博碩士論文 91326001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.144.118.122
姓名 陳信良(Hsin-Liang Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 數值模式輔助非熱電漿技術效能改善之研究
(Investigation on Performance Enhancement of Nonthermal Plasma with the Assistance of Numerical Simulation)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究致力於非熱電漿技術效能之改善,基於非熱電漿之化學反應乃由電子碰撞反應所生成活性物種所誘發之特性,本研究提出一套分析程序輔助非熱電漿效能改善工作之進行。該程序共包含三步驟,分別為釐清重要活性物種、瞭解該物種生成效率(單位能量輸入所產生之活性物種量)和折合電場(reduced field)之關係,最後依據上述分析結果將電漿系統之折合電場調整至較利於該活性物種生成之範圍。由於電漿物理和電漿化學反應相當複雜,僅藉由實驗進行上述分析極為不易。因此本研究亦發展一套非熱電漿數值模式,模式之模擬結果除和實驗數據趨勢一致外,兩者之數值亦相近,證實模式之可靠性。
為驗證上述分析程序是否可輔助非熱電漿效能改善工作,本研究選擇以O2/Ar混合氣體電漿生成臭氧及N2電漿去除NF3等議題進行案例探討。研究結果顯示Ar之添加並無助於臭氧生成,因其將導致折合電場之下降與氣體溫度之增加,兩者均不利於臭氧生成;而臭氧之主要生成途徑為O + O2 + M → O3 + M。另一方面,就NF3之去除而言,其於N2/NF3電漿中之主要破壞途徑為其與N2(A3Σ+u)(N2之一介穩態物種)之反應。由上述可知,O和N2(A3Σ+u)分別為此兩議題中最重要之活性物種,就效能改善之觀點而言,應提升上述兩活性物種之生成效率。
然值得注意的是O和N2(A3Σ+u)的生成效率隨折合電場之變化趨勢並不相同,O之生成效率首先隨折合電場上升而增加,但過高的折合電場反而不利於O之生成,亦即有一最佳折合電場存在;另一方面,N2(A3Σ+u)之生成效率單調地隨折合電場上升而增加。由於O的生成效率和折合電場之關係較為特殊,因此本研究選擇以臭氧生成議題進行效能改善之研究。
就介電質放電反應器而言,其折合電場視反應器之幾何條件而定。一般而言,縮短放電間距可提升折合電場。根據O的生成效率有一最佳折合電場之特性,可推論臭氧生成效能亦有一最佳放電間距。為驗證此推論之正確性,本研究利用三組不同放電間距之介電質放電反應器進行臭氧生成實驗,實驗結果顯示放電間距為0.2 cm之反應器,其所得臭氧生成效率優於間距為0.1 cm和0.3 cm者。因此本研究所提出的分析程序確實可供為非熱電漿技術效能改善工作之有效工具。
摘要(英) This study aims at enhancing the performance of nonthermal plasma for ozone generation and PFC removal. Based on the characteristic that the plasma chemistry is initiated by the active species generated by electron-impact reactions in nonthermal plasma, a three-step analysis procedure is proposed to assist the task of performance enhancement. This procedure consists of identification of important active species, understanding how the efficiency of the production of the important active species varies with the reduced field and optimzing the reduced field accordingly. Due to the complexity of plasma physics and plasma chemistry, it is difficult to carry out the analysis simply by experimental works. As a result, a numerical model is developed in this study as well. The model has been confirmed to be reliable because the simulation results show good agreement with the experimental data.
To verify the validity of the proposed procedure, two topics, i.e. ozone generation in O2/Ar mixture and NF3 abatement in N2/NF3 mixture plasmas, are selected as case studies. The results indicate that adding Ar into O2 plasma is not a feasible approach to enhance the performance of ozone generation. The addition of Ar would lead to a lower reduced field and a higher gas temperature, which are both unfavorable for ozone generation. Moreover, the results show that the major pathway for ozone generation is O + O2 + M → O3 + M. As for NF3 decomposition, the results indicate that NF3 is mainly decomposed by N2(A3Σ+u), a metastable of N2. Therefore, the important active species for these two applications are O atom and N2(A3Σ+u), respectively. From the viewpoint of performance enhancement, one should improve the generation of these active species.
However, it is worth noticing that the relationships between the O atom/N2(A3Σ+u) generated per eV and the reduced field are quite different. There exists an optimum reduced field in terms of O atom generation while the efficiency of N2(A3Σ+u) generation monotonously increases with increasing reduced field. The topic of ozone generation is chosen for further investigation because of the nonmonotonous characteristic of O atom generation.
Since the reduced field of DBD reactor relies on its reactor geometry, it implies that the performance would vary as the reactor geometry changes. In general, reducing the discharge gap would result in a higher reduced field. Therefore, it can be expected that there exists an optimum discharge gap for ozone generation. Three DBD reactors with different discharge gaps are experimentally evaluated. The experimental and simulation results both show that the DBD reactor with a discharge gap of 0.2 cm could achieve better performance than those with gaps of 0.1 and 0.3 cm. Hence, it has been successfully verified that the three-step analysis procedure can be used to improve the performance of nonthermal plasma.
關鍵字(中) ★ 氣態污染物去除
★ 臭氧生成
★ 數值模式
★ 介電質放電
★ 非熱電漿
關鍵字(英) ★ numerical simulation
★ nonthermal plasma (NTP)
★ dielectric barrier discharge (DBD)
★ ozone generation
★ gaseous pollutant removal
論文目次 Abstract i
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Research Objective 2
Chapter 2 Literature Review 3
2.1 Introduction to plasma 3
2.1.1 Principles of plasma generation 3
2.1.2 Reactions in plasma 4
2.1.3 Classifications of plasma technologies 6
2.1.4 Reduced field 7
2.1.5 G-value 7
2.2 Nonthermal plasma 8
2.2.1 Dielectric barrier discharge 9
2.2.2 Corona discharge 10
2.2.3 Comparison of DBD and corona discharge 11
2.3 Some fundamentals regarding DBD 12
2.3.1 Gas breakdown mechanism in DBD 12
2.3.2 Measurement of discharge power for DBD Reactors 13
2.4 Scaling Law of Nonthermal Plasma Reactor 17
2.4.1 Kinetic equation for gaseous pollutant abatement via nonthermal plasma 18
2.4.2 Kinetic equation for hydrocarbon reforming to produce H2 via nonthermal plasma 20
2.4.3 How to apply the kinetic equation obtained by lab-scale test to industrial application 21
2.5 Modifications of conventional nonthermal plasma reactors 22
2.5.1 Paced-bed reactor (PBR) 22
2.5.2 Plasma catalysis 35
Chapter 3 Model Description 56
3.1 Model Framework 57
3.1.1 Input data 58
3.1.2 Boltzmann equation solver 58
3.1.3 Theoretical breakdown voltage and discharge power calculation 60
3.1.4 Reaction and rate constant database 63
3.1.5 ODE solver for mass balance equation set 65
3.1.6 Reaction pathway analysis 65
3.2 Assumptions of numerical model 66
3.2.1 Discharge region 66
3.2.2 Afterglow region 68
3.3 Simulation of plasma phsycis and plasma chemistry 69
Chapter 4 Influence of Ar Addition on Ozone Generation 73
4.1 Introduction 73
4.2 Experimental 73
4.2.1 Experimental apparatus 73
4.2.2 Experimental parameters 74
4.3 Some details about the numerical modeling 75
4.3.1 Thermal conductivity 75
4.3.2 Reaction mechanism 75
4.4 Results and discussion 76
4.4.1 Influence of Ar addition on breakdown voltage 76
4.4.2 Influence of Ar addition on discharge power 80
4.4.3 Influence of Ar addition on ozone concentration 82
4.4.4 How does Ar addition influence ozone generation? 84
4.4.5 The causes for the inconsistency reported in the relevant studies 96
5.4.6 Is adding Ar a feasible approach to enhance the ozone generation efficiency? 96
Chapter 5 Kinetic Modeling of NF3 Decomposition via Dielectric Barrier Discharges in N2/NF3 Mixture Plasma 97
5.1 Introduction 97
5.2 Experimental 97
5.2.1 Experimental apparatus 97
5.2.2 Experimental parameters 98
5.3 Some details about the numerical modeling 99
5.3.1 Thermal conductivity 99
5.3.2 Reaction Mechanism 99
5.4 Results and Discussion 100
5.4.1 Verification of numerical modeling 100
5.4.2 Analysis for the major reaction pathways of NF3 decomposition in N2/NF3 plasma 102
5.4.3 Confirmation of the importance of N2(A3Σ+u) for NF3 removal 108
5.4.4 Major reaction pathways for NF3 removal in N2/NF3 plasma 111
Chapter 6 Reactor Optimization Design for Ozone Generation via DBD in Pure O2 113
6.1 Introduction 113
6.2 Experimental 113
6.2.1 Experimental apparatus 113
6.2.2 Experimental parameters 114
6.3 Results and discussion 114
Chapter 7 Summary & Perspectives 118
7.1 Summary 118
7.2 Perspectives 118
References 120
Appendix A. List of Reactions for O2 Plasma 134
Appendix B. List of the Extra Reactions for O2/Ar Plasma 138
Appendix C. List of Reactions for N2/NF3 Plasma 140
Appendix D. Symbols for Numerical Model 144
參考文獻 Abbott, H. L.; Bukoski, A.; Kavulak, D. F.; Harrison, I. Dissociative chemisorption of methane on Ni(100): Threshold energy from CH4(2ν3) eigenstate-resolved sticking measurements. J. Chem. Phys. 2003, 119, 6407-6410.
Bartholomew, C. H. Carbon deposition in steam reforming and methanation. Catal. Rev.-Sci. Eng. 1982, 24, 67-112.
Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Frank, P.; Hayman, G.; Just, Th.; Kerr, J. A.; Murrells, T.; Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz, J. Evaluated kinetic data for combustion modelling. supplement I. J. Phys. Chem. Ref. Data. 1994, 23, 847-1033.
Beck, R. D.; Maroni, P.; Papageorgopoulos, D. C.; Dang, T. T.; Schmid, M. P.; Rizzo, T. R. Vibrational mode-specific reaction of methane on a nickel surface. Science, 2003, 302, 98-100.
BOLSIG, KINEMA Software, http://www.siglokinema.com.
Chae, J. O.; Demidiouk, V.; Yeulash, M.; Choi, I. C.; Jung, T. G. Experimental study for indoor air control by plasma-catalyst hybrid system. IEEE Trans. Plasma Sci. 2004, 32, 493-497.
Chang, C. L.; Lin, T. S. Decomposition of toluene and acetone in packed dielectric barrier discharge reactors. Plasma Chem. Plasma Process. 2005, 25, 227.
Chang, J. S.; Chakrabari, A.; Urashima, K.; Arai, M. The effects of barium titanate pellet shapes on the gas discharge characteristics of ferroelectric packed-bed reactors Proceeding of the Conference on Electrical Insulation and Dielectric Phenomena, 1998.
Chang, J. S.; Kostov, K. G.; Urashima, K.; Yamamoto, T.; Okayasu, Y.; Kato, T.; Iwaizumi, T.; Yoshimura, K. Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and adsorbent hybrid systems. IEEE Trans. Ind. Appl. 2000, 36, 1251-1259.
Chang, J. S.; Yamamoto, T.; Kohno, H.; Tamura, M.; Honda, S.; Shibya, A.; Berezin, A. A. Removal of xylene, trichloroethylene and their mixtures from air stream by a pulsed corona discharge induced Plasma Reactor. J. Adv. Oxi. Technol. 1997, 2, 346-352.
Chang, M. B.; Lee, H. M. Abatement of perfluorocarbons with combined plasma catalysis in atmospheric-pressure environment. Catal. Today. 2004, 89, 109-115.
Chavadej, S.; Kiatubolpaiboon, W.; Rangsunvigit, P.; Sreethawong, T. A combined multistage corona discharge and catalytic system for gaseous benzene removal. J. Mol. Catal. A-Chem. 2007b, 263, 128-136.
Chavadej, S.; Saktrakool, K.; Rangsunvigit, P.; Lobban, L. L.; Sreethawong, T. Oxidation of ethylene by a multistage corona discharge system in the absence and presence of Pt/TiO2. Chem. Eng. J. 2007a, 132, 345-353.
Chen, H. L.; Lee, H. M.; Chang, M. B. Enhancement of energy yield for ozone production via packed-bed reactors. Ozone-Sci. Eng. 2006b, 28, 111-118.
Chen, H. L.; Lee, H. M.; Chang, M. B. Kinetic modeling of the NF3 decomposition via dielectric barrier discharges in N2/NF3 mixtures. Plasma Process. Polym. 2006a, 3, 682-691.
Chen, H. L.; Lee, H. M.; Chen, S. H.; Chang, M. B. Review of packed-bed plasma reactor for ozone generation and air pollution control. Ind. Eng. Chem. Res. 2008, 47, 2122-2130.
Cheng, D. G.; Zhu, X. Reduction of Pd/HZSM-5 using oxygen glow discharge plasma for a highly durable catalyst preparation. Catal. Lett. 2007, 118, 260-263.
Chiper, A. S.; Anita, V.; Agheorghiesei, C.; Pohoata, V.; Anita, M.; Popa, G. Spectroscopic diagnostics for a DBD plasma in He/air and He/N2 gas mixtures. Plasma Process. Polym. 2004, 1, 57-62.
Chu, W.; Wang, L.-N.; Chernavskii, P. A.; Khodakov, A. Y. Glow-discharge plasma-assisted design of cobalt catalyst for Fischer-Tropsch synthesis. Angew. Chem. Int. Edit. 2008, 47, 5052-5055.
Cosby, P. C. Electron-impact dissociation of nitrogen. J. Chem. Phys. 1993, 98, 9544-9553.
Creyghton, Y. L. M., van Veldhuizen, E. M. and Rutgers, W. R., Non-thermal plasma techniques for pollution control. NATO ASI Series Vol. 34G, Part A, pp. 65-89, Berlin: Springer, 1993.
Delagrange, S.; Pinard, L.; Tatibouet, J. M. Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts. Appl. Catal. B. Environ. 2006, 68, 92-98.
Demidiouk, V.; Chae, J. O. Decomposition of volatile organic compounds in plasma-catalytic system. IEEE Trans. Plasma Sci. 2005, 33, 157-161.
Demidiouk, V.; Moon, S. I.; Chae, J. O. Toluene and butyl acetate removal from air by plasma-catalytic system. Catal. Commun. 2003, 4, 51-56.
Demidyuk, V.; Whitehead, J. C. Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system. Plasma Chem. Plasma Process. 2007, 27, 85-94.
Dhandapani, B.; Oyama, S. T. Gas phase ozone decomposition catalysts. Appl. Catal. B-Environ. 1997, 11, 129-166.
Dinelli, G.; Civitano, L.; Rea, M. Industrial experiments on pulse corona simultaneous removal of NOx and SO2 from flue gas. IEEE Tran. Ind. Appl. 1990, 26, 535-541.
Ding, H. X.; Zhu, A. M.; Lu, F. G.; Xu, Y.; Zhang, J.; Yang, X. F. Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams. J. Phys. D-Appl. Phys. 2006, 39, 3603-3608.
Ding, H. X.; Zhu, A. M.; Yang, X. F.; Li, C. H.; Xu, Y. Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas. J. Phys. D-Appl. Phys. 2005, 38, 4160-4167.
Einaga, H.; Futamura, S. Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides. J. Catal. 2004b, 227, 304-312.
Einaga, H.; Futamura, S. Catalytic oxidation of benzene with ozone over Mn ion-exchanged zeolites. Catal. Commun. 2007, 8, 557-560.
Einaga, H.; Futamura, S. Comparative study on the catalytic activities of alumina-supported metal oxides for oxidation of benzene and cyclohexane with ozone. React. Kinet. Catal. Lett. 2004a, 81, 121-128.
Einaga, H.; Futamura, S. Oxidation behavior of cyclohexane on alumina-supported manganese oxides with ozone. Appl. Catal. B-Environ. 2005, 60, 49-55.
Einaga, H.; Ibusuki, T.; Futamura, S. Performance evaluation of a hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene decomposition. IEEE Trans. Ind. Appl. 2001, 37, 1476-1482.
Eliasson, B.; Hirth, M.; Kogelschatz, U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D-Appl. Phys. 1987, 20, 1421-1437.
Eliasson, B.; Kogelschatz, U. Nonequilibrium volume plasma chemical processing. IEEE Trans. Plasma Sci. 1991, 19, 1063-1077.
Ertl, G. Surface science and catalysis-studies on the mechanism of ammonia synthesis: The P. H. emmett award address. Catal. Rev.-Sci. Eng. 1980, 21, 201-223.
Falkenstein, Z.; Coogan, J. J. Microdischarge behavior in the silent discharge of nitrogen-oxygen and water-air mixtures. J. Phys. D-Appl. Phys. 1997, 30, 817-8250
Fitzsimmons, C.; Ismail, F.; Whitehead, J. C.; Wilman, J. J. The Chemistry of dichloromethane destruction in atmospheric-pressure gas streams by a dielectric packed-bed plasma reactor. J. Phys. Chem. A, 2000, 104, 6032-6038.
Foti, G.; Stankovic, V.; Bolonella, I.; Comninellis, C. Transient behavior of electrochemical promotion of gas-phase catalytic reactions. J. Electroanal. Chem. 2002, 532, 191-199.
Francke, K.-P.; Miessner, H.; Rudolph, R. Plasmacatalytic processes for environmental problems. Catal. Today. 2000, 59, 411-416.
Fridman, A.; Chirokov, A.; Gutsol, A. Non-thermal atmospheric pressure discharges. J. Phys. D-Appl. Phys. 2005, 38, R1-R24.
Futamura, S.; Einaga, H.; Kabashima, H.; Hwan, L. Y. Synergistic effect of silent discharge plasma and catalysts on benzene decomposition. Catal. Today. 2004b, 89, 89-95.
Futamura, S.; Kabashima, H.; Einaga, H. Steam reforming of aliphatic hydrocarbons with nonthermal plasma. IEEE Trans. Ind. Appl. 2004a, 40, 1476-1481.
Futamura, S.; Zhang, A.; Einaga, H.; Kabashima, H. Involvement of catalyst materials in non-thermal plasma chemical processing of hazardous air pollutants. Catal. Today 2002, 72, 259-265.
Gal, A.; Ogata, A.; Futamura, S.; Mizuno, K. Mechanisms of the dissociation of chlorofluorocarbons during nonthermal plasma processing in nitrogen at atmospheric pressure. J. Phys. Chem. A. 2003, 107, 8859-8866.
Garamoon, A. A.; Elakshar, F. F.; Nossair, A. M.; Kotp, E. F. Experimental study of ozone synthesis. Plasma Sources Sci. Technol. 2002, 11, 254-259.
Gicquel, A.; Cavadias, S.; Amouroux, J. Heterogeneous catalysis in low-pressure plasmas. J. Phys. D-Appl. Phys. 1986, 19, 2013-2042.
Grossmannova, H.; Neirynck, D.; Leys, C. Atmospheric discharge combined with Cu-Mn/Al2O3 catalyst uint for the removal of toluene. Czech. J. Phys. 2006, 56, B1156-B1161.
Guerra, V.; Sa, P. A.; Loure iro, J. Role played by the N2(A3Σ+u) metastable in stationary N2 and N2-O2 discharges. J. Phys. D.-Appl. Phys., 2001, 34, 1745-1755.
Guo, Y. F.; Ye, D. Q.; Chen, K. F.; He, J. C.; Chen, W. L. Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. J. Mol. Catal. A. Chem. 2006, 245, 93-100.
Hagelaar, G. J. M.; Pithford, L. C. Solving teh Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 2005, 14, 722-733.
Harling, A. M.; Demidyuk, V.; Fischer, S. J.; Whitehead, J. C. Plasma-catalysis destruction of aromatics for environmental clean-up: Effect of temperature and configuration. Appl. Catal. B-Environ. 2008, 82, 180-189.
Heath, W. O.; Barlow, S. E.; Berqsman, T. M.; Lessor, D. L.; Orlando, T. M.; Peurrung, A. J.; Shah, R. R. Development and analysis of high-energy corona processes for air purification. PNL-SA-24432 Pacific Northwes Laboratory, 1994.
Heath, W.; Birmingham, J. Non-thermal plasma technology for organic destruction. PNL-SA-25844 Pacific Northwes Laboratory, 1995.
Herron, J. T. Evaluated chemical kinetics data for reactions of N(2D), N(2P), and N2(A3Σ+u) in the Gas Phase. J. Phys. Chem. Ref. Data. 1999, 28, 1453-1483.
Higgins, J.; Conjusteau, A.; Scoles, G..; Bernasek, S. L. State selective vibrational (2ν3) activation of the chemisorption of methane on Pt (111) J. Chem. Phys. 2001, 114, 5277-5283.
Hill, S. L.; Kim, H. H.; Futamura, S.; Whitehead, J. C. The destruction of atmospheric pressure propane and propene using a surface discharge plasma reactor. J. Phys. Chem. A. 2008, 112, 3953-3958.
Holmblad, P. M.; Wambach, J.; Chorkendoff, I. Molecular beam study of dissociative sticking of methane on Ni(100). J. Chem. Phys. 1995, 102, 8255-8263.
Holzer, F.; Kopinke, F. D.; Roland, U. Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants. Plasma Chem. Plasma Process. 2005, 25, 595-611.
Holzer, F.; Roland, U.; Kopinke, F.-D. Combining of nonthermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds Part 1. Accessibility of the intra-particle volume. Appl. Catal. B-Environ. 2002, 38, 163-181.
Iwasaki, Y.; Liu, J.; Zhang, J.; Kitajima, T.; Sakurai, M.; Kameyama, H. Hydrogen production from ethanol using a plasma reactor with an alumite catalyst electrode. J. Chem Eng. Jpn. 2006, 39, 216-228.
Jarrige, J.; Vervisch, P. Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: Study of by-product formation and influence of high voltage pulse parameters. J. Appl. Phys. 2006, 99, Art. No. 113303.
Jodzis, S. Effect of silica packing on ozone synthesis from oxygen-nitrogen mixtures. Ozone-Sci. Eng. 2003, 25, 63-72.
Jogan, K.; Mizuno, A.; Yamamoto, T.; Chang, J. S. The effect of residence time on the CO2 reduction from combustion flue gases by an AC ferroelectric packed bed reactor. IEEE Trans. Ind. Appl. 1993, 29, 876-881.
Juurlink, L. B. F.; McCabe, P. R.; Smith, R. R.; DiCologero, C. L.; Utz, A. L. Eigenstate-resolved studies of gas-surface reactivity: CH4(ν3) dissociation on Ni(100). Phys. Rev. Lett. 1999, 83, 868-871.
Kabashima, H.; Einaga, H.; Futamura, S. Hydrogen generation from water, methane, and methanol with nonthermal plasma. IEEE Trans. Ind. Appl. 2003, 39, 340-345.
Kang, M.; Kim, B. J.; Cho, S. M.; Chung, C. H.; Kim, B. W.; Han, G. Y.; Yoon, K. J. Decomposition of toluene using an atmospheric pressure plasma-TiO2 catalytic system. J. Mol. Catal. A. Chem. 2002, 180, 125-132.
Kang, S. K.; Park, J. M.; Kim, Y.; Hong, S. H. Numerical study on influences of barrier arrangement on dielectric barrier discharge characteristics. IEEE Trans. Plasma Sci., 2003, 31, 504-510.
Kim, H. H.; Prieto, G.; Takahima, K.; Katsura, S.; Mizuno, A. Performance evaluation of discharge plasma process for gaseous pollutant removal. J. Electrostat. 2002, 55, 25-41.
Kim, H.-H. Nonthermal plasma processing for air-pollution control: A historical review, current issues, and future prospects. Plasma Process. Polym. 2004, 1, 91-110.
Kim, H.-H.; Kim, J.-H.; Ogata, A. Adsorption and oxygen plasma-driven catalysis for total oxidation of VOCs. Proceedings of the 6th International Symposium on Non-thermal Plasma Technologies, 2008a.
Kim, H.-H.; Kobara, H.; Ogata, A.; Futamura, S. Comparative assessment of different non-thermal plasma reactors on energy efficiency and aerosol formation from the decomposition of gas-phase benzene. IEEE Trans. Ind. Appl. 2005a, 41, 206-214.
Kim, H.-H.; Ogata, A.; Futamura, S. Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds. J. Phys. D-Appl. Phys. 2005b, 38, 1292, 1300.
Kim, H.-H.; Ogata, A.; Futamura, S. Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis. IEEE Trans. Plasma Sci. 2006, 34, 984-995.
Kim, H.-H.; Ogata, A.; Futamura, S. Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Appl. Catal. B-Environ. 2008b, 79, 356-367.
Kim, Y.; Kim, K.-T.; Cha, M. S.; Song, Y.-H.; Kim, S. J. CF4 decomposition using streamer- and glow-mode in dielectric barrier discharges. IEEE Trans. Plasma Sci. 2005c, 33, 1041-1046.
Kitayama, J.; Kuzumoto, M. Analysis of ozone generation from air in silent discharge. J. Phys. D-Appl. Phys. 1999, 32, 3032-3040.
Kitayama, J.; Kuzumoto, M. Theoretical and experimental study on ozone generation characteristics of an oxygen-fed ozone generator in silent discharge. J. Phys. D-Appl. Phys. 1997, 30, 2453-2461.
Kogelschatz, U., Advanced ozone generation in process technologies for water treatment, 87-120, S. Stucki, ed., Plenum, New York, 1988.
Kogelschatz, U.; Akishev, Y. S.; Napartovich, A. P. History of non-equilibrium air discharges in Non-equilibrium air plasmas at atmospheric pressure, 17-116, Becker et al., ed., IOP Publishing Ltd., London, 2005.
Kogelschatz, U.; Eliasson, B.; Egli, W. From ozone generators to flat television screens: History and future potential of dielectric-barrier discharges. Pure Appl. Chem. 1999, 71, 1819-1828.
Kohno, H.; Tamura, M.; Honda, S.; Shibuya, A.; Yamamoto, T.; Berezin, A. A.; Chang, J. S. Generation of aerosol particles during the destruction of xylene and trichloroethylene from air stream by a pulse corona discharge. J. Aerosol. Sci. 1995, 26, s585-s586.
Kossyik, I. A.; Kostinsky, A. Y.; Matveyev, A. A.; Silakov, V. P. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Sci. Technol. 1992, 1 207-220.
Kraus, M.; Eliasson, B.; Kogelschatz, U.; Wokaum, A. CO2 reforming of methane by the combination of dielectric-barrier discharges and catalysis. Phys. Chem. Chem. Phys. 2001, 3, 294-300.
Kuroki, T.; Mine, J.; Odahara, S.; Okubo, M.; Yamamoto, T.; Saeki, N. CF4 decomposition of flue gas from semiconductor process using inductively coupled plasma. IEEE Trans. Ind. Appl. 2005, 41, 221-228.
Larsen, J. H.; Holmblad, P. M.; Chorkendoff, I. Dissociative sticking of CH4 on Ru(0001). J. Chem. Phys. 1999, 110, 2637-2642.
Lee, B. Y.; Park, S. H.; Lee, S. C.; Kang, M.; Choung, S. J. Decomposition of benzene by using a discharge plasma-photocatalyst hybrid system. Catal. Today. 2004a, 93-95, 769-776.
Lee, H. M.; Chang, M. B. Influences of reactor geometry on ozone production with dielectric barrier discharges: Experimental and simulation studies. J. Adv. Oxid. Technol. 2005, 8, 158-166.
Lee, H. M.; Chang, M. B.; Wei, T. C. Kinetic modeling of ozone generation via dielectric barrier discharges. Ozone-Sci. Eng. 2004b, 6, 551-562.
Lee, M. B.; Yang, Q. Y.; Ceyer, S. T. Dynamics of the activated dissociative chemisorption of CH4 and implication for the pressure gas in catalysis: A molecular beam-high resolution electron energy loss study. J. Chem. Phys. 1987, 87, 2724-2741.
Li, D.; Yakushiji, D.; Kanazawa, S.; Ohkubo, T.; Nomoto, Y. Decomposition of toluene by streamer corona discharge with catalyst. J. Electrostat. 2002, 55, 311-319.
Li, Z. H.; Tian, S. X.; Wang, H. T.; Tian, H. B. Plasma treatment of Ni catalyst via a corona discharge. J. Mol. Catal. A-Chem. 2004, 211, 149-153.
Liao, M. Y.; Wong, K.; McVittie, J. P.; Saraswat, K. C. Abatement of perfluorocarbons with an inductively coupled plasma reactor. J. Vac. Sci. Technol. B. 1999, 17, 2638-2643.
Liu, C. J.; Mallinson, R.; Lobban, L. Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma. J. Catal. 1998, 179, 326-334.
Liu, C. J.; Wang, J. X.; Yu, K. L.; Eliasson, B.; Xia, Q.; Xue, B.; Zhang, Y. H. Floating double probe characteristics of non-thermal plasmas in the presence of zeolite. J. Electrostat. 2002, 54, 149-158.
Liu, C. J.; Zou, J.; Yu, K.; Cheng, D.; Han, Y.; Zhan, J.; Ratanatawanate, C.; Jang, B. W. L. Plasma application for more environmentally friendly catalyst preparation. Pure Appl. Chem. 2006, 78, 1227-1238.
Lu, B.; Zhang, X.; Yu, X.; Feng, T.; Yao, S. Catalytic oxidation of benzene using DBD corona discharges. J. Hazard. Mater. 2006, 137, 633-637.
Magureanu, M.; Manache, N. B.; Parvulescu, V. I.; Subrahmanyam, Ch.; Renken, A.; Kiwi-Minsker, L. Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Appl. Catal. B: Environ. 2007, 74, 270-277.
Magureanu, M.; Mandache, N. B.; Gaigneaux, E.; Panu, C.; Parvulescu, V. I., Toluene oxidation in a plasma-catalytic system. J. Appl. Phys. 2006, 99, 123301.
Magureanu, M.; Mandache, N. B.; Parvulescu, V. I. Chlorinated organic compounds decomposition in a dielectric barrier discharge. Plasma Chem. Plasma Process. 2007a, 27, 679-690.
Manley, T. C. The electrical characteristic of the ozonator discharge. Trans. Electrochem. Soc. 1943, 52, 5820-5828.
Manning, T. J. Production of ozone in an electrical discharge using inert gases as catalysts. Ozone-Sci. Eng. 2000, 22, 53-64.
Marwood, M.; Vayenas, C. G. Electrochemical promotion of a dispersed platinum catalyst. J. Catal. 1980, 178, 429-440.
Masoud, N.; Martus, K.; Figus, M.; Becker, K. Rotational and vibrational temperature measurements in a high-pressure cylindrical dielectric barrier discharge (C-DBD). Contrib. Plasma Phys. 2005, 45, 30-37.
Masuda, S.; Nakao, H. Control of NOx by positive and negative pulsed corona discharges. IEEE Trans. Ind. Appl. 1990, 26, 374-383.
McAdams, R. Prospects for non-thermal atmospheric plasmas for pollution abatement. J. Phys. D-Appl. Phys. 2001, 34, 2810-2821.
Melchor, A.; Garbowski, E.; Mathieu, M. V.; Primet, M. Physicochemical properties and isomerization activity of chlorinated Pt/Al2O3 catalyst. J. Chem. Soc., Faraday Trans. 1. 1986, 82, 3667-3679.
Miessner, H.; Francke, K.-P.; Rudolph, R. Plasma-enhanced HC-SCR of NOx in the presence of excess oxygen. Appi. Catal. B-Environ. 2002, 36, 53-62.
Mizuno, A.; Ito H. Basic performance of an electrostatically augmented filter consisting of a packed ferroelectric pellet layer. J. Electrost. 1990, 25, 97-107.
Mizuno, A.; Ito, H.; Yoshida, H. AC partial discharge characteristics of the electrostatic precipitator using a packed ferroelectric pellet layer. Proceeding of 1988 Institute of Electrostatics, 1988.
Mok, Y. S.; Koh, D. J.; Shin, D. N.; Kim, K. T. Reduction of nitrogen oxides from simulated exhaust gas by using plasma-catalytic process. Fuel Process. Technol. 2004, 86, 303-317.
Mok, Y. S.; Lee, S.-B.; Oh, J.-H.; Ra, K.-S.; Sung, B.-H. Abatement of trichloromethane by using nonthermal plasma reactors. Plasma Chem. Plasma Process. 2008, 28, 663-676.
Mok, Y. S.; Nam, C. M.; Cho, M. H.; Nam, I. S. Decomposition of volatile organic compounds and nitric oxide by non-thermal plasma discharge process. IEEE Trans. Plasma Sci. 2002, 30, 408-416.
Moon, J. D.; Geum, S. T. Discharge and ozone generation characteristics of a ferroelectric-ball/mica-sheet barrier. IEEE Trans. Ind. Appl. 1998, 34, 1206-1211.
Morgan, W. L.; Penetrante, B. ELENDIF: A Time dependent Boltzmann solver for partially ionized plasmas. Comp. Phys. Comm. 1990, 58, 127-152.
Motret, O.; Hibert, C.; Pellerin, S.; Pouvesle, J. M. Rotational temperature measurements in atmospheric pulsed dielectric barrier discharge—gas temperature and molecular fraction effects. J. Phys. D-Appl. Phys. 2000, 33, 1493-1498.
Murphy, A. B.; Morrow, R. Glass sphere discharges for ozone production. IEEE Trans. Plasma Sci. 2002, 30, 180-181.
Naude, N.; Cambronne, J.-P.; Gherardi, N.; Massines, F. Electrical model and analysis of the transition from an atmospheric pressure Townsend discharge to a filamentary discharge. J. Phys. D-Appl. Phys. 2005, 38, 530-538.
Nicole, J.; Tsiplakides, D.; Wodiunig, S.; Comninellis, C. Activation of catalyst for gas-phase combustion by electrochemical pretreatment. J. Electrochem. Soc. 1997, 144, L312-L314.
Nie, Y.; Wang, J.; Zhong, K.; Wang, L.; Guan, Z. Synergy study for plasma-facilitate C2H4 selective catalytic reduction of NOx over Ag/γ-Al2O3 catalyst. IEEE Trans. Plasma Sci. 2007, 35, 663-669.
Nozaki, T.; Hiroyuki, T.; Okazaki, K. Hydrogen enrichment of low-calorific fuels using barrier discharge enhanced Ni/γ-Al2O3 bed reactor: Thermal and nonthermal effect of Nonequilibrium plasma. Energy Fuels. 2006, 20, 339-345.
Nozaki, T.; Muto, N.; Kado, S.; Okazaki, K. Dissociation of vibrationally excited methane on Ni catalyst part 1. Application to methane steam reforming. Catal. Today. 2004, 89, 57-65.
Oda, T.; Yamaji, K.; Takahashi, T. Decomposition of dilute trichloroethylene by nonthermal plasma processing — gas flow rate, catalyst, and ozone effect. IEEE Trans. Ind. Appl. 2004, 40, 430-436.
Odenbrand, C. U. I.; Anderson, L. A. H.; Brandin, J. G. M.; Lundin, S. T. Catalytic reduction of nitrogen oxides. Appl. Catal. 1986, 27, 363-377.
Ogata, A.; Ito, D.; Mizuno, K.; Kushiyama, S.; Yamamoto, T. Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE Trans. Ind. Appl. 2001, 37, 959-964.
Ogata, A.; Miyamae, K.; Mizuno, K.; Kushiyama, S.; Tezuka, M. Decomposition of benzene in air in a plasma reactor: Effect of reactor type and operating conditions. Plasma Chem. Plasma Process. 2002, 22, 537-552.
Ogata, A.; Mizuno, K.; Kushiyama, S.; Yamamoto, T. Methane decomposition in a barium titanate packed-bed non-thermal plasma reactor. Plasma Chem. Plasma Process. 1998, 18, 363-373.
Ogata, A.; Shintani, N.; Mizono, K.; Kushiyama, S.; Yamamoto, T. Decomposition of benzene using a non-thermal plasma reactor packed with ferroelectric pellets. IEEE Trans. Ind. Appl. 1999, 35, 753-759.
Ogata, A.; Shintani, N.; Yamanouchi, K.; Mizuno, K.; Kushiyama, S.; Yamamoto, T. Effect of water vapor on benzene decomposition using a nonthermal-discharge plasma reactor. Plasma Chem. Plasma Process. 2000, 20, 453-467.
Oh, S. M.; Kim, H. H.; Ogata, A.; Einaga, H.; Futamura, S.; Park, D. W. Effect of zeolite in surface discharge plasma on the decomposition of toluene. Catal. Lett. 2005, 99, 101-104.
Ohsawa, A.; Morrow, R.; Murphy, A. B. An investigation of a DC dielectric barrier discharge using a disc of glass beads. J. Phys. D-Appl. Phys. 2000, 33, 1487-1492.
Pan, Y.-X.; Liu, C.-J.; Shi, P. Preparation and characterization of coke resistant Ni/SiO2 catalyst for carbon dioxide reforming of methane. J. Power Sources. 2008, 176, 46-53.
Park, M. K.; Ryu, S. G.; Park, H. B.; Lee, H. W.; Hwang, K. C.; Lee, C. H. Decomposition of cyanogen chloride by using a packed bed plasma reactor at dry and wet air in atmospheric pressure. Plasma Chem. Plasma Process. 2004, 24, 117-136.
Paschen, F., Uber die zum funkenubergang in luft, wasserstoff und kohlensaure bei verschiedenen drucken erforderliche potentialdifferenz. Weid. Annal. der Physick. 1889, 37, 69–75.
Penetrante, B. M.; Hsiao, M. C.; Merritt, B. T.; Vogtlin, G. E.; Wallman, P. H. Comparison of electrical discharge techniques for nonthermal plasma processings of NO in N2. IEEE Trans. Plasma Sci. 1995, 23, 679-687.
Phelps, A. V. Tabulations of cross sections and calculated transport and reaction coefficients for electron collisions with O2. JILA Information Center Report (University of Colorado). 1985.
Piram A.; Li, X.; Gaillard, F.; Lopez, C.; Billard, A.; Vernoux, P. Electrochemical promotion of environmental catalysis. Ionics. 2005, 11, 327-332.
Poppe, J.; Volkening, S.; Schaak, A.; Schutz, E.; Janek, J.; Irnbihl, R. Electrochemical promotion of catalytic CO oxidation on Pt/YSZ catalysts under low pressure conditions. Phys. Chem. Chem. Phys. 1999, 1, 5241-5249.
Por, E.; Haase, G.; Citri, O.; Kosloff, R.; Asscher, M. Effect of molecular energy content on the dissociative chemisorption of N2 on Re(001). Chem. Phys. Lett. 1991, 186, 553-560.
Raizer Y. P. (ed.), Gas Discharge Physics. Springer-Verlag, Berlin, 1991.
Rapakoulias, D. E.; Cavadias, S.; Mataras, D. Heterogeneous catalysis in interaction of plasma excited species with surfaces. High Temp. Chem. Process. 1993, 2, 231-246.
Ratanatawanate, C.; Macias, M.; Jang, B. W. L. Promotion effect of the nonthermal RF plasma treatment on Ni/Al2O3 for benzene hydrogenation. Ind. Eng. Chem. Res. 2005, 44, 9686-9874.
Rettner, C. T.; Pfnur, H. E.; Stein, H.; Auerbach, D. J. Promotion of dissociative chemisorption with vibrational and translational energy. J. Vacuum Sci. Technol. A. 1988, 6, 899-901.
Rettner, C. T.; Stein, H. Effect of vibrational energy on the dissociative chemisorption of N2 on Fe(111). J. Chem. Phys. 1987, 87, 770-771.
Ricketts, C. L.; Wallis, A. E.; Whitehead, J. C.; Zhang, K. A mechanism for the destruction of CFC-12 in a nonthermal, atmospheric pressure plasma. J. Phys. Chem. A. 2004, 108, 8341-8345.
Roland, U.; Holzer, F.; Kopinke, F. D. Combination of non-thermal and heterogeneous catalysis for oxidation of volatile organic compounds Part 2. Ozone decomposition and deactivation of γ-Al2O3. Appl. Catal. B-Environ. 2005, 58, 217-226.
Roland, U.; Holzer, F.; Kopinke, F. D. Improved oxidation of air pollutants in a non-thermal plasma. Catal. Today 2002, 73, 315-323.
Romm, L.; Katz, G.; Kosloff, R.; Asscher, M. Dissociative chemisorption of N2 on Ru(001) enhanced by vibrational and kinetic energy: Molecular beam experiments and quantum mechanical calculations. J. Phys. Chem. B. 1997, 101, 2213-2217.
Rosocha, L. A. and Korzekwa, R. A., First report on non-thermal plasma reactor scaling criteria and optimization models. Los Alamos National Laboratory Report. 1998.
Rosocha, L. A. Nonthermal plasma applications to the environmental: Gaseous electronics and power conditioning. IEEE Trans. Plasma Sci. 2005, 33, 129-137.
Rostrup-Nielsen, J. R. (ed.), Catalytic Stream Reforming. Springer, Berlin, 1984.
Rousseau, A.; Guaitella, O.; Ropcke, J.; Gatilova, L. V.; Tolmachev, Y. A. Combination of a pulsed microwave plasma with a catalyst for acetylene oxidation. Appl. Phys. Lett. 2004, 85, 2199-2201.
Rudolph, R.; Francke, K.-P.; Miessner, H. Concentration dependence of VOC decomposition by dielectric barrier discharge. Plasma Chem. Plasma Process. 2002, 22, 401-412.
Samaranayake, W. J. M.; Miyahara, Y.; Namihira, S.; Katsuki, S.; Hackam, R.; Akiyama, H. Ozone generation in dry air using pulsed discharges with and without a solid dielectric layer. IEEE Trans. Dielectr. Electr. Insul. 2001, 8, 687-697.
Sano, T.; Negishi, N.; Sakai, E.; Matsuzawa, S. Contributions of photocatalytic/catalytic activities of TiO2 and γ-Al2O3 in nonthermal plasma on oxidation of acetaldehyde and CO. J. Mol. Catal. A. Chem. 2006, 245, 235-241.
Schmidt-Szalowski, K. Catalytic properties of silica packings under ozone synthesis conditions. Ozone-Sci. Eng. 1996, 18, 41-55.
Schmidt-Szalowski, K.; Borucka, A. Heterogeneous effects in the process of ozone synthesis in electrical discharges. Plasma Chem. Plasma Process. 1989, 9, 235-255.
Schmidt-Szalowski, K.; Borucka, A.; Jodzis, S. Catalytic activity of silica in ozone formation in electrical discharges. Plasma Chem. Plasma Process. 1990, 10, 443450.
Siemens, W. Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendräten. Poggendorffs Ann. Phys. Chem. 1857, 102, 66-120.
Skalny, J. D.; Mikoviny, T.; Mason, N. J.; Sobek, V. The effect of gaseous diluents on ozone generation from oxygen. Ozone-Sci Eng. 2002, 24, 29-37.
Sobacchi, M. G.; Saveliev, A. V.; Fridman, A. A.; Kennedy, L. A.; Ahmed, S.; Krause, T. Experimental assessment of a combined plasma/catalytic system for hydrogen production via partial oxidation of hydrocarbon fuels. Int. J. Hydrogen Energy. 2002, 27, 635-342.
Subrahmanyam, Ch.; Magureanu, M.; Laub, D.; Renken, A.; Kiwi-Minsker, L. Nonthermal plasma abatement of trichloroethylene enhanced by photocatalysis. J. Phys. Chem. C. 2007a, 111, 4315-4318.
Subrahmanyam, Ch.; Magureanu, M.; Renken, A.; Kiwi-Minsker, L. Catalytic abatement of volatile compounds assisted by non-thermal plasma Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode. Appl. Catal. B Environ. 2006, 65, 150-156.
Subrahmanyam, Ch.; Renken, A.; Kiwi-Minsker, L. Novel catalytic dielectric barrier discharge reactor for gas-phase abatement of isopropanol. Plasma Chem. Plasma Process. 2007b, 27, 13-22.
Takaki, K.; Chang, J. S.; Kostov, K. G. Atmospheric pressure of nitrogen plasmas in a ferro-electric packed bed barrier discharge reactor part I: Modeling. IEEE Trans. Dielectr. Electr. Insul. 2004a, 11, 481-490.
Takaki, K.; Urashima, K.; Chang, J. S. Ferro-electric pellet shape effect on C2F6 removal by a packed-bed-type non-thermal plasma reactor. IEEE Trans. Plasma Sci. 2004b, 32, 2175-2183.
Takaki, K.; Urashima, K.; Chang, J. S. Scale-up of ferro-electric packed bed reactor for C2F6 decomposition. Thin Solid Films 2006, 506-507, 414-417.
Takuma, T. Field behavior at a triple junction in composite dielectric arrangements. IEEE Trans. Electr. Insul. 1991, 26, 500-209.
Tas, M. A. Plasma-induced catalysis: A feasibility study and fundamentals. Ph. D. Dissertation, Eindhoven University of Technology, Dutch. 1995.
Techaumnat, B.; Takuma, T. Field intensification at the contact point between a conducting plane and a spherical or an elliptic cylinder. Proceeding of 2005 International Symposiums on Electrical Insulating Materials, 2005.
The Siglo Database, CPAT and Kinema Software, http://www.siglo-kinema.com.
Toby, S.; Van de Burgt, L. J.; Toby, F. S. Kinetics and chemiluminescence of ozone-aromatic reactions in the gas phase. J. Phys. Chem. 1985, 89, 1982-1986.
Tonkyn, R. G.; Barlow, S. E.; Orlando, T. M. Destruciton of carbon tetrachloride in a dielectric barrier/packed-bed corona reactor. J. Appl. Phys. 1996, 80, 4877-4886.
Tufano, V.; Turco, M. Kinetic modeling of nitric oxide reduction over a high-surface area V2O5-TiO2 catalyst. Appl. Catal. B-Environ. 1993, 2, 9-26.
Urashima, K.; Chang, J. S. Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 602-614.
Van Durme, J.; Dewulf, J.; Leys, C.; Langenhove, H. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Appi. Catal. B-Environ. 2008, 78, 324-333.
Van Durme, J.; Dewulf, J.; Sysmans, W.; Leys, C.; Van Langenhove, H. Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Appl. Catal. B-Environ. 2007, 74, 161-169.
Vayenas, C. G.; Bebelis, S.; Ladas, S. Dependence of catalytic rates on catalyst work function. Nature. 1990, 343, 625-627.
Vollrath, K. and Thomer, G. (ed.), Kurzzeitphysik. Springer, Wien, 1967.
Wagner, C. Adsorbed atomic species as intermediates in heterogeneous catalysis. Adv. Catal. 1970, 21, 323-381.
Walker, A. V.; King, D. A. Dynamics of dissociative methane adsorption on metals: CH4 on Pt{110}(1X2). J. Chem. Phys. 2000, 112, 4739-4748.
Wallis, A. E.; Whitehead, J. C.; Zhang, K. Plasma-assisted catalysis for the destruction of CFC-12 in atmospheric pressure gas streams using TiO2. Catal. Lett. 2007a, 113, 29-33.
Wallis, A. E.; Whitehead, J. C.; Zhang, K. The removal of dichloromethane from atmospheric pressure air streams using plasma-assisted catalysis. Appi. Catal. B-Environ. 2007b, 72, 282-288.
Wallis, A. E.; Whitehead, J. C.; Zhang, K. The removal of dichloromethane from atmospheric pressure nitrogen gas streams using plasma-assisted catalysis. Appi. Catal. B-Environ. 2007c, 74, 111-116.
Wang, A. P. L.; Li, L. Pulsed sample introduction interface for combining flow injection analysis with multiphoton ionization time-of-flight mass spectrometry. Anal. Chem. 1992, 64, 769-775.
Wang, J. G.; Liu, C. J.; Zhang, Y. P.; Yu, K. L.; Zhu, X. L.; He F. Partial oxidation of methane to syngas over glow discharge plasma treated Ni-Fe/Al2O3 catalyst. Catal. Today. 2004, 89, 183-191.
Waters, R. T. in Meeks, J. M.; Graggs, J. D. (Eds.), Electric Breakdown of Gases. Wiley Series in Plasma Physics, Wiley, New York, 1978.
Whealton, J. H.; Graves, R. L. Exhaust remediation using non-thermal (Plasma) aftertreatments: A review. Proceedings of the 1995 Diesel Engine Emissions. Reductions Workshop, 1995.
Yamamoto, T.; Chang, J. S.; Berezin, A. A.; Kohno, H.; Honda, S.; Shibuya, A. Decomposition of toluene, o-Xylene, trichloroethylene, and their mixture using a BaTiO3 packed-bed plasma reactor. J. Adv. Oxid. Technol. 1996, 1, 67-78.
Yamamoto, T.; Jang, B. W.-L. Aerosol generation and decomposition of CFC-113 by the ferroelectric plasma reactor. IEEE Trans. Ind. Appl. 1999, 35, 736-742.
Yamamoto, T.; Rajanikanth, B. S.; Okubo, M.; Kuroki, T.; Nishino, M. Performance evaluation of non-thermal plasma reactors for NO oxidation in diesel engine exhaust gas stream. IEEE Trans. Ind. Appl. 2003, 39, 1608-1613.
Yamamoto, T.; Ramanathan, K.; Lawless, P. A.; Ensor, D. S.; Newsome, J. R.; Plaks, N.; Ramsey, G. H. Control of volatile organic compounds by an energized ferroelectric pellet reactor and a pulsed corona reactor. IEEE Trans. Ind. Appl. 1992, 28, 528-534.
Yamamoto, T.; Yang, C. L.; Beltran, M. R.; Kravets, Z. Plasma-assisted chemical process for NOx control. IEEE Trans. Ind. Appl. 2000, 36, 923-927.
Yan, K.; van Heesch, E. J. M.; Pemen, A. J. M.; Huijbrechts, P. A. H. From chemical kinetics to streamer corona reactor and voltage pulse generator. Plasma Chem. Plasma Process. 2001, 21, 107-137.
Zhang, Y. P.; Ma, P. S.; Zhu, X.; Liu, C. J.; Shen, Y. A novel plasma-treated Pt/NaZSM-5 catalyst for NO reduction by methane. Catal. Commun. 2004, 5, 35-39.
Zhang, Y.; Chu, W.; Cao, W.; Luo, C.; Wen, X.; Zhou, K. A plasma-activated Ni/α-Al2O3 catalyst for the conversion of CH4 to syngas. Plasma Chem. Plasma Process. 2000, 20, 137-144.
Zhao, G.-B.; Hu, X.; Argyle, M. D.; Radosz, M. N atom and N2(A3Σ+u) found to be responsible for nitrogen oxides conversion in nonthermal nitrogen plasma. Ind. Eng. Chem. Res. 2004, 43, 5077-5088.
Zhao, Y.; Pan, Y.-X.; Xie, Y.; Liu, C.-J. Carbon dioxide rerforming of methane over glow discharge plasma-reduced Ir/Al2O3 catalyst. Catal. Commun. 2008, 9, 1558-1562.
Zhu, X. L.; Huo, P. P.; Zhang, Y. P.; Liu, C. J. Characteristics of argon glow discharge plasma reduced Pt/Al2O3 catalyst. Ind. Eng. Chem. Res. 2006, 45, 8604-8609.
Zhu, Y. R.; Li, Z. H.; Zhou, Y. H.; Lv, J.; Wang, H. T. Plasma treatment of Ni and Pt catalysts for partial oxidation of methane. React. Kinet. Catal. Lett. 2005, 87, 33-41.
Zou, J. J.; He, H.; Cui, L; Du, H. Y. Highly efficient Pt/TiO2 photocatalyst for hydrogen generation prepared by a cold plasma method. Int. J. Hydrogen Energy. 2007, 32, 1762-1770.
Zou, J. J.; Zhang, Y. P.; Liu, C. J. Reduction of supported noble-metal ions using glow discharge plasma. Langmuir. 2006, 22, 11388-11394.
指導教授 張木彬(Moo Been Chang) 審核日期 2009-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明