and activity coefficient calculation methods. Aerosol Science and Technology 19, 182-198.
Kusik, C.L., Meissner, H.P., 1978. Electrolyte activity coefficients in inorganic processing. American Institute of Chemical Engineering Symposium Series 173, 14-20.
Lee, C.T., Hsu,W.C., 1998. A Novel Method to Measure Aerosol Water Mass. Journal of Aerosol Science 29, 827-837.
Lee, W.M.G., Chen, C.Y., Huang, S.L., Lee, C.T., 1996. The deliquescent growth of inorganic-salt aerosols observed by a combined system of TDMA and intergrated nephelometer. Journal of Aerosol Science 27, S313-S314.
Li, W., Hopke, P.K., 1993. Initial size distributions and hygroscopicity
of indoor combustion aerosol particles, Aerosol Science and Technology 19, 305-316.
Lundgren, D.A., Burton, R.M., 1995. Effect of particle size distribution on the cut point between fine and coarse ambient mass fractions. Inhalation Toxicology 7, 131-148.
Mangelson, N.F., Joseph, J.M., 1983.The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in Cache Valley, Uath, J., Journal of the Air and Waste Management Association. 167-175.
Massling, A., Wiedensohler, A., Busch, B., 1999. Hygroscopic growth of
aerosol particles in the Southern Atlantic Ocean and Indian Ocean. Journal of Aerosol Science 30, S837-S838.
McMurry, P.H.,Wilson, J.C., 1983. Droplet phase (heterogenous) and gas phase (homogenous) cintribution to secondary ambient aerosol formation as functions of relative humidity. Journal of Geophysical Research 88, 5101-5108.
McMurry, P.H., Zhang, X.Q., 1989. Size distribution of ambient organic and elemental carbon. Aerosol Science and Technology 10, 430-437.
McMurry, P.H., Stolzenburg, M. R., 1989b. On the sensitivity of particle
size to relative humidity for Los Angeles aerosols, Atmospheric Environment 23, 497-507.
McMurry, P.H., Zhang, X.Q., 1991. Optical properties of Los Angeles Aerosols: an analysis of data acquired during SCAQS. Final report to the Coordinating Research Council, 219 Perimeter Center Parkway, Atlanta, GA 30346.
McMurry, P.H., Litchy, M., Huang, P.-F., Cai, X., Turpin, B.J., Dick, W.D., Hanson, A., 1996. Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA. Atmospheric Environment 30, 101-108.
Model 3080 Electrostatic Classifier, (2000) TSI manual.
Model 3022A Condensation Particle Counter, (2000) TSI manual.
Neubauer, K.R., Johnston, M.V., Wexler, A.S., 1998. Humidity effects on the mass spectra of single aerosols particles. Atmospheric Environment 32, 2521-2529.
Ohta, S., Okita, T., 1990. A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment 24A, 815-822.
Potukuchi, S., Wexler, A.S., 1995a. Identifying solid-aqueous phase transitions in atmospheric aerosols-Ⅰ. neutral-acidity solutions. Atmospheric Environment 29, 1663-1676.
Potukuchi, S., Wexler, A.S., 1995b. Identifying solid-aqueous-phase transitions in atmospheric aerosols. Ⅱ. acidic solutions. Atmospheric Environment 32, 3357-3364.
Rader, D.J., McMurry, P.H., 1986. Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation. Journal of Aerosol Science 17, 771-787.
Robert, A.M., Michael, T.K., 2000. Incidence and apparent health significance of brief airborne particle excursions. Aerosol Science and Technology 32, 93-105.
Sloane, C.S, 1986. Effect of composition on aerosol light scattering efficiencies. Atmospheric Environment 20, 1025-1037.
Saxena, P., Hildemann, L.M., 1996. Water-soluble organics in atmospheric particles:a critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry 24, 57-109.
Saxena, P., Hildemann, L.M., McMurry, P.H., Seinfeld, J.H., 1995. Organics alter hygroscopic behavior of atmospheric particles. Journal of Geophysics Reserch 100(D), 18755-18770.
Stelson, A.W., Seinfeld, J.H., 1982. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmospheric Environment 16, 983-992.
Swietlicki, E., Zhou, J., Berg, O.H., Martinsson, B.G., Frank, G., Cederfelt, S.-I., Dusek, U., Berner, A., Birmili, W., Wiedensohler, A., Yuskiewicz, B., Bower, K.N., 1999. A closure study of sub-micrometer aerosol particle hygroscopic behaviour, Journal of Atmospheric Research 50, 205-240.
Tang, I.N., Wong, W.T., Mukelwitz, H.R., 1981. The relative importance of atmospheric sulfates and nitrates in visibility reduction. Atmospheric Environment 15, 2463-2471.
Tang, I.N., Fung, K.H., Imre, D.G., Munkelwitz, H.R., 1995. Phase transformation and metastability of hygroscopic microparticles. Aerosol Science and Technology 23, 443-453.
Trakumas, S., Juozaitis, A., Buzorius, G., Girgzdys, A., Vidmantas, U., 1995. Investigations of hygroscopical properties of atmosphere aerosol particle. Journal of Aerosol Science 26, S371-S372.
Tuch, A.M., Tamm, E.J., Heyder, H.P., Brand, C.H., Roth, H.E., Wichmann, J.P., Kreyling, W.G., 2000. Comparison of two particle-size spectrometers for ambient aerosol measurements. Atmospheric Environment 34, 139-149.
Virkkula, A., Dingenen, R. V., Raes, F., Hjorth, J., 1999. Hygroscopic
properties of aerosol formed by oxidation of limonene, α-pinene, and β-pinene. Journal of Geophysics Research 104, 3569-3579.
Watson, J.G., 1979. Chemical element balance receptor model metjology for assessing the source of fine and total suspended particle matter in Portland, Oregon, Ph.D. thesis, Oregon Graduate Center.
Watson, J.G., 1998. The science of fine particle matter. Workshop on Sampling, Regulation, and Light Scattering Effects on PM2.5, 1-14.
Weber, R.J., Orsini, D., Daun, Y., Lee, Y.-N., Klotz, P.J., Brechtel, F., 2001. A particle-into-liquid collector for dapid measurement of aerosol bulk chemical composition. Aerosol Science and Technology 35, 718-727.
Weingartner, E., Baltensperger, U., Burtscher, H., 1995. Growth and structural changes of combustion aerosols at high relative humidity. Journal of Aerosol Science 26, S667-S668.
Wexler, A.S., Seinfeld, J.H., 1991. Second-generation inorganic aerosol model. Atmospheric Environment 25A, 2731-2748.
Wu, P. M., Okada, K., 1944. Nature of coarse nitrate particles in the atmosphere-a single particle approach. Atmospheric Environment 28, 2053-2060.
Xiong, J.Q., Zhong, M., Fang, C., Chen, L.C., Lippmann, M., 1998. Influence of organic films on the hygroscopicity of ultrafine sulfuric acid aerosol, Environment Science and Technology 32, 3536-3541.
Zhang, X.Q., McMurry, P.H., 1993. Evaporative losses of fine particulate nitrates during sampling. Atmospheric Environment 26A, 3305-3312.
Zhang, X.Q., McMurry, P.H., Hering, S.V., Casuccio, G.S., 1993b. Mixing characteristics and water content of submicron aerosols measured in Los Angeles and at the Grand Canyon. Atmospheric Environment 27A, 1593-1607.
Zheng, B., Sage, M., Cai, W.W., Thompson, D.M., Tavsanli, B.C.,Cheath, Y.C., Bradley, A., 1999. Engineering a mouse balancer chromosome. Nat Genet., 22(4), 375-378.
Zhuang, H., Chen, C.K., Fang, M., Wexler, A.S., 1999. Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmospheric Environment 33, 4223-4233.
林妹吟(2002)「台北都會區黃沙時期氣膠特性」,國立中央大學環境工程研究所碩士論文。
李俊璋(1982)「台北市空氣氣膠物理化學分析及學童肺功能之研究」,國立台灣大學環境工程研究所碩士論文。
吳家興(1995)「台灣北部地區國中學生氣喘的研究-空氣污染的影響」,國立台灣大學公共衛生學研究所碩士論文。
許文昌、李崇德(1992)「台北都會區氣膠氣膠污染來源推估」,第九屆空氣污染控制技術研討會,第189-202頁。
黃明雄、李崇德、林立偉(1998)「墾丁地區契交污染來源推估及在不同天氣類型氣流軌跡的傳輸」,第十五屆空氣污染控制技術研討會,第595-602頁。
張士昱、李崇德(2000)「在氣膠含水自動量測系統」,第八屆氣膠科技研討會,第47-52頁。
張維嘉(2000)「台灣中部大氣氣膠特性及粒徑分布-阿里山測站案例分析」,國立中興大學環境工程研究所碩士論文。
指導教授 李崇德(Chung-Te Lee) 審核日期 2003-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明