以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:34 、訪客IP:18.220.200.33
姓名 楊逸帆(Yi-Fan Yang) 查詢紙本館藏 畢業系所 環境工程研究所 論文名稱 土壤有機質芳香性對非離子有機化合物分佈行為之影響
(The Effect of Aromaticity In Soil Organic Matter On The Partition Behavior of Nonionic Organic Contaminants)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究選用水溶解度相近但結構不同之PAHs與直鏈型烷類作為有機污染物標的物,以結構不同但容易掌握物化特性的染料(dye)作為土壤有機質的唯一來源,藉以單純化土壤有機質的結構與含量,進一步減少土壤有機質之變異性,以探討苯環結構間所產生之分子作用力對土壤-水系統中非離子有機化合物傳輸行為之影響。
實驗結果顯示:(1)高嶺土對兩種陽離子性染料-三苯環Basic Fuchsin與五苯環Victoria Blue B的吸附為單層L型吸附模式,鈣-蒙特石對非離子性染料Rosolic Acid的吸附等溫模式為S型。(2)對於相同NOC而言,分佈於組成相同但含量不同的土壤有機質之有機碳分佈係數為一常數,並且可維持至相當低的有機碳含量。(3)土壤有機碳含量極低時,非離子有機化合物的有機碳分佈係數會明顯的偏高,分佈作用不再是其主要吸持機制。(4)當土壤有機質含量不至於太低時,PAHs有機碳分佈係數明顯大於水溶解度相近的直鏈型非離子有機化合物,推測PAHs特殊的分佈行為與土壤中有機質芳香性有關。(5)PAHs的分佈與土壤有機質芳香族化合物成一定的正相關性。摘要(英) This study is to investigate the effects of benzene rings interaction on the transport of nonionic organic contaminants (NOCs) in the soil/water system. The NOCs used in this study were polycyclic aromatic hydrocarbons (PAHs) and straight chain NOCs that have similar water solubilities. Dyes with varied structures were used to consist of soil organic matter (SOM) that is regarded as the partition medium in order to purify the complicated soil organic phase and control the content of organic carbon within.
The sorption isotherms of Basic Fuchsin as well as Victoria Blue B are classified as L-type. The sorption isotherm of nonionic Rosolic Acid, which shows S-type, depicts a two steps sorption mechanism. The measured partition coefficients of an individual NOC between SOM and water (i.e., Koc value) remain a constant to a certain extent of organic carbon content for the clays with same organic component. At a very low dye loading, the resulting mineral-sorbed dyes appear to form a thin organic film, which effectively “adsorbs” the NOCs, resulting in very high Koc values. At similar water solubilities, the Koc values for PAHs were always higher than that of straight chain NOCs. The enhanced partition of PAHs over other nonpolar straight chain NOCs with similar water solubility provides an account of the distinctive partition behavior in improved aromatic SOM. To further elucidate this trend, higher Koc values of the used PAHs partitioning in the greater aromatic SOM were found.關鍵字(中) ★ 芳香性
★ 非離子有機化合物
★ 分佈
★ 土壤有機質
★ 吸附關鍵字(英) ★ adsorption
★ partition
★ nonionic organic contaminants (NOCs)
★ soil organic matter (SOM)
★ aromatic論文目次 目次 頁次
目錄………………………………………………………………... І
圖目錄……………………………………………………………... Ⅵ
表目錄……………………………………………………………... Ⅸ
第一章 前言……………………………………………………... 1
1-1 研究緣起…………………………………………………... 1
1-2 研究目的與內容…………………………………………... 3
第二章 文獻回顧………………………………………………... 5
2-1 土壤……………………………………………………….. 5
2-1-1 土壤的組成……………………………………………. 6
2-1-1-1 土壤無機質………………………………………... 6
2-1-1-2 土壤有機質…………………………………….….. 8
2-1-2 土壤的吸持…………………………………………… 10
2-1-2-1 吸附作用……………….………………………….. 10
2-1-2-2 分佈作用………………….……………………….. 13
2-2 多環芳香烴化合物(PAHs)……………………………. 14
2-2-1 PAHs的來源與物化性質……………………………… 15
2-2-2 PAHs在環境中的分佈..………………………………. 16
2-2-3 PAHs之毒性、對人類之影響………………………… 16
2-3 染料………………………….…………………………… 17
2-3-1 概論……………………………………………………. 17
2-3-2 染色過程…..………………………………………….. 18
2-3-3 染料之分類..…………………………………………... 19
2-4 土壤吸持非離子有機化合物…………………………….. 21
2-5 分子內聚能(cohesive energy)…………….…………. 24
2-5-1 分子內聚能之定義……………………………………. 25
2-5-2 分子內聚能密度與溶解度參數..…………………….. 25
2-5-3 影響分子內聚能之因素………………………………. 27
第三章 實驗內容、方法及設備………………………………… 29
3-1 研究架構………………………………………………….. 29
3-2 實驗設備………………………………………………….. 31
3-2-1 電子天平………………………………………..……... 31
3-2-2 水平震盪器……………………………………………. 31
3-2-3 高速離心機……………………………………………. 31
3-2-4 氣相層析儀-火焰離子化偵測器(GC-FID)……….. 32
3-2-5 積分儀…………………………………………………. 32
3-2-6 UV分光光度計……………………………………..… 32
3-3 實驗材料…………………………………………….…….. 33
3-3-1 土壤…………………………………………..……….. 33
3-3-2 多苯環有機化合物…………………………...……….. 34
3-3-2-1 Basic Fuchsin………………………………………. 34
3-3-2-2 Victoria Blue B…………………………………….. 35
3-3-2-3 Rosolic Acid……………………………………….. 35
3-3-3 非離子有機化合物(NOCs)…..……………………. 38
3-3-3-1 菲(Phenanthrene)………………………………. 38
3-3-3-2 2,3,4-三甲基戊烷(2,3,4-Trimethylpentane)…… 39
3-3-3-3 萘(Naphthalene)………………………………… 39
3-3-3-4 正戊烷(n-Pentane)……………………………… 40
3-3-4 萃取溶劑……………………………..……………….. 40
3-3-5 其他試劑………………………………..…………….. 41
3-3-5-1 甲醇(Methanol)………………..………………. 41
3-3-5-2 乙醇(Ethanol)…………………..……………… 41
3-3-5-3 醋酸(Acetic acid)………………………………. 41
3-3-5-4 醋酸鈉(Sodium Acetate)………………………. 42
3-4 實驗方法………………………………..…………………. 44
3-4-1 土壤-水系統對多苯環有機化合物(染料)之吸附平衡實驗……………………………………………….. 44
3-4-2 土壤-水-染料系統對非離子有機化合物(NOCs)之吸附平衡實驗………………………..……………….. 45
3-4-3 測定土壤有機碳實驗……………………………..….. 46
第四章 結果與討論……………………………………………... 54
4-1 實驗相關基質與操作條件之探討…………………….…. 54
4-1-1 土壤有機碳測定…………………………………..….. 54
4-1-2 醋酸鹽溶液之緩衝效果…………………………...….. 55
4-1-3 NOCs stock solution配製溶劑對回收率之影響…..… 56
4-1-4 萃取過程中瓶頂空間對NOCs回收率之影響……….. 58
4-2 溶解度參數之計算……………………………………..…. 59
4-3 多苯環有機化合物(染料)在土壤-水系統中之吸附平衡實驗………………………………………………………... 61
4-3-1 高嶺土對陽離子性染料Basic Fuchsin之吸附平衡實驗………………………………………………………. 62
4-3-2 高嶺土對陽離子性染料Victoria Blue B之吸附平衡實驗……………………………………………………. 63
4-3-3 鈣-蒙特石對非離子性染料之吸附平衡實驗………… 64
4-4 非離子有機化合物於土壤-染料-水系統中之吸持………. 66
4-4-1 NOCs於高嶺土-Basic Fuchsin-水系統之分佈情形….. 67
4-4-1-1 不同有機碳含量下NOCs的分佈情形…………… 67
4-4-1-2 結構不同NOCs於相同有機碳含量之土壤中的分佈…………………………………………………... 68
4-4-1-3 NOCs於極低土壤有機碳含量中的分佈………… 73
4-4-2 NOCs於高嶺土-Victoria Blue B-水系統之分佈情形 76
4-4-2-1 不同有機碳含量下NOCs的分佈情形…………... 76
4-4-2-2 結構不同NOCs於相同有機碳含量之土壤中的分佈…………………………………………………... 77
4-4-2-3 NOCs於極低土壤有機碳含量中的分佈………… 80
4-4-3 NOCs於鈣蒙特石-Rosolic Acid-水系統之分佈情形... 83
4-4-3-1 不同有機碳含量下NOCs的分佈情形…………… 83
4-4-3-2 結構不同NOCs於相同有機碳含量之土壤中的分佈…………………………………………………... 84
4-4-3-3 NOCs於極低土壤有機碳含量中的分佈……….… 87
4-4-3-4 Rosolic Acid與非離子界面活性劑Triton X-100對NOCs分佈比較…………………………………… 90
4-4-4 NOCs於特定吸附量但結構不同土壤有機質下分佈情形…………………………………………………..... 92
第五章 結論與建議……………………………………………... 94
5-1 結論……………………………………………………….. 94
5-2 建議……………………………………………………….. 96
參考文獻…………………………………………………………... 97
圖 目 錄
目次 頁次
圖2-1 一般土壤剖面圖…………………………………………. 5
圖2-2 高嶺石之示意構造圖……………………………………. 7
圖2-2 蒙特石之示意構造圖……………………………………. 8
圖2-3 一般染料之吸附等溫線…………………………………. 19
圖3-1 研究架構…………………………………………………. 30
圖3-2 土壤-水系統對染料之吸附平衡實驗流程圖………….. 49
圖3-3 Victoria Blue B檢量線………………………………….. 50
圖3-4 Basic Fuchsin檢量線…………………………………….. 50
圖3-5 Rosolic Acid檢量線……………………………………… 50
圖3-6 土壤-水-染料系統對NOCs之吸附平衡實驗流程圖….. 51
圖3-7 Phenanthrene檢量線…………………………………….. 52
圖3-8 2,3,4-Trimethyl pentane檢量線…………………………. 52
圖3-9 Naphthalene檢量線……………………………………… 53
圖3-10 n-Pentane檢量線……………………………………….. 53
圖4-1 配製溶劑對NOCs回收率之影響………………………. 58
圖4-2 高嶺土對Basic Fuchsin吸附等溫曲線………………… 63
圖4-3 高嶺土對Victoria Blue B吸附等溫曲線………………. 64
圖4-4 鈣-蒙特石對Rosolic Acid吸附等溫曲線………………. 65
圖4-5 高嶺土對Naphthalene與n-Pentane之吸附等溫線(Basic Fuchsin,OC %=0.68 %)……………………………… 70
圖4-6 高嶺土對Phenanthrene與2,3,4-Trimethyl pentane之吸附等溫線(Basic Fuchsin,OC %=0.68 %)………….. 70
圖4-7 高嶺土對Naphthalene與n-Pentane之吸附等溫線(Basic Fuchsin,OC %=0.48 %)……………………………… 71
圖4-8 高嶺土對Phenanthrene與2,3,4-Trimethyl pentane之吸附等溫線(Basic Fuchsin,OC %=0.48 %)………….. 71
圖4-9 高嶺土對Naphthalene與n-Pentane之吸附等溫線(Basic Fuchsin,OC %=0.09 %)……………………………… 72
圖4-10 高嶺土對Phenanthrene與2,3,4-Trimethyl pentane之吸附等溫線(Basic Fuchsin,OC %=0.09 %)………….. 72
圖4-11 高嶺土吸附Basic Fuchsin於不同有機碳含量Koc之比較……………………………………………………… 74
圖4-12 高嶺土對Naphthalene與n-Pentane之吸附等溫線(Basic Fuchsin,OC %=0.04 %)…………………….. 75
圖4-13 高嶺土對Phenanthrene與2,3,4-Trimethyl pentane之吸附等溫線(Basic Fuchsin,OC %=0.04 %)………….. 75
圖4-14 高嶺土對Naphthalene與n-Pentane之吸附等溫線(Victoria Blue B,OC %=1.011 %)………………….. 78
圖4-15 高嶺土對Phenanthrene與2,3,4-Trimethyl pentane之吸附等溫線(Victoria Blue B,OC %=1.011 %)……….. 79
圖4-16 高嶺土對Naphthalene與n-Pentane之吸附等溫線(Victoria Blue B,OC %=0.76 %)…………………… 79
圖4-17 高嶺土對Phenanthrene與2,3,4-Trimethyl pentane之吸附等溫線(Victoria Blue B,OC %=0.76 %)………… 80
圖4-18 高嶺土吸附Victoria Blue B於不同有機碳含量Koc之比較…………………………………………………… 81
圖4-19 高嶺土對Naphthalene與n-Pentane之吸附等溫線(Victoria Blue B,OC %=0.04 %)…………………… 82
圖4-20 高嶺土對Phenanthrene與2,3,4-Trimethyl pentane之吸附等溫線(Victoria Blue B,OC %=0.04 %)………… 83
圖4-21 鈣-蒙特石對Naphthalene與n-Pentane之吸附等溫線(Rosolic Acid,OC %=0.28 %)……………………… 85
圖4-22 鈣-蒙特石對Phenanthrene與2,3,4-Trimethyl pentane之吸附等溫線(Rosolic Acid,OC %=0.28 %)……… 86
圖4-23 鈣蒙特石對Naphthalene與n-Pentane之吸附等溫線(Rosolic Acid,OC %=0.1 %)……………………….. 86
圖4-24 鈣蒙特石對Phenanthrene與2,3,4-Trimethyl pentane之吸附等溫線(Rosolic Acid,OC %=0.1 %)…………. 87
圖4-25 鈣-蒙特石吸附Rosolic Acid於不同有機碳含量Koc之比較…………………………………………………. 88
圖4-26 鈣蒙特石對Naphthalene與n-Pentane之吸附等溫線(Rosolic Acid,OC %=0.05 %)……………………… 89
圖4-27 鈣蒙特石對Phenanthrene與2,3,4-Trimethyl pentane之吸附等溫線(Rosolic Acid,OC %=0.05 %)…………. 90
表 目 錄
目次………………………………………………………………... 頁次
表2-1 吸附作用與分佈作用之比較……………………………. 10
表2-2 主要染料分類表…………………………………………. 20
表2-3 鈣-蒙特石吸附界面活性劑(Ce = 0.5 CMC)之各種分佈係數……………………………………………………. 23
表3-1 選用土壤之基本性質表…………………………………. 34
表3-2 選用三種染料之基本性質……………………………. 37
表3-3 非離子有機化合物基本性質表…………………………. 49
表4-1 土壤之有機碳含量………………………………………. 55
表4-2 醋酸鹽溶液之緩衝效果………………………………… 56
表4-3 萃取過程中瓶頂空間對回收率的影響…………………. 59
表4-4 實驗材料之溶解度參數表……………………………. 61
表4-5 水溶液中高嶺土吸附Basic Fuchsin對NOCs的Koc值比較……………………………………………………… 69
表4-6 NOCs於高嶺土-Basic Fuchsin-水系統中的有機碳分佈係數(極低有機碳量)………………………………… 74
表4-7 水溶液中高嶺土吸附Victoria Blue B對NOCs的Koc值比較 77
表4-8 NOCs於高嶺土-Victoria Blue B-水系統中的有機碳分佈係數(極低有機碳量)…………………………………. 82
表4-9 水溶液中鈣-蒙特石吸附Rosolic Acid對NOCs的Koc值比較…………………………………………………… 84
表4-10 NOCs於鈣蒙特石-Rosolic Acid-水系統中的有機碳分佈係數(極低有機碳量)……………………………… 89
表4-11 PAHs於土壤有機組成為Rosolic Acid與Triton X-100的分佈係數…………………………………………… 91
表4-12 比較芳香性不同土壤有機組成對PAHs分佈係數的影響……………………………………………………….. 93參考文獻 參考文獻
1. 張仁福,“土壤污染防治學”,高雄復文,初版,1998
2. Davis, J. R., “Handbook of Polycyclic Hydrocarbons: Part A: Benzenoid Hydrocarbons”, Elsevier Amsterdam, 1987
3. K. Peltonen; T. Kuljukka, J.; Chromatogr. Part A, 898, 35, 2000
4. Chiou, C. T.; Macgroddy, S. E.; and Kile, D.E., “Partition Characteristics of Polycyclic Aromatic Hydrocarbons on Soils and Sediments”, Environ. Sci. & Technol., Vol. 32, No. 32, pp. 264-269, 1998
5. 葉佩雯,「分子間作用力影響土壤中非離子有機物傳輸行為之研究」,碩士論文,中央大學環境工程研究所,2002
6. 何春蓀,“普通地質學”,五南圖書,三版,1990
7. 戴國邦,“土壤礦物”,能源、資源與環境,第六卷,第三期,第16-21頁,1993
8. 王明光,“土壤環境礦物學”,藝軒圖書,初版,2000
9. 戴國邦,〝土壤礦物〞, 能源、資源與環境, Vol. 6, No. 3, pp. 16-21, 1993
10. 朱海帆 譯,“土壤學”,教育部 出版,1959
11. Bear, F. E. (Ed.), “Chemistry of The Soils”, New York, 1964
12. 洪崑煌譯,“土壤化學”,國立編譯館,初版,1996
13. Donald L. Sparks原著,王明光譯,“環境土壤化學”,五南圖書,初版,2000
14. 石濤,“環境化學”,鼎茂圖書,四版,2000
15. Kononova, M. M., “Soil Organic Matter”, pp. 450, Pergamon, New York, 1961
16. Brady, N. C. (Ed.), “The Nature and Properties of Soils”, Macmillan, New York, pp. 693, 1974
17. Stevenson, F. J., “Humus Chemistry”, John Wiley & Sons, Somersel, N. J., pp. 17, 1982
18. Felbeck, G. T., “Structural Chemistry of Soil Humic Substances ”, Adv. Agron. pp. 327-368, 1965
19. 王一雄,“土壤環境污染與農藥”,明文書局,初版,1997
20. M. B. McBride, “Environmental Chemistry of Solids”, Oxford University Press, Inc., 1994
21. Lambert, S. M., “Functional Relationship Between Sorption in Soil and Chemical Structure”, J. Agric. Food Chem., Vol. 15, pp. 572-576, 1989
22. Chiou, C. T.; L. J. Peter and V. H. Freed, “A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds”, Science, Vol. 206, pp. 831-832, 1979
23. Chiou, C. T.; T. D. Shoup, “Soil Sorption of Organic Vapors and Effects of Humidity on Sorptive Mechanism and Capacity”, Environ. Sci. Technol., Vol. 19, No.12, pp. 1196-1200, 1985
24. Chiou, C. T.; D. E. Kile, “Water Solubility Enhancement of DDT and Trichlorobenzene by Some Surfactant Below and Above the Critical Micelle Concentration”, Environ. Sci. & Technol., Vol. 23, No. 7, pp. 832-838, 1989
25. 金相燦 等,“環境毒性有機物污染化學”,淑馨出版社,初版,1998
26. Laidler & Meiser原著,陳寶祺 等人譯,“物理化學”,歐亞書局,初版,2000
27. Lambert, S. M., “Functional Relationship Between Sorption in Soil and Chemical Structure”, J. Agric. Food Chem., Vol. 15, pp. 572-576, 1989
28. M. M. Mortland; P. M. Huang; M. E. Schnitzer, “Mechanisms of Adsorption of Nonhimic Organic Species by Clays”, Interactions of Soil Mineral with Natural Organics and Microbes, SSSA Special Publication (17) Soil Sci Soc. Am. Inc. Madison, pp. 61-66, 1995
29. Chiou, C. T.; L. J. Peter, and V. H. Freed, “A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds”, Science, Vol. 206, pp. 831-832, 1979
30. Chiou, C. T.; Thomas, D. S., “Soil Sorption of Organic Vapors and Effects of Humidity on Sorptive Mechanism and Capacity”, Environ. Sci. Technol., Vol. 19, No.12, pp. 1196-1200, 1985
31. Kopinke, F. D.; Georgi, A., and Mackenzie, K., “Sorption of Pyrene to Dissolved Humic Substances and Related Model Polymers. 1.Structure-Property Correlation”, Environ. Sci. Technol., Vol. 35, pp. 2536-2542, 2001
32. USEPA, “Evaluation and Estimation of Potential Carcinogenic of Polycyclic Aromatic Hydrocarbons”, Carcinogen Assessment Group, Office of Health and Environmental Assessment. Office of Research and Development. Washington, DC, 1985
33. Maschet, p.; Mouvier, G., and Nikolaou, K., “Relative Decay Index and Source of Polycyclic Aromatic Hydrocarbons”, Atmospheric. Environment, Vol. 20, pp. 439-445, 1986
34. Akio Kamiya; Youki Ose, “Mutagenic Acidity and PAH Analysis in Muncipal Incinerators’’, the Source of Total Environment, Vol. 61, pp. 37-49, 1987
35. Giger, W., and Schaffner, C., ”Determination of Polycyclic Aromatic Hydrocarbons in the Environment by Glass capillary Gas Chromatography”, Anal. Chem. Vol.50(2), pp. 243-249
36. Harvey, R. G., “Polycyclic Aromatic Hydrocarbons and Carcingenesis”, 1984
37. Josephson, J., “Polynuclear Aromatic Hydrocarbons”, Environmental Science & Technology, Vol. 15, No.1, pp.20-21, 1981
38. 邱永亮,魏勝德,“染色化學”,合訂本,財團法人徐氏文教基金會,再版,2000
39. 彭正中,“染料與染色”,台灣中華書局,三版,1971
40. Carter, C. W.; Suffet, I. H. Environ. Sci. Technol., Vol. 16, pp.735, 1982
41. Chiou, C. T.; Malcolm, R. L.; Brinton, T. I.; Kile, D. E. Environ. Sci. Technol., Vol. 20, pp. 502 and 1162, 1986
42. Chiou, C. T.; Kile, D. E.; Brinton, T. I.; Malcolm, R. L.; Leenheer, J. A., MacCarthy, P. Environ. Sci.Technol., Vol.21, pp.1231. 1987
43. Gauthier, T. D.; Shane, E. C.; Guerin, W. F.; Seitz, W. R.; Grant, C. L. Environ. Sci. Technol., Vol. 20, pp. 1162, 1986
44. Landrum, P. F.; Nihart, S. R.; Eadie, B. J.; Gardner, W. S. Environ. Sci. Technol., Vol. 18, pp. 187, 1984
45. Backhus, D. A.; Gschwend, P. M. Environ. Sci. Technol., Vol. 25, pp. 1214, 1990
46. Schlautman, M. A.; Morgan, J. J. Environ. Sci. Technol., Vol. 27, pp. 961, 1993
47. Kile, D. E.; Chiou, C. T.; Zhou, H.; Li, H.; Xu, O. Environ. Sci.Technol., Vol. 29, pp. 1401. 1995
48. Gauthier, T. D.; Seitz, W. R.; Grant, C. L., “Effects of Structural and Compositional Variations of Dissolved Humic Materials on Pyrene Koc Values”, Environ. Sci. Technol., Vol. 21, pp.243, 1987
49. Yu-Ping, Chin; George, R. Aiken, Karlin M.; Danielsen. Environ. Sci. Technol., Vol. 31, pp.1630, 1997
50. Mitra, S.; Dickhut, R. M.; Kuehl, S. A., and Kimani, K. L. “Polycyclic Aromatic Hydrocarbon (PAH) sediment Deposition Patterns and Particle Geochemistry as Factors Influencing PAH Distribution Coefficients in Sediments of the Elizabeth River, VA, USA”, Mar. Chem., Vol. 66, pp. 113-127, 1999
51. Apitz, S. E., and Kubicki, J. D. “ Models of Natural Organic Matter and Interactions with Organic Contaminant”, Organic Geochemistry, Vol. 30, pp. 911-927, 1999
52. Dey, A. A., and Gschwend, P. M. “Assessing the Combined Roles of Natural Organic Matter and Black”, Environ. Sci. Technol., Vol. 36, pp. 21-29, 2002
53. Handbook of CHEMISTRY and PHYSICS, 68th, CRC Press. CRC Handbook of Solubility Parameter on Other Cohesion Parameters
54. Chemical Review, 1975, Vol. 75, No6, pp.731-753
55. L. I. Osipow原著,高文弘,周賢孟譯著,「界面化學」,黎明,四版,1988
56. C. Hansen, and A. Beerbower, “Kirk-Othmer Encyclopedia of Chemical Technology”, Suppl. Vol., 2nd ed, pp. 889, 1971
57. 王雲五,「染色用藥品」,台灣商務,初版,1975
58. “勞工作業環境空氣中有害物容許濃度標準”,行政院勞工委員會八十四年,http://www.cla.gov.tw/
59. 葉明國,「聚合物化學」,新學識文教出版中心,初版,1978指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2003-7-7 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare