博碩士論文 90326016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.216.190.167
姓名 廖偉翔(Wei-Hsiang Liao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 北台灣長程傳輸氣膠光學特性
(Optical properties of long-range transport aerosols in Northern Taiwan)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究於2002年9月~2003年4月在台北縣石門鄉進行氣膠光學特性的量測,本研究以散光儀(TSI model 3563)量測氣膠的散光係數以及以雷射氣膠數目粒徑分佈監測儀(PMS model PCASP-X)量測大氣中氣膠的粒徑分佈,並採用同時間進行的質量濃度及化學組成量測資料(梁,2003),以瞭解氣膠光學特性和粒徑分布、化學組成間的關係。考量氣流軌跡來源的影響,本研究配合後推氣流軌跡線、風向分類出不同污染來源時的氣膠光學特性,以期能瞭解長程傳輸對氣膠光學特性的影響。最後,由於氣膠會影響地球輻射平衡,造成氣候改變,因此本研究也對石門地區的輻射作用力進行一探討。
研究顯示影響散光係數的主要粒徑為0.4~1?m的氣膠微粒,當這些粒徑氣膠的數目濃度增加時,將會使得散光係數增加。背散光率(backscatter fraction)的變化和總散光係數的變化成一相反的趨勢,也就是總散光係數增加時,背散光率則是降低的,這原因為當影響總散光係數0.4~1?m的微粒增加時,其對前散光的影響效應較背散光來的大,也就是說前散光係數較背散光係數增加的多。另外,背散光率會隨著粒徑的減小而增加。
石門地區地面風向主要可分成來自陸地和海面,從體積濃度來看
風來自海面(東北風)和風來自陸地(西南風)時其氣膠總體積濃度相當,但風來自海面時氣膠的粒徑分布以粗粒徑為主;相反地風來自陸地時則轉為以細粒徑為主,因此風向來自陸地時的散光係數值(124±65Mm-1)較高於風向來自海面時的散光係數值(91±64Mm-1)。氣膠會隨污染來源的不而有所不同,根據本研究分類出八種氣流軌跡線後發現,當氣流來自大陸沿岸時,在粒徑分布上屬於細粒徑為主,且含有較多的硫酸鹽,因此散光係數較高,而來自海洋傳輸時,在粒徑分布上屬於粗粒徑為主,主要以海鹽為主,散光係數都不高。
石門當地的臨界單一氣膠反照率為0.86,當黃沙來臨時,氣膠的反照率會大於此值,有較大的輻射冷卻效應。在計算輻射作用力時,根據本研究所算的光學厚度與AERONET實測值相比之後發現低了很多,這顯示了混合層高度並非氣膠層厚度,假設在台北市區AERONET實測值可代表石門地區氣膠的光學厚度,則可推算得石門地區氣膠層的平均厚度為5034公尺,因此以大氣混合層厚度代表氣膠層厚度會對本研究氣膠輻射作用力有低估的情形。
摘要(英) Measurements of optical properties of ambient aerosol particles were carried out from September 2002 to April 2003 at Shi-Men, Taipei. In order to understand the influence of aerosol size distribution and chemical composition on aerosol optical properties. Light scattering coefficient and aerosol particle number size distribution were made by Nephelometer and PMS, filter samples of aerosols were collected and analyzed for mass and chemical species simultaneously. In order to understand the effect of long-term transport to aerosol optical properties, this study use backward air trajectory and wind direction to categorize the aerosol optical properties into different pollutant. Because of aerosol particles will influence the Earth’s radiative balance and cause climate change, computing the radiative forcing at Shi-Men finally.
The results show that aerosols size between 0.4 and 1?m contributed the light scattering coefficient mainly. Light scattering coefficients will increase following 0.4 to 1?m particle number increasing. Backscatter fraction and total light scattering coefficient have an inverse relationship, in other way, light scattering coefficient increasing as backscatter fraction decreasing. The reason of this is particle number at this active size is sensitive to forward scattering than backscattering, this implies forward scattering increasing more than backscattering. Moreover, backscatter fraction increasing following the decreasing in aerosol size.
The predominant wind direction can be divided into two types, one is the airflow from the sea, and the other is from the land. The airflow from the sea and from the land have the quite same aerosol volume, when the predominant airflow from the sea the aerosol consisted of coarse mode ; on the contrary, as the wind shifted from the sea to the land, the aerosol size distribution shifted to the fine mode; therefore, the wind from the land have highly light scattering coefficient, the mean value and standard deviation are 124±45Mm-1,91±64-1 Mm-1,respectively. With the different sources of air mass, aerosols have different properties, our research categorize the backward air trajectory into 8 types. When Air mass from the coastal of Mainland China, the aerosol consists of fine mode and the predominant chemical species is sulfate, so it can cause the high light scattering coefficient; when air mass from the ocean , their size distribution is characterized by coarse mode, sea salt is the predominant species, having lower light scattering coefficient.
A critical value of aerosol albedo at Shi-Men is 0.86, aerosol single scattering albedo will greater than this value during the Yellow Dust period, having negative radiative forcing(cooling).
關鍵字(中) ★ 散光係數
★ 氣膠粒徑分布
★ 後推氣流軌跡線
★ 輻射作用力
★ 背散光率
★ 單一反照率
關鍵字(英) ★ radiative forcing
★ aerosol size distribution
★ light scattering coefficient
★ backward air trajectory
★ backscatter fraction
★ single scattering albedo
論文目次 摘要 1
Abstract 1
圖目錄 III
表目錄 Ⅴ
第一章 前言 1
1.1研究動機 1
1.2研究目的 2
第二章 文獻回顧 3
2.1大氣氣膠的形成及其分布 5
2.2氣膠的光學性質 7
2.2.1散光效應 8
2.2.2吸光效應 14
2.2.3利用MIE 理論計算散光、吸光和消光係數 16
2.3氣膠散光係數和相對濕度間的關係 18
2.4氣膠的輻射作用力 20
第三章 研究方法 24
3.1採樣地點及時間 24
3.2採樣量測方法 28
3.2.1氣膠粒徑分布 28
3.2.2氣膠的散光係數 31
3.2.3氣膠化學成份採樣 36
3.3 分析方法 37
3.3.1氣膠粒徑分布 37
3.3.2氣膠的散光係數 37
第四章 結果與討論 38
4.1後推氣流軌跡線分類 40
4.2散光係數與質量濃度、體積濃度粒徑分布每日變化 44
4.3散光係數的每日逐時變化 64
4.4氣膠的光學特性 68
4.4.1氣膠背散光率 72
4.4.1.1數目濃度的影響 76
4.4.1.2氣膠粒徑的影響 80
4.4.1.3個案討論 82
4.4.2散光係數與化學組成的討論 89
4.4.2.1氣膠散光係數和化學成份的相關性分析 89
4.4.2.2質量散光效率 91
4.4.3散光係數與相對濕度的討論 93
4.5風向和氣流來源對氣膠特性的影響效應 98
4.6石門地區氣膠的輻射作用力 116
4.6.1 AERONET實測光學厚度 125
第五章 結論 128
參考文獻 131
附錄一 137
附錄二 139
附錄三 144
附錄四 149
參考文獻 參考文獻
Ackerman, T.P., Toon, O.B., 1981. Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles. Appl. Opt, 20, 3661-3668.
Bengtsson, L., 1997. A numerical simulation of anthropogenic climate change. Ambio. 26, 58-65.
Boucher, O., Anderson, T.L., 1995. General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. J. Geophys. Res. 100, 26117-26134.
Buzorius, G., Hameri, K., Pekkanen, J., Kulmalm, M., 1999. Spatial variation of aerosol number concentration in Helsinki City. Atmos. Environ. 33, 553-565.
Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley, J.A., Hansen, J.E., Hofmann, D.J., 1992. Climate forcing by anthropogenic aerosols. Science 255, 423-430.
Chylek, P., Wong, J., 1995. Effect of absorbing aerosols on global radiation budget. Geophys. Res. Lett. 22, 929-931.
Clarke, A.D., Noone, K.J., Heinzenberg, J., Warren, S.G., Covert, D.S., 1987. Aerosol absorption measurement techniques: Analysis and intercomparisons. Atmos. Environ. 21, 1455-1465.
Dickerson, R.R., Kondragunta, S., Stenchikov, G., Civerolo, K.L., Doddridge, B.G., Holben, B.N., 1997. The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science 278, 827-830.
Draxer, R.R., 1999. Hybrid single-particle lagrangian integrated trajectories(HYSPLIT): Version 4.0- User’s Guide. NOAA Technical Memorandum ERL ARL-230, Air Resources Laboratory, Silver Spring, MD, USA.
Gebhart, K.A., Malm, W.C., Day, D., 1994. Examination of the effects of sulfate acidity and relative humidity on light scattering at Shenandoah National Park. Atmos. Environ. 28, 841-849.
Hansen, J., Sato, M., Lacis, A., Ruedy, R., 1997. The missing climate forcing. Phil. Trans. R. Soc. London B 352, 231-240.
Haywood, J.M., Shine, K.P., 1995. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophys. Res. Lett. 22, 603-606.
Heintzenberg, R., Berner, A., Dusek, U., Alabashi, R., 1997. Humidity-dependent growth of size-segregated aerosol samples. Aerosol Science and Technology. 27, 116-130.
Horvath, H., 1996. Spectral extinction coefficients of rural aerosol in southeren Italy- A case study of cause and effect of variability of atmospheric aerosol. Journal of Aerosol Science 27, 437-453.
Horvath, H., 1997. Experimental calibration for aerosol light absorption measurements using integrating plate method-summary of the data. J. Aerosol Sci. 28, 1149-1161.
Im, J.S., Saxena, V.K., Wenny, B.N., 2001. An assessment of hygroscopic growth factors for aerosols in the surface boundary for computing direct radiative forcing. J. Geophys. Res. 106, 20213-20224.
Japar, S.M., Brachaczek, W.W., Gorse, R.A., Norbeck, J.M., Pierson, W.R., 1986. The contribution of element carbon into the optical properties of rural atmospheric aerosols. Atmos. Environ. 20, 1281-1289.
Jin, X., Bergin, M.H., Yu, X., Liu, G., Zhao, J., Carrico, C.M., Baumann, K., 2002. Measurement of aerosol chemical, physical snd radiative properties in the Yangtze delta region of China. Atmos. Environ. 36, 161-173.
Kiehl, J.T., Briegleb, B.P., 1993. The radiative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260, 311-314.
Keywood, M.D., Ayers, G.P., Gras, J.L., Gillett, R.W., Cohen, D.D., 1999. Relationship between size segregated mass concentration data and ultrafine particle number concentrations in urban areas. Atmos. Environ. 33, 2907-2913.
Koloutsou-Vakakis, S., Carrico, C.M., Li, Z., Rood, M.J., Ogren, J.A., 1999. Characterisation of aerosol properties and radiative forcing at an anthropogenic perturbed continental site. Phys. Chem. Earth (c), 541-546.
Lelieveld, J., Crutzen, P.J., 1998. Changing concentration, lifetime, and climate forcing of atmospheric methane. Tellus 50B, 128-150.
Liousse, C., Cachier, H., Jennings, S.G., 1993. Optical and thermal measurement of black carbon aerosol content in different environments: Variation of the specific attenuation cross-section sigma(δ). Atmos. Environ. 27, 1203-1211.
Liu, Y., Daum, P.H., 2000. The effect of refractive index on size distribution and light scattering coefficients derived from optical particle counters. J. Aerosol Sci. 31, 945-957.
Lowenthal, D.H., Watson, J.G., Saxena, P., 2000. Contributions to light extinctions during project MOHAVE. Atmos. Environ. 35, 2351-2359.
Malm, W.C., Day, D.E., 2001. Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmos. Environ. 35, 2845-2860.
Martins, J.V., Artaxo, P., Liousse, C., Reid, J.S., Hoobs, P.V., Kaufmon, Y.J., 1998. Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil. J. Geophys. Res. 103, 32041-32050.
Meszaros, E., Molnar, A., Ogren., 1998. Scattering and absorption coefficient v.s chemical composition of fine atmospheric aerosol particles under regional conditions in humidity. J. Aerosol Sci. 29, 1171-1178.
Molnara, A., Meszarosb, E., 2001. On the relation between the size and chemical compositions of aerosol particles and their optical properties. Atmos. Environ. 35, 5053-5058.
Maenhaut, W., Cafmeyer, J., Ptasinski, J., Andreae, M.O., Andreae, T.W., Elbert, W., Meixner, F.X., Karnieli, A., Ichoku, C., 1997. Chemical composition and light scattering of the atmospheric aerosol at a remote site in the Negev Desert, Israel. J. Aerosol Sci. 28, 73-74.
Myhre, G., Highwood, E.J., Shine, K.P., Stordal, F., 1998. New estimates of radiative forcing due to well-mixed greenhouse gases. Geophys. Res. Lett. 25, 2715-2718.
Penner, J.E., Dickinson, R.E., O’neill, C.A., 1992. Effect of aerosol from biomass burning on the global radiation budget. Science 256, 1432-1433.
Perry, k.D., Cahill, T.A., Eldred, R.A., Dutcher, D.D., 1997. Long-term transport of North African dust to the eastern United States. J. Geophys. Res. 102, 4865-4875.
Preining, O., 1998. The physical nature of very, very small particles and its impact on their behavior. J. Aerosol Sci. 29, 481-496.
Qiu, J., Yang, L., 2000. Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980-1994. Atmos. Environ. 34, 603-609.
Quinn, P.K., Marshall, S.F., Bates, T.S., Covert, D.S., Kapustin, V.N., 1995. Comparsion of measured and calculated aerosol properties relevant to the direct radiative forcing of tropospheric sulfate aerosol on climate. J. Geophys. Res. 1, 8977-8991.
Rosen, H., Hansen., A.D., 1984. Role of combustion generated carbon particles in the absorption of solar radiation in arctic haze. Geophys. Res. Lett. 11, 461-464.
Roessler, D.M., Faxvog, F.R., 1980. Optical properties of agglomerated acetylene smoke particle at 0.5145μm and 10.6μm wavelengths. J. Opt. Soc. Am. 70, 230-235.
Schwartz, S.E., 1996. The whitehouse effect-shortwave radiative forcing of climate by anthropogenic aerosols: an overview. J. Aerosol Sci. 3, 359-382.
Shine, K.P., Forster, P.M. de F., 1999. The effect of human activity on radiative forcing of climate change: A review of recent developments. Global Planet. Change 20, 205-225.
Intergovernmental Panel on Climate Change (IPCC), 1995. Cambridge University Press, Cambridge, UK.
Ten Brink, H.M., Kruisz, C., Kos, G.P.A., Berner, A., 1997. Composition/size of the light-scattering aerosol in the Netherlands. Atmos. Environ. 31, 3955-3962.
Twomey, S., 1977. The influence of pollution on the short-wavde albedo of clouds. J. Atmos. Sci. 34, 1149-1152.
Waggoner, A.P., Weiss, R.E., Ahlquist, N.C., Covert, D.S., Will, S., Charlson., 1981. Optical characteristic of atmospheric aerosols. Atmos. Environ. 15, 1891-1909.
White, W.H., 1990. The contribution of fine particle scattering to total extinction. Section 4.1-4.4. Visibility and Historical Conditions-Causes and Effects, 85-102, Acid Deposition State and Technology Report 24. National Acid Deposition Program, Government Printing Office, Washington DC, USA.
Wiscombe, W.J., Grams, G.W., 1976. The backscattered fraction in
two-stream approximations. J. Atoms. Sci. 33, 2400-2451.
指導教授 李崇德(Chung-Te Lee) 審核日期 2003-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明