博碩士論文 90326013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.21.43.140
姓名 王俊元(Chun-Yuan Wang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 無機離子對零價鐵還原脫氯祛除水中三氯乙烯之影響
(Effects of Inorganic Ions on the Reductive Dechlorination of Trichloroethene in Water by Zero-Valent Iron)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用批次實驗,探討二價鐵離子、鈣離子與硫酸根離子等無機離子存在時,對零價鐵降解TCE之影響,並且利用SEM-EDS與XPS等精密儀器,進行鐵粉表面微觀觀察與表面氧化物物種與含量的分析,以瞭解鐵粉表面氧化物種類的變化對TCE降解的影響。
研究結果顯示,未經酸洗前處理之鐵粉,對TCE不具有降解能力,由XPS分析結果發現,係因其表面存在Fe2O3鈍化膜,阻礙零價鐵釋放電子,而與水中TCE發生氧化還原反應的機會。然而,經過酸洗前處理後之鐵粉,TCE的降解速率大幅增加,係因表面氧化物物種的組成,Fe2O3含量大幅降低,而轉變為易水解之α-FeOOH,因而增加鐵粉可參與反應的表面積及氧化能力,提高還原脫氯TCE的能力,因此在反應時間37小時,TCE去除率即可達100 %。此外,二價鐵離子存在於TCE水溶液時,實驗結果發現,在本研究條件下,對TCE並不具有降解能力,而經由Nernst equation計算發現,必須在低pH及高二價鐵離子濃度下,二價鐵離子對TCE才具有氧化還原的能力。當二價鐵離子存在於未經酸洗前處理之鐵粉時,在反應初期10分鐘內,TCE幾乎沒有降解的情形發生,然而隨著反應時間的增加,TCE的降解速率也隨之增加,且降解速率隨初始二價鐵離子濃度的增加而增加,當二價鐵離子的濃度由0 mg/L增加至300 mg/L時,反應77小時後,水中TCE的濃度由90 mg/L降低至20 mg/L,未經酸洗前處理之鐵粉,二價鐵離子對TCE降解速率的增加,係因為二價鐵離子會吸附至鐵粉表面的Fe2O3晶格,將Fe2O3還原轉化成具半導體特性Fe3O4,允許由零價鐵表面釋放之電子通過。而當二價鐵離子存在於酸洗前處理之鐵粉時,實驗結果發現,當初始二價鐵離子濃度由0 mg/L增加至 300 mg/L,TCE的降解速率由0.084 h-1下降至0.056 h-1,利用SEM-EDS與XPS觀察鐵粉表面發現,反應初期,溶液中之二價鐵離子主要形成氫氧化亞鐵沈澱物,覆蓋於鐵粉表面,隨者反應時間增加,進一步氧化為Fe3O4,雖然Fe3O4具半導體特性,可使零價鐵釋出之電子通過,與TCE接觸發生氧化還原反應,但相較之下,其電子傳遞速度,仍不如具導體性質之零價鐵,故二價鐵離子存於酸洗前處理之鐵粉時,會使鐵粉表面電子傳遞能力下降,同時降低TCE去除速率。
此外,在本實驗條件下,反應時間77小時內,水溶液中鈣離子與TCE的濃度幾乎沒有變化,主要係因為溶液中之氫氧根離子與碳酸根離子濃度,尚不足與鈣離子形成氫氧化鈣或碳酸鈣沈澱,降低鐵粉表面活性。
硫酸根離子存在於Fe0-TCE系統時,硫酸根離子與零價鐵氧化還原反應後之氫氧化亞鐵,形成可溶性硫酸亞鐵,避免氫氧化亞鐵氧化繼續轉化為Fe3O4,降低鐵粉可反應表面積與電子傳遞能力,因而提升TCE還原脫氯速率。
摘要(英) The purpose of this study was aimed to investigate the effects of inorganic ions, such as ferrous ion, calcium ion, and sulfate ion on the reductive dechlorination of trichloroethylene (TCE) with batch tests in aqueous solution by zero-valent iron (ZVI). Also, the observation of the surface of metal iron by scanning electron microscopy with energy dispersive X-ray spectrum (SEM-EDS) and X-ray photoelectron spectrometer (XPS) analysis were carried out to identify the formation of hydroxide precipitations on the surface of metal iron and that of effects of TCE degradation.
Experimental results indicated that the metal iron without acid washing pretreatment could not reduce TCE effectively because the passive film of maghemite (Fe2O3) might coat on the surface of metal iron by the observation of XPS analysis. The precipitations of maghemite on the surface of metal iron could hinder the electrons released from the oxidation of metal iron to the bulk solution and affect the reductive dechlorination of TCE. However, the degradation rate of TCE with ZVI would increase after pretreatment of metal iron with acid washing. At the 37 h of reaction time, the removal percentage of TCE would reach 100 %. The observation of the surface of metal iron by XPS analysis showed that the content of maghemite would decrease and the conformation of oxides on the surface of metal iron with acid washing changed from maghemite to more hydrated α-FeOOH, therefore, the reactive specific area and the ability of oxidation of metal iron might increase. Additionally, the ferrous ion could not directly reduce TCE in this study. According to the Nernst equation, the reductive dechlorination of TCE by the ferrous ion should be at the low pH and high concentration of ferrous ion. Experimental results indicated that in the presence of ferrous ion with unacid washing metal iron in the Fe0-TCE system, the degradation of TCE would not occur during the initial 10 min of the reaction time. However, the degradation rate of TCE increased with the increase of reaction time. Also, the degradation rate increased with the initial concentration of ferrous ion. When the concentration of ferrous ion increased from 0 mg/L to 300 mg/L, the residual concentration of TCE in the solution decreased from 90 mg/L to 20 mg/L after the 77 h of reaction time. The reasons of the increase rate of TCE degradation with unacid washing metal iron was that ferrous ion absorbed to the lattice of maghemite which coating on the surface of metal iron and converse maghimite to the semiconductive materials of magnetite(Fe3O4) that was permitted electrons to pass those precipitations from the metal iron surface and reduce TCE in the solution, therefore, the degradation rates of TCE was enhanced.
On the other hand, when the ferrous ion coexisted with acid washing metal iron, the rate constant of TCE decreased from 0.084 h-1 to 0.056 h-1 as the concentration of ferrous ion increase from 0 mg/L to 300 mg/L. The observation of the surface of metal iron by SEM-EDS and XPS analysis showed that the ferrous ion would form the ferrous hydroxide coating on the surface of ZVI and decreased the degradation rate of TCE during the initial reaction time. With the increase of reaction time, the ferrous hydroxide precipitations would be oxidized to form magnetite and had not hindered the electrons to contact with TCE for reductive dechlorination. However, the transfer rate of electrons from magnetite on the surface of metal iron was still less than that of ZVI. Consequently, it revealed that the removal rate of TCE would decrease when the ferrous ion coexisted with acid washing acid.
Additionally, the concentrations of calcium ion and TCE would not be different in the solution during the 77 h of reaction time when calcium ion coexisted in the Fe0-TCE system. This was because the both concentration of OH- and carbonate was not enough to form the precipitations of calcium hydroxide and calcium carbonate on the surface of ZVI in this study. Also, the calcium ion have no an effect on the reductive dechlorination of TCE.
When the sulfate ion coexist in the Fe0-TCE system, the sulfate ion would react with the ferrous hydroxide that be oxidized by the ZVI, and form the soluble ferrous sulfate (FeSO4) in the solution. Further, it avoided that the ferrous hydroxide was oxidized to form the magnetite continually, thus, the reactive specific area and the ability of electrons releasing of ZVI could decrease. Consequently, the sulfate ion would enhance the degradation rate of the TCE by ZVI in the Fe0-TCE system
關鍵字(中) ★ 零價鐵
★ 三氯乙烯
★ 二價鐵離子
★ 硫酸根離子
★ 鈣離子
★ 鈍化膜
關鍵字(英) ★ calcium ion
★ sulfate ion
★ zero-valent iron
★ passive film
★ ferrous ion
★ TCE
論文目次 目錄 ……………………………………………………………….................I
圖目錄 ……………………………………………………………………..IⅤ
表目錄 ……………………………………………………………………..IX
第一章 前言 ………………………………………………………………..1
1-1 研究緣起 ……………………………………………………………….1
1-2 研究目的與內容 ……………………………………………………….2
第二章 文獻回顧 ………………………………………………………….5
2-1 三氯乙烯之物化特性與其對人體之危害性 …………………….…....5
2-2 三氯乙烯之污染現況 ………………………………………….………8
2-3 零價鐵祛除三氯乙烯之研究現況 …………………………….……..10
2-3-1基本原理 …………………………………………………….…...10
2-3-2影響因子 …………………………………………………….…...12
2-3-3脫氯途徑與反應產物 ……………………………………..……..16
2-3-4現地應用情況 ………………………………………………..…..18
2-4 地下水中常見無機離子對零價鐵祛除氯烯類化合物之影響……....22
2-4-1 硝酸根離子………………………………………………..…..…22
2-4-2 碳酸根離子…………………………………………………....…23
2-4-3 氯離子…………………………………………………..……..…24
2-4-4 二價鐵離子………………………………………………………25
2-4-5 硫酸根離子…………………………………………………....…25
2-4-6 矽酸根離子…………………………………………………….26
第三章 研究方法 ………………………………………………………27
3-1研究流程…………………………………………………………..27
3-2實驗內容…………………………………………………………..27
3-3實驗設計及操作方法……………………………………………..32
3-4實驗設備…………………………………………………………..36
3-5實驗材料及藥品…………………………………………………..38
3-6分析方法…………………………………………………………..40
第四章 結果與討論……………………………………………..44
4-1 背景實驗…………………………………………………………….44
4-1-1 反應瓶氣密性……………………….…………………………44
4-1-2 硫酸根離子之溶出……………………………………..……...44
4-1-3 零價鐵酸洗前處理對去除TCE之影響...................................44
4-2 二價鐵離子效應 …………………………………………………….54
4-2-1 二價鐵離子與TCE之交互作用 …………………………….54
4-2-2 二價鐵離子與鐵粉之交互作用 ……………………………..54
4-2-3 酸洗前處理對零價鐵去除TCE之影響 …………………….58
4-2-4 未經酸洗前處理對零價鐵去除TCE之影響……………….69
4-3 鈣離子效應 ………………………………………………………….80
4-3-1 鈣離子與TCE之交互作用 ………………………………….80
4-3-2 鈣離子與鐵粉之交互作用…………………………………...80
4-3-3 鈣離子對零價鐵去除TCE之影響 ………………………….81
4-4 硫酸根離子效應 ………………………………………………….....85
4-4-1 硫酸根離子與TCE之交互作用 ……………………………....85
4-4-2 硫酸根離子與鐵粉之交互作用 ………………………………..86
4-4-3 硫酸根離子對零價鐵去除TCE之影響……………………....90
第五章 結論與建議 ……………………………………………………103
5-1 結論 …………………………………………………………………103
5-2 建議 …………………………………………………………………105
參考文獻 ……………………………………………………………….106
附錄A本研究各分析方法之檢量線 ……………………………...附錄A-1
參考文獻 參考文獻
1. Agrawal, A. and P. G. Tratnyek, “Reduction of Nitro Aromatic Compounds by Zero-Valent Iron Metal”, Environ. Sci. Technol., Vol.30, No.1, pp 153-160, (1996)
2. Agrawal, A., W. J. Ferguson, B. O. Gardner, J. A. Christ, J. Z. Bandstra, and P. G. Tratnyek, “Effects of Carbonate Species on the Kinetics of Dechlorination of 1,1,1-Trichloroethane by Zero-Valnet Iron,”, Environ. Sci. Technol., Vol.36, pp 4326-4333(1996)
3. Arnold WA, Roberts AL, “Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles”, Environ. Sci. Technol., Vol.34, No.9, pp.1794-1805(2000)
4. Bendient, P. B., H. S. Rifai, and C. J. Newell, “Ground Water Contamination, Nonaqueous Phase Liquids,” 2nd, Prentice Hall PTR publisher(1999).
5. Blowes, D.W., C. J. Ptacek, and J. L. Jambor, ”In-Situ Remediation of Chromate Contaminated Groundwater Using Permeable Reactive Walls,” Environ. Sci. Technol. , Vol.31, No.12, pp.3348–3357(1997).
6. Blowes, D.W., C. J. Ptacek, A. G. Benner, W. T. Mcrae, T. A. Bennett, and R. W. Puls, ”Treatment of Inorganic Contaminants Using Permeable Reactive Barriers,” J Contam Hydrol, Vol.45, pp.123–137(2000).
7. Campbell, T. J., D. R. Burris, A. L. Roberts, and J. R. Wells, “Trichloroethylene and Tetrachloroethylene Reduction in a Metallic Iron-Water-Vapor Batch System,” Environ. Sci. Technol., Vol.16, No.4, pp.625-630 (1997).
8. Corapcioglu, Y. C., S. E. Roosevelt, and S. Chowdhury, “Micromodel Visualization and Quantification of Transport Processes and Dissolution in Porous Media”, 1997 International Conference on Groundwater Quality Protection, Taipei, pp.24-44(1997).
9. Farrell J., N. Melitas, M. Kason, and T. Li, “Electrochemical and Column Investigation of Iron-Mediated Reductive Dechlorination of Trichloroethylene and Perchlotoethylene,” Environ. Sci. Technol., Vol.34, No.12, pp.2549-2556(2000).
10. Farrell J., N. Melitas, M. Kason, and T. Li, “Investigation of the Long-Term Performance of Zero-Valent Iron for Reductive Dechlorination of Trichloroethylene” Environ. Sci. Technol., Vol.34, No.3, pp.5149-521(2000)..
11. Gandhi, S., B. T. Oh, J. L. Schnoor, and P. J. J. Alvarez, “Degradation of TCE, Cr(VI), Sulfate, and Nitrate Mixtures by Granular Iron in Flow-through Columns under Different Microbal Conditions,” Water Res., Vol36., pp.1973-1982(2002)
12. Gavaskar A. R., N. Gupta., B. M. Sass., R. J. Janosy., and D. O’Sullivan, “Permeable Barriers for Groundwater Remediation,” Battelle Press, Columbus, Ohio, pp.8 (1998).
13. Gillham, R. W. and S. F. O’Hannesin, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron,” Ground Water, Vol.32, No.6, pp958-967(1994).
14. Gotpagar, J., E. Grulke, T. Tsang, and D. Bhattacharyya, “Reducitve Dehalogenation of Trichloroethylene Using Zero-Valent Iron,” Environ. Prog, Vol. 16, No. 2, pp. 137-143 (1997).
15. Gu, B., T. J. Liang, M. J. Dickey, Y. Roh, B. L. Kinsall, A. V. Palumbo, and G. K. Jacobs, “Biochemical Dynamics in Zero-Valent Iron Columns: Implications for Permeable Reactive Barriers”,. Environ. Sci. Technol., Vol.33, No.13, pp.2170–2177(1999)
16. Hardy, L. I. and R. W. Gillham, “Formation of Hydrocarbon from the Reduction of Aqueous CO2 by Zero-Valent Iron”, Environ. Sci. Technol., Vol.30, No. 1, pp. 57-65 (1996).
17. Holtzclaw, H. F., J. W. R. Robinson, and J. D. Odom, “General Chemistry with Qualitative Analysis,” D. C. Health and Company, ninth edition, Toronto ,ppAI0-AI1 (1991).
18. Hung, H. and M. R. Hoffmann, “Kinetics and Mechanism of the Enhanced Reductive Degradation of CCl4 by Elemental Iron in the Presence of Ultrasound”, Environ. Sci. Technol., Vol.32, No.19, pp. 3011-3016 (1998).
19. Huang, Y. H., and T. C. Zhang, “Kinetics of Nitrate Reduction by Iiron at Near Neutral pH,” J. Environ. Eng. ASCE, Vol.128, No.7,pp.604-611(2002)
20. Johnson, T. L., M. M. Scherer, and P. G. Tratnyek, “Kinetics of Halogenated Organic Compound Degradation by Iron Metal,” Environ. Sci. Technol., Vol. 30, No. 8, pp. 2634-2640 (1996).
21. Johnson, T. H., W. Fish, Y. A. Gorby, and P. G. Tratnyek, “Degradation of Carbon Tetrachloride by Iron Metal: Complexation Effects on the Oxide Surface”, J Contam Hydrol , Vol.29, pp.379-398(1998)
22. Klausen J, J. Ranke, and R. Schwarzenbach, “Influence of Solution Composition and Column Aging on the Reduction of Nitroaromatic Compounds by Zero-Valent Iron”, Chemosphere, Vol.44, No.4, pp.511-517,(2001)
23. Klausen, J., P.J. Vikesland, T. Kohn, D. R. Burris, W. P. Ball, and A. L. Roberts, “Longevity of Granular Iron in Groundwater Treatment Processes: Solution Composition Effects on Reduction of Organohalides and Nitroaromatic Compounds” Environ. Sci. Technol., Vol.37, No.6, pp1208-1218 (2003).
24. Kober, R., O. Schlicker, M. Ebert, and A. Dahmke, “Degradation of Chlorinated Ethylenes by Fe0: Inhibition Process and Mineral Precipitation.” Environ. Geol., Vol.41. No.5, pp.644-652(2002)
25. Lovelace, K. A., “Evaluation the Technical Impracticability of Groundwater Cleanup,” 1997 International Conference on Groundwater Quality Protection, Taipei, pp. 165-179 (1997).
26. Mackenzie, P. D., D. P. Horney, and T. M. Sivavec,“Mineral Precipitation and Porosity Losses in Granular Iron Columns,” J. Hazard. Mater., Vol.68. No.6, pp.1-17(1999)
27. Matheson, L. J., and P. G. Tratnydk, “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal,” Environ. Sci. Technol., Vol.28, No.12, pp2045-2053 (1994).
28. Odziemkowski, M. S., T. T. Schuhmacher, R. W. Gillham, and E. J. Reardon, “Mechanism of Oxide Film Formation on Iron in Simulating Groundwater Solutions: Raman Spectroscopic Studies,” Corrosion Science, Vol.40, No.2/3, pp. 371-389 (1998).
29. O’Hannesin, S. F., and R. W. Gillham, “Long-Term Performance of An in-situ Iron Wall for Remediation of Vocs,” Ground Water, Vol.36, No.1, pp164-170 (1998).
30. Orth, S. W. and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0,” Environ. Sci. Technol., Vol. 30, No. 1, pp. 66-71 (1996).
31. Paal Z., and P. G. Menon, “Hydrogen Effects in Catalysis: Fundamentals and Practical Applications,” M. Dekker, New York ,pp21-25 (1988).
32. Powell, R. M., R. W. Puls, S. K. Hightower, and D. A. Sabatini, “Coupled Iron Corrosion and Chromate Reduction: Mechanisms for Subsurface Remediation”, Environ. Sci. Technol., Vol.29, No.8, pp. 1913-1922 (1995)
33. Ritter, K., M. S. Odziemkowski, and R. W. Gillham, “An In situ Study of the Role of Surface Films on Granular Iron in the Permeable Iron Wall Technology,” J. Conta. Hydro., Vol.55. No.2, pp.87-111(2002)
34. Roberts, A. L., L. A. Totten, W. A. Arnold, D. R. Burris, and T. J. Campbell, “Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals,” Environ. Sci. Technol., Vol. 30, No. 8, pp. 2654-2659 (1996).
35. Ruiz, N., S. Seal, and D. Reinhart, “Surface Chemical Reactivity in Slected Zero-Valent Iron Samples Used in Groundwater Remediation,” J. Hazar. Mater., Vol.80, No.1-3, pp.107-117(2000)
36. Scherer M. M., S. Richter, R. L. Valentine, and P. J. J. Alvarez, “Chemistry and Microbiology of Permeable Reactive Barriers for In Situ Groundwater Clean up,” Critical Reviews in Environ. Sci. Technol, Vol.30, No.3, pp.363~411(2000).
37. Scherer, M. M., J. C. Westall, M. ZiomekMoroz, and P. G. Tratnyek ,“Kinetics of Carbon Tetrachloride Reduction at an Oxide-Free Iron Electrode”, Environ. Sci. Technol., Vol.31, No.8, pp.2385-2391(1997)
38. Schreier C. G. and M. Reinhard, “Catalytic Hydrodehalogenation of Chlorinated Ethylenes Using Palladium and Hydrogen for the Treatment of Contaminated Water,” Chemosphere, Vol.31, No.6, pp.3475~3487(1995).
39. Siantar, D. P., C. G. Schreier, C. Chou, and M. Reinhard, “Treatment of 1,2-Bibromo-3-Chloropropane and Nitrate-Contaminated Water with Zero-Valent Iron or Hydrogen/Palladium Catalysis,” Wat. Res., Vol.30, No.10, pp. 2315-2322(1996).
40. Su, C., and R. W. Puls, “Kinetics of Trchloroethene Reduction by Zero valent Iron and Tin: Pretreatment Effect, Apparent Activation Energy, and Intermediate Products, ” Environ. Sci. Technol., Vol. 33, No. 1, pp. 163-168 (1999).
41. U. S. Air Force, “Design Guidance for Application of Permeable Barriers to Remediate Dissolved Chlorinated Solvents” , US Army Corps of Engineers, DG 1110-345-11(1997).
42. U.S. EPA, “Field Application of in Situ Remediation Technologies: Permeable Reaction Barriers,” Office of Solid Waste and Emergency Response, EPA-542-R-99-002(1999).
43. U.S.EPA, “Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers,” Office of Solid Waste and Emergency Response, Technology Innovation Office (2002).
44. Vogel, T. M., C. S. Criddle, and P. L. Mccarty, “Transformation of Halogenated Aliphatic Compounds,” Environ. Sci. Technol. , Vol.21, No.8, pp.722~736. (1987)
45. Yabusaki S., K. Cantrell, B. Sass, and C. Steefel, “Multicomponent Reactive Transport in an In Situ Zero-Valent Iron Cell,” Environ. Sci. Technol. , Vol.35, No.6., pp.1493-1503(2001)
46. Zawaideh, L. L. and T. C. Zhang, “The Effects of pH and Addition of an Organic Buffer (HEPES) on Nitrate Transformation in Fe-Water Systems”, Water Sci. Technol., Vol.38, No.7, pp.107-115 (1998)
47. 行政院勞工委員會,「物質安全資料表範例」 (1997)。
48. 行政院環境保署,http://ww2.epa.gov.tw/toxic/prog/database.asp(2001).
49. 行政院環境保署,“毒理資料庫”, http://ww2.epa.gov.tw/toxic /prog/database.asp(2002a).
50. 行政院環境保署,“加油站與儲槽地下水污染調查”, http://ww2.epa.gov.tw/enews/ (2002b)
51. 林建芬,「甲烷分解菌對三氯乙烯好氧分解之影響」,碩士論文,國立中興大學環境工程研究所,台中(1994)。
52. 官知嫻、李季眉、盧至人,「酚分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,第710-718頁,台中(1998a)。
53. 官知嫻、李季眉、盧至人,「甲苯分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,第727-733頁,台中(1998b)
54. 陳家洵、董天行,「三氯乙烯污染地下水之整治標準研究-期末報告」,國立中央大學應用地質研究所,中壢(1998)。
55. 蔡文田、邱伸彥,「蒸汽脫脂用含氯溶劑之特性、管制和污染防治」,工業污染防治,第41期,第145~160頁(1992)。
56. 蔡政勳,「零價鐵反應牆處理三氯乙烯污染物之反應行為研究」,碩士論文,中央大學環境工程研究所,中壢(2000)。
57. 蔡璨樺,「零價鐵技術袪除三氯乙烯之研究」,碩士論文,中央大學環境工程研究所,中壢(2000)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2003-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明