博碩士論文 90326023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.129.69.151
姓名 賴祺仁(Chi-Ren Lai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用非熱電漿技術處理二氯甲烷及酚之初步研究
(Preliminary Study on Removal ofDichloromethane and Phenol from Gas Streams with Non-thermal Plasma)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以高頻(30~40 kHz)電源供應器搭配介電質放電反應器進行二氯甲烷及酚之破壞及去除實驗,選定剝漆過程中常逸散出之二氯甲烷及酚氣體作為實驗對象。本研究將分為兩部分進行討論,一為分析非熱電漿系統中內電極形式之影響,嘗試以不同形式、材質及樣式之內電極進行研究探討。另一方面針對非熱電漿系統中操作參數與揮發性有機氣體去除率之關係作一系列之研究,操作參數包含了輸入放電頻率、進流濃度、氣流停留時間、水氣含量及攜流氣體等。並根據反應機制量整與偵測結果以探討說明應用非熱電漿處理二氯甲烷之最終產物及可能反應途徑。
根據本研究結果顯示應用不同形式或材質之內電極將對有機物之去除及反應器溫度變化皆有相當的影響。統整效率及系統穩定性來看,本文建議使用以纏繞方式將不鏽鋼材質之細線覆於中空玻璃管外壁作為內電極進行操作。
本研究對單純含二氯甲烷或酚氣流進行實驗,結果發現放電頻率、進流濃度、氣流停留時間、水氣含量與攜流氣體等參數皆為影響有機物去除效率的重要因子。然而在特定操作參數時應用本技術皆可達90%以上之去除效率,所生成最終產物分別為CO、CO2、NO2、N2O、O3及HCl與CO、CO2、HNO3、N2O、NO2及O3。併同處理含有二氯甲烷及酚氣流時發現,當氣流中二氯甲烷濃度變化大時,對去除效率之影響也隨之激烈;但對酚氣體而言,濃度變化對去除效率之影響則不顯著。
收集整理應用觸媒處理二氯甲烷技術之成果與本處理系統做比較。此系統仍然會產生與應用氧化法或氫化法技術之相同最終產物,如CO、CO2、HCl等。針對國外應用電漿放電處理技術做比較,顯示本系統亦能達到相當之去除率。
摘要(英) Decomposition and removal chlorinated and aromatic hydrocarbons via non-thermal plasma processing at atmospheric pressure were investigated. The target VOCs selected for study include dichloromethane (DCM) and phenol which are commonly used in industry as resolvents and thinners. A bench-scale experimental apparatus has been designed and constructed in this study for evaluating the effectiveness of DBD plasmas for removing selected organics from gas streams. Dependencies of removal efficiency achieved with DBD on operation parameters including applied frequency, gas flow rate, inlet DCM concentration, humidity and composition of the gas stream and analysis of by-products are investigated.
Experimental results show that the removal efficiency of selected compounds (DCM) increased with application of higher frequency and longer gas residence time. However, removal efficiency of DCM was found to decrease with increasing inlet DCM concentration and gas flow rate. The major products of DCM processing in air include CO, CO2, NO2, NO, N2O and HCl. Removal of phenol was also investigated in this study, results indicated this non-thermal plasma get high removal efficiency for phenol removal and byproduct such as CO, CO2, NO2, NO, HNO3 would be produced during the process.
Experimental results demonstrate the technical feasibility of applying this non-thermal plasma system for removing DCM and phenol from gas streams.
關鍵字(中) ★ 內電極形式
★ 去除效率
★ 最終產物
★ 反應機制
★ 非熱電漿技術
★ 酚
★ 二氯甲烷
★ 剝漆過程
★ 操作參數
關鍵字(英) ★ non-thermal plasma
★ phenol
★ product
★ removal efficiency
★ dichloromethane
論文目次 目錄
摘要
ABSTRACT
第一章 前言 1
1-1 研究動機 2
1-2 研究內容 4
第二章 文獻回顧 5
2-1 揮發性有機氣體之定義 5
2-2 揮發性有機氣體之危害及影響 7
2-3 國內外研究調查之有害空氣污染物名單及排放標準 8
2-4 選定進行實驗研究之揮發性有機氣體特性 11
2-5 揮發性有機氣體之傳統控制技術 15
2-6 電漿之生成原理及特性 21
2-7 電漿種類之介紹 26
第三章 研究設備與方法 34
3-1研究流程及實驗建構 34
3-1-1氣體模擬系統 35
3-1-2 反應裝置之建構 39
3-1-3 尾氣收集採樣裝置 40
3-1-4 分析儀器之設定 40
3-1-5 標準氣體與檢量線之建立 41
3-2主體實驗參數設定 43
3-2-1 反應器材質及形式 43
3-2-2 放電頻率 43
3-2-3 濃度 43
3-2-4 流量 43
3-2-5 水氣含量 44
3-3 實驗後端分析 44
3-3-1 處理效率分析 44
3-3-2 最終產物分析 45
3-3-3 能量消耗分析 45
第四章 結果與討論 46
4-1 高頻電源供應器之各項特性與操作參數 46
4-2 反應器形式之探討 49
4-2-1 反應器之內電極形式探討 49
4-2-2 螺旋式纏繞間距之影響 50
4-2-3 內電極材質對二氯甲烷去除之影響 53
4-2-4 能量效益之比較 57
4-3 影響二氯甲烷去除效率因子之探討 59
4-3-1 反應停留時間對去除效率之影響 59
4-3-2 進流濃度對去除效率之影響 60
4-3-3 水氣含量之影響 62
4-4最終產物分析 63
4-4-1 純氮氣下操作 66
4-4-2 純氧氣下操作 69
4-4-3 空氣下操作 73
4-5 二氯甲烷及酚合併去除之研究 78
4-5-1 單獨處理酚之研究 79
4-5-2 併同處理二氯甲烷及酚之研究 84
4-6 與其他處理法之比較 85
4-6-1 與觸媒處理法之比較 85
4-6-2 與放電處理技術之比較 86
第五章 結論與建議 89
5-1 結論 89
5-2 建議 90
參考文獻 92
圖目錄
圖2-1電子束生成系統示意 27
圖2-2 RF的典型結構 28
圖2-3電暈放電情形 29
圖2-4介電質放電處理技術原理示意圖 30
圖2-5供電頻率對於系統電子分佈之影響 33
圖3-1研究流程圖 35
圖3-2設備裝置圖 36
圖3-3線管式反應器示意圖 39
圖3-4螺旋纏繞不鏽鋼細線之內電極示意圖 40
圖3-5尾氣採樣裝置 40
圖3-6二氯甲烷之檢量線 43
圖4-1(A) 放電頻率與操作段數之關係 47
圖4-1(B) 高頻電源供應器之電壓與頻率之關係 47
圖4-1(C) 系統耗能與有效放電能量之關係 48
圖4-2 各項參數與系統操作段數之關係 48
圖4-3 螺旋式內電極去除DCM 50
圖4-4 纏繞不同間距不鏽鋼細線內電極示意圖 51
圖4-5不同纏繞間距下,外電極平均溫度與放電頻率之關係 52
圖4-6 不同纏繞間距下,系統總耗能與放電頻率之關係 52
圖4-7 不同纏繞間距下,DCM去除效率與放電頻率之關係 53
圖4-8 不同材質時,系統總耗能與內電極纏繞間距之關係 54
圖4-9 電極材質與內電極纏繞間距對DCM去除之影響 54
圖4-10 不同形式內電極之示意圖 55
圖4-11 內電極形式與系統總耗能之關係 56
圖4-12 內電極形式與去除效率之關係 56
圖4-13 不同內電極材質操作所能達之能量 57
圖4-14 不同纏繞間距與能量效率之關係 58
圖4-15 不同內電極形式與能量效率之關係 59
圖4-16 不同停留時間下去除效率與放電頻率之關係 60
圖4-17 不同進流濃度下DCM去除效率與放電頻率之關係 61
圖4-18 去除率與氣流中水氣含量之關係 63
圖4-19 N2/DCM電漿放電前後之IR圖譜 67
圖4-20 N2/DCM電漿之FTIR逐時濃度變化 68
圖4-21 二氯甲烷於氮氣電漿中之反應途徑 69
圖4-22 O2/DCM電漿之放電前後之IR圖譜 71
圖4-23 O2/DCM電漿之FTIR逐時濃度變化 72
圖4-24 O2/DCM電漿之反應途徑 73
圖4-25 AIR/DCM電漿之放電前後之IR圖譜 75
圖4-26 二氯甲烷物種於空氣電漿操作下之可能反應途徑 75
圖4-27 AIR/DCM電漿之FTIR逐時濃度變化 76
圖4-28 不同氣體組成與去除率之關係 78
圖4-29 於E/N為150 TD時,不同氣體組成下之電子能量分佈 78
圖4-30 處理酚效率與系統放電頻率之關係 79
圖4-31 N2/PHENOL放電前後之IR圖譜 80
圖4-32 N2/PHENOL電漿之FTIR逐時濃度變化 81
圖4-33 處理酚效率與系統放電頻率之關係 82
圖4-34 AIR/PHENOL放電前後之IR圖譜 82
圖4-35 AIR/PHENOL電漿之FTIR逐時濃度變化 84
圖4-36 併同處理二氯甲烷與酚氣體之結果 85
表目錄
表2-1 有機物在大氣環境中存在時間 8
表2-2 建議國內優先調查之有害空氣污染名單 9
表2-3 美國環保署公告優先管制有害空氣污染物名單 10
表2-4 歷年來環保署公告各行業之揮發性有機物排放標準 11
表2-5 二氯甲烷之物質安全資料表 13
表2-6 酚之物質安全資料表 14
表2-7 國內外航空業剝漆程序有機溶劑暴露調查 12
表2-8 各種揮發性有機廢氣管末處理技術之特性 19
表2-9 各有機廢氣處理技術之處理風量及較適操作條件之比 20
表2-10 熱電漿與非熱電漿之特性 23
表2-11 電漿種類及其特性 26
表3-1 實驗氣體種類、濃度及來源 37
表3-2 質量流量控制器規格 38
表4-1 常見分子鍵能彙整 64
表4-2 雙原子分子的熱解離能與電子碰撞解離能之比較 65
表4-3 不同氣體背景環境下放電後之副產物列表 77
表4-4 應用觸媒處理二氯甲烷之研究整理比較 86
表4-5 電漿技術去除含氯揮發性有機物之比較 88
參考文獻 Atkinson, R.; Baulch, D.L.; Cox, R.A.; Hampson, R.F., Jr.; Kerr, J.A.; Rossi, M.J.; Troe, J.; “Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: supplement V, IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry.” J. Phys. Chem. Ref. Data, 26, 521-1011, (1997).
Baulch, D.L.; Cobos, C.J.; Cox, R.A.; Esser, C.; Frank, P.; Just, Th.; Kerr, J.A.; Pilling, M.J.; Troe, J.; Walker, R.W.; Warnatz, J. “Evaluated kinetic data for combustion modeling.” J. Phys. Chem. Ref. Data, 21, 411-429, (1992).
Baulch, D.L.; Duxbury, J.; Grant, S.J.; Montague, D.C.; “Evaluated kinetic data for high temperature reactions. Volume 4 Homogeneous gas phase reactions of halogen- and cyanide- containing species.” J. Phys. Chem. Ref. Data, 10, (1981).
Bell, T.N.; Perkins, K.A.; Perkins, P.G.; “The chlorination of paraffin hydrocarbons. Calculation of the activation energies and a factors for reactions in the total chlorination of methane.” J. Phys. Chem., 81, 2610-2614, (1977).
Berho, F.; Rayez, M.-T.; Lesclaux, R.,” UV absorption spectrum and self-reaction kinetics of the cyclohexadienyl radical, and stability of a series of cyclohexadienyl-type radicals.” J. Phys. Chem. A, 103, 5501-5509, (1999).
Bodenstein, M.; Brenschede, W.; Schumacher, H.J.; “Die photochemische phosgen bildung. xi. berschnung der konstanten der teilreaktionen unter einbeziehung der thermischen phosgenbildudng und zersetzung.” Z. Phys. Chem., 40, 121, (1938).
Bolzacchini, E.; Bruschi, M.; Hjorth, J.; Meinardi, S.; Orlandi, M.; Rindone, B.; Rosenbohm, E.; “Gas-phase reaction of phenol with NO3.” Environ. Sci. Technol., 35, 1791-1797, (2001).
Boyd, A.A.; Canosa-Mas, C.E.; King, A.D.; Wayne, R.P.; Wilson, M.R.; “Use of a stopped-flow technique to measure the rate constants at room temperature for reactions between the nitrate radical and various organic species.” J. Chem. Soc. Faraday Trans., 87, 2913-2917, (1991).
Boyd, A.A.; Marston, G.; Wayne, R.P.; “Kinetic studies of the reaction between NO3 and OClO at T = 300 K and P = 2-8 torr.” J. Phys. Chem., 100, 130-137, (1996).
Chadha N.; Parmele C.S.; “Minimize emissions of air toxics via process changes,” Chemical Engineering Progress. 37-42, (1993).
Chang M.B.; Chang C.C.; “Destruction and removal of VOCs from gas streams with dielectric barrier discharge plasmas,” In 88th Annual Meeting & Exhibition, AWM& A, San Antonio (1994).
Chapman B.; “Glow Discharge Processes,” A Wiley-Interscience Publication, Canada, 297 (1980).
Clyne, M.A.A.; Coxon, J.A.; “Kinetic studies of oxy-halogen radical systems.” Proc. R. Soc. London A, 303, 207, (1968).
Combourieu, J.; Le Bras, G.; Paty, C.; “Reaction of H atoms with CH2C12 application to the inhibition of flames.” Symp. Int. Combust. Proc., 14, 485, (1973).
Coogan J.J., Greene A.E., Kang M., Rosocha L.A.; Sappey A.D.; “Silent discharge plasma destruction of hazardous wastes,” Proceedings of the IEEE International Conference on Plasma Science, Santa Fe, NM, USA (Jun. 6-8, 1994).
DeMore, W.B.; Sander, S.P.; Golden, D.M.; Hampson, R.F.; Kurylo, M.J.; Howard, C.J.; Ravishankara, A.R.; Kolb, C.E.; Molina, M.J., Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 12. JPL Publication, 97-4, 1-266, (1997).
Den, W.; Pirbazari, M.; Huang, C.C.; Shen, K.P.; “Technology review for vapor phase biofiltration part I: technology development and applications,” Journal of Chinese Institute of Environmental Engineering, 8(3), 159-179, (1998).
Flagan, R.C.; Seinfeld, J.H.; Fundamentals of Air Pollution Engineering, Prentice Hall, New Jersey, 103. (1988).
Fletcher, I.S.; Husain, D.; “The collisional quenching of O(21D2) by COCl2, COFCl and COF2 using atomic absorption spectroscopy in the vacuum ultraviolet.” J. Photochem., 8, 355, (1978).
Freeman, C.G.; Phillips, L.F.; “Kinetics of chlorine oxide reactions. II. The reaction of nitrogen atoms with Cl2O.” J. Phys. Chem., 72, 3028, (1968).
Frost, M.J.; Smith, I.W.M.; Spencer-Smith, R.D.; “Rate of reaction between CN radicals and vibrationally excited HCl.” J. Chem. Soc. Faraday Trans., 89, 2355-2362, (1933).
Futamura, S.; Einaga, H.; Zhang A.; “Comparison of reactor performance in the non-thermal plasma.” Chemical Applicat., 37(4), 978-985, (2001).
Haider, N.; Husain, D.; “Kinetic studies of the reactions of ground state atomic carbon, C(2p2(3PJ)), with halogenated methanes investigated by time-resolved atomic resonance absorption spectroscopy in the vacuum ultra-violet.” Combust. Flame, 93, 327-335, (1993).
Harley, R.A.; Cass, G.R.; “Modeling the concentrations of gas-phase toxic organic air pollutants: direct emissions and atmospheric formation,” Environ. Sci. Technol., 28, 88-98, (1994).
Herron, J.T.; “Evaluated chemical kinetic data for the reactions of atomic oxygen O(3P) with saturated organic compounds in the gas phase.” J. Phys. Chem. Ref. Data, 17, 967, (1988).
Horowitz, A.; Bauer, D.; Crowley, J.N.; Moortgat, G.K.; “Determination of product branching ratio of the ClO self-reaction at 298 K.” Geophys. Res. Lett., 20, 1423-1426, (1993).
Ito, T.; Noumura, T.; Ehara, Y.; “Frequency acceleration of NOx reduction rate on superimposing discharge mode,” Musashi Institute of Technology, 1-28-1, (1999).
Jeoung, S.C.; Choo, K.Y.; Benson, S.W.; “Very low pressure reactor chemiluminescence studies on N atom reactions with CHCl3 and CDCl3.” J. Phys. Chem., 95, 7282-7290, (1991).
Kao, A.S.; “Formation and removal reactions of hazardous air pollutants,” J. Air & Waste Manage Assoc., 44, 683-696, (1994).
Kilpinen, P.; Glarborg, P.; Hupa, M.; “Reburning chemistry: a kinetic modeling study,” Ind. Eng. Chem. Res., 31, 1477-1490, (1992).
Knispel, R.; Koch, R.; Siese, M.; Zetzsch, C.; “Adduct formation of OH radicals with benzene, toluene, and phenol and consecutive reactions of the adducts with NOx and O2,” Ber. Bunsenges. Phys. Chem., 94, 1375, (1990).
Kohno, H.; Tamura, M.; Shibuya, A.; Honda, S.; Berezin, A.A.; Chang, J.S.; Yamamoto, T.; “Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor,” IEEE Trans. Ind. Applicat., 1445-1452, (1995).
Kowalczyk, J.; Jowko, A.; Symanowicz, M.; “Kinetics of radical reactions in Freons.” J. Radioanal. Nucl. Chem., 232, 75-78, (1998).
Kumar, K.S.; Pennington, R.L.; Zmuda, J.T.; “Capture or destroy toxic air pollutants,” Chemical Engineering, 16, 513-527, (1993).
Lim, K.P.; Michael, J.V.; “Thermal decomposition of CH2Cl2.” Symp. Int. Combust. Proc., 25, 809-816, (1994).
Lipson, J.B.; Beiderhase, T.W.; Molina, L.T.; Molina, M.J.; Olzmann, M.; “Production of HCl in the OH + ClO reaction: laboratory measurements and statistical rate theory calculations.” J. Phys. Chem. A, 103, 6540-6551, (1999).
Lovell, A.B.; Brezinsky, K.; Glassman, I.; “The gas phase pyrolysis of phenol.” Int. J. Chem. Kinet., 21, 547, (1989).
Macken, K.V.; Sidebottom, H.W.; “The reactions of methyl radicals with chloromethanes.” Int. J. Chem. Kinet., 11, 511, (1979).
Mark, P.C.; Schluep, M.; “Destruction of benzene in a dielectric barrier discharge plasma reactor,” Air & Waste Management Association’s 2000 Annual Conference & Exhibition, (2000).
Martino, M.; Rosal, R.; Sastre, H.; Diez, F.V.; “Hydrodechlorination of dichloromethane, trichloroethane, trichloroethylene and tetrachloroethylene over a sulfided Ni/Mo-?-alumina catalyst,” Applied Catalysis B, 20, 301-307, (1999).
Mathias, E.; Sanhueza, E.; Hisatsune, I.C.; Heicklen, J.; “The chlorine atom sensitized oxidation and the ozonolysis of C2Cl4.” Can. J. Chem., 52, 3852, (1974).
Mcculloch, A.; Midgley, P.M.; “The production and global distribution of emissions of trichloroethene, tetrachloroethene and dichloromethane over the period 1988-1922,” Atmospheric Environment, 30(4), 601-608, (1996).
Miyazaki, S.; Takahashi, S.; “Spectral study of reactions of active nitrogen with halogenated hydrocarbons.” Mem. Def. Acad. Math. Phys. Chem. Eng. (Yokosuka Jpn.), 13, 275, (1973).
Muaffaq, A., Jani, K., Takaki; Fujiwara, T.; “Low-Voltage operation of a plasma reactor for exhaust gas treatment by dielectric barrier discharge,” Review of Scientific Instruments, 69, 1847-1849, (1998).
NCI/NTP; Dichloromethane, Technical Report 306, NTIS PB86187309/AS, (1986).
NIST; “NIST Standard Reference Database no 69.” February 2000 Release (http://webbook.nist.gov/chemistry/). (2000).
Oda T., Takahashi T.; Tada K.; “Decomposition of dilute trichloroethylene by nonthermal plasma,” IEEE Trans. Ind. Applicat., 35(2), 373-379, (1999).
Orlando, J.J.; “Temperature dependence of the rate coefficients for the reaction of chlorine atoms with chloromethanes.” Int. J. Chem. Kinet., 31, 515-524, (1999).
Pfeiffer W.; Paede M.; “About the influence of the environmental conditions on the partial discharge extinction voltage at high frequency voltage,” IEEE Trans. Ind. Applicat., 34(3), 452-455, (2000).
Ponder, W.H.; Abbott, J.H.; Nuner, C.M.; Ramsey, G.H.; Hamel, L.E.; Kariher P.S.; “Corona destruction: an innovative control technology for vocs and air toxics,” J. AWMA, 43, 242-247, (1993).
Raizer, Y. P.; Allen, J.E.; Kisin, V.I.; “Gas Dsicharge Physics,” ISBN: 3-540-19462-2 Springer-Verlag, Texas (1991).
Schulz, G.; Birkhahn, G.; “Kinetic analogies between decomposition of 1,2-dichloroethane and chloroform under non-thermal reducing rf plasma conditions,” Hazardous Waste & Hazardous Materials, 13, 23-45, (1994).
Seetula, J.A.; Gutman, D.; Lightfoot, P.D.; Rayes, M.T.; Senkan, S.M.,” Kinetics of the reactions of partially halogenated methyl radicals (CH2Cl, CH2Br, CH2I, and CHCl2) with molecular chlorine.” J. Phys. Chem., 95, 10688-10693, (1991).
Semadeni, M.; Stocker, D.W.; Kerr, J.A.,” The temperature dependence of the OH radical reactions with some aromatic compounds under simulated tropospheric conditions.” Int. J. Chem. Kinet., 27, 287-304, (1995).
Tabares, F.; Diaz, R.; Menendwz, D.; “High frequency ozone generation system,” Ozone Science & Engineering 23, 171-176, (2000).
Takahashi, K.; Wada, R.; Matsumi, Y.; Kawasaki, M.; “Product branching ratios for O(3P) atom and ClO radical formation in the reactions of O(1D) with chlorinated compounds.” J. Phys. Chem., 100, 10145-10149, (1996).
USEPA; Health Assessment Document: Dichloromethane (Methylene Chloroide) (Review Draft) EPA-600/8-82-004B, (1982).
Van Engel A., Electric Plasmas: Their Nature and Uses, Talyor and Francis, London. (1983).
Vincent, R.; Poirot, P.; Subra, I.; Rieger, B.; Cicolella, A.; “Occupational exposure to organic solvents during paint stripping and painting operations in the aeronautical industry,” Int. Arch. Occup. Environ. Health, 65, 377-380, (1994).
WHO; Environ Health Criteria: Methylene chloride, (1984).
Yamamoto, T.; Ramanathan, K.; Lawless, P.A.; Enser, D.S.; Newsome, J.R.; Plaks N.; Ramsey, G.H.; “Control of volatile organic compounds by an ac ferroelectric pellet reactor and a pulsed corona reactor,” IEEE Trans. Ind. Appl. 28(3), 528-534, (1992).
土界孝夫;黃忠良譯,「放電現象應用」,復漢出版社,(1986)。
行政院環保署,「有害空氣污染物排放管制規範研訂計畫」,EPA-82-F103-09-13,(1994)。
行政院環保署,「交通工具空氣污染物排放標準」,行政院環保署公告法條,(1999)。
行政院環保署,「固定污染源空氣污染物排放標準」,行政院環保署公告法條,(1992)。
行政院環保署,「聚氨基甲酸脂合成皮業揮發性有機物空氣污染管制及排放標準」,行政院環保署公告法條,(1997)。
行政院環保署,「半導體製造業空氣污染管制及排放標準」,行政院環保署公告法條,(1999)。
行政院環保署,「汽車製造業表面塗裝作業空氣污染物排放標準」,行政院環保署公告法條,(1994)。
行政院環保署,「揮發性有機物空氣污染管制及排放標準」,行政院環保署公告法條,(1997)。
行政院環保署,「揮發性有機廢氣生物處理技術手冊」,(1999)。
汪小蘭,「有機化學」,科技圖書股份有限公司,台北市,(1990)。
赤崎正則;賴耿陽譯,「電漿工學的基礎」,復文書局,(1990)。
張君正「以介電質放電法處理揮發性有機物之初步研究」,國立中央大學環境工程研究所碩士論文,中壢,(1994)。
勞工安全衛生研究所,「航太工業剝漆及噴漆作業有機溶劑暴露調查」,(2001)。
勞工安全衛生研究所,「製鞋工人有機溶劑暴露之研究」(2000)。
勞工安全衛生研究所物質安全資料表。
楊博渝,「混合型金屬氧化物觸媒應用於焚化二氯甲烷之研究」,國立中山大學環境工程研究所碩士論文,高雄,(1998)。
劉國棟,「VOC管制趨勢展望」,工業污染防制,第48期,15-31(1993)。
蔣本基,「有機溶劑污染控制」,工業污染防制手冊之三十四,(1991)。
蔡光遠,「有機氯化物於混合型金屬氧化物上之觸媒焚化研究」,私立逢甲大學土木及水利工程研究所碩士論文,台中,(1999)。
指導教授 張木彬(Moo-Been Chang) 審核日期 2003-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明