博碩士論文 91326002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.147.193.128
姓名 許鴻升(Hung-Sheng Hsu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以高分子聚合物模擬土壤有機質特定官能基對氣態有機污染物吸附行為之影響
(The effect of specific functional groups in soil organic matter on the adsorption of vapor-phase organic compounds)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本研究選用四種已知結構之高分子聚合物模擬土壤有機質,利用Cahn D200型電子微量天平,摒除水分的干擾,以重量法對氣態有機污染物吸附行為之影響進行探討,並著重於低相對壓力下,吸附等溫線非線性吸附程度與有機質特定官能基及吸附質之物化特性間之相關性。
實驗結果顯示,於相對壓力P/Po=0.1~0.8之範圍內,各吸附組合之氣態吸附等溫線均為線性,說明以高分子聚合物模擬土壤有機質吸持有機污染物,符合分佈作用吸附等溫線為線性之特徵。低相對壓力P/Po=0~0.1之範圍內,各組合之氣態吸附等溫線均出現凹口向下且彎曲程度不一之非線性吸附,彎曲程度與吸附質之極性大小明顯相關,當吸附質極性程度愈大,則非線性吸附程度愈大;極性程度愈小,則非線性程度愈小。吸附劑之特定官能基與非線性彎曲程度亦有高度相關性,實驗結果顯示,如羧酸基,氰基等極性官能基對非線性吸附程度有顯著的影響,主要是此類官能基與吸附質間產生氫鍵、偶極-偶極力等吸附作用力,使吸附劑吸附位址在低相對壓力下即達飽和。整體而言,本研究實驗結果說明分佈作用吸附等溫線於低相對壓力下之非線性彎曲程度與土壤有機質官能基及吸附質極性程度有明顯相關性。
摘要(英) Abstract
In researches of the sorption nonionic organic compounds by soil, the soil organic matters (SOM) has been recognized to behave as a partition medium. The unique isotherm shape which means the isotherms show nonlinear at low Ce/Sw but virtually linear at other Ce/Sw in soil/water system, implies that more than one mechanism is in effect over the entire range Ce/Sw. In order to evaluate the effect of specific functional groups in SOM on the adsorption of organic compounds, especially at low pressure, we chose polymers with known functional groups as the adsorbents in this experiment to simplify the complex characteristics of soil organic phase. To deliberate on the cause of such nonlinear sorption for organic contaminants at low pressure, several polar organic compounds were used to be the adsorbates.
The surface area and adsorption/desorption characteristics isotherms were analyzed to realize the adsorbent structure and the surface images display the microcosmic appearances of the adsorbent. Vapor-phase adsorption isotherms of cyclohexane, benzene, acetonitrile, and methanol on polymers, such as Poly(acrylic-acid)、Poly(benzyl-methacrylate)、Poly(acrylonitrile)、and Carbowax, were gravimerically measured under 25℃.In all experimental data, the adsorption isotherms show nonlinearity with concave-downward curvatures at low relative pressure but exhibit a linear shape at higher pressure. The nonlinearity of isotherms coincides with solute polarity. The sorption capacities are greater for polar solutes than for nonpolar solutes. The nonlinear capacity increases progressively with increasing solute polarity for other solutes. In addition to the polarity, the functional groups of the adsorbents affect on the nonlinear sorption as well. There are the specific interaction, like H-bond and Van der Waal’s force adsorbent, between organic compounds and adsorbents with functional group of OH bond、COOH bond. In summary, the final results are fit with the specific-interaction model.
關鍵字(中) ★ 非線性吸附
★ 特定作用力
★ 高分子聚合物
★ 土壤有機質
關鍵字(英) ★ nonlinear isotherm
★ polymer
★ soil organic matter (SOM)
論文目次 目錄
目次 頁次
目錄……………………………………………………………......І
圖目錄…………………………………………………………….. IV
表目錄…………………………………………………………….. VI
第一章 前言…………………………………………………….. 1
1-1 研究緣起…………………………………………………1
1-2 研究目的與內容……………………………………... 2
第二章 文獻回顧…………………………………………….… 4
2-1 土壤………………………………………………………..4
2-1-1 土壤無機相………………………………………….. 4
2-1-2 土壤有機質…………………………….…………….. 7
2-1-3 土壤表面積………………………………………….. 8
2-1-4 土壤陽離子交換容量………………………….…..… 9
2-2 吸附理論……………………………………………...…10
2-2-1 吸附現象…………………………………………...… 10
2-2-2 土壤之吸持作用……………………………….…….. 11
2-2-2-1 土壤吸持之主要機制………………………….. 12
2-2-2-2 分佈作用(partitioning) ………………………… 15
2-3 影響吸附揮發性有機化合物的因子…………………. 17
2-3-1 不同黏土礦物的差異…………………………..…… 17
2-3-2 不同有機污染物的影響……………………………... 18
2-3-3 水份之影響………………...………………………… 19
2-3-4 土壤有機質的影響………………………………...… 20
2-3-5 溫度的影響…………...……………………………… 21
2-4 氣態吸附等溫線…………………………...………….22
2-5 土壤有機質吸附有機污染物…………………………..25
2-5-1 Glassy-Rubbery SOM Model……………………......25
2-5-2 Internal Hole Model………………………………….26
2-5-3 HSACM Model………………...………………..…… 26
2-5-4 SI model…………………………………….………...27
第三章 實驗設備、材料及方法……………………….………..29
3-2 實驗設備……………………………………………... 31
3-2-1 氮氣吸附孔隙儀(ASAP)…………………………….. 31
3-2-2 場放射掃描式顯微鏡…………………………….….. 34
3-2-3 微量天平…………………………………………..… 34
3-2-4 恆溫水浴槽………………………….….………….… 35
3-2-5 真空抽氣機……………………………..…………… 35
3-2-6 電子天平…………………………..………………… 35
3-3 實驗材料………………………………..……………. 36
3-3-1 吸附劑…….………………………..........……… 36
3-3-2 吸附質……………………………...………………… 39
3-4 實驗方法……………………………..………………..43
3-4-1 實驗配置……………………………..……………… 43
3-4-2 實驗步驟……………………………..……………… 46
第四章 結果與討論…………………………………………….. 49
4-1 吸附劑基本性質………………….…………………….49
4-1-1 氮氣吸/脫附曲線……………………………………. 49
4-1-2 掃描式電子顯微鏡……………………………….….. 53
4-2 氣態吸附等溫線………………………………………..55
4-2-1 不同吸附劑對環己烷的吸附等溫線……………….. 58
4-2-2 不同吸附劑對苯的吸附等溫線…………………….. 60
4-2-3 不同吸附劑對氰甲烷的吸附等溫線…………….….. 62
4-2-4 不同吸附劑對甲醇的吸附等溫線…………….…….. 64
4-2-5 各吸附組合之動力曲線…………………………….. 66
4-2-6 不同吸附質對吸附行為之影響…………………….. 69
4-3 有機質官能基對低濃度吸附行為之影響……………..72
4-3-1 低相對壓力環己烷之吸附等溫線…………………... 74
4-3-2 低相對壓力苯之吸附等溫線………………….…….. 75
4-3-3 低相對壓力氰甲烷之吸附等溫線…………….…….. 77
4-3-4 低相對壓力甲醇之吸附等溫線………………….….. 78
4-4 吸附質之極性對低濃度下吸附行為之影響……………80
第五章 結論與建議…………………………………………….. 83
5-1 結論………………………………………………………83
5-2 建議………………………………………………………85
參考文獻 ……………..…………………………………………86
圖 目 錄
目次 頁次
圖2-1 矽四面體與鋁八面體之構造示意圖……………......5
圖2-2 高嶺石之構造示意圖………......................6
圖2-3 蒙特石之構造示意圖……………………………….. 7
圖2-4 不同水份相對含量(R.H.)對吸附的影響………......19
圖2-5 吸附等溫線之基本形態…………………………….. 22
圖3-1 研究架構圖………………………………………….. 30
圖3-2 BET原理適用範圍示意圖………………………….. 32
圖3-3 苯之分子結構……………………………………….. 40
圖3-4 環己烷的椅式構形和船式構形…………………….. 41
圖3-5 實驗設備配置圖…………………………………….. 45
圖3-6 實驗流程…………………………………………….. 47
圖4-1 吸附劑PAACID、PBM與Carbowax之氮氣吸附等溫線………………………………………………….. 50
圖4-2 吸附劑Poly(acrylonitrile)之氮氣吸附等溫線……50
圖4-3 相對壓力P/Po=0.5下吸附劑對不同吸附質之吸附量…………………………………………………….. 57
圖 4-4 25℃下四種吸附劑對環己烷之氣態吸附等溫線….. 59
圖 4-5 25℃下四種吸附劑對苯之氣態吸附等溫線……….. 61
圖 4-6 25℃下三種吸附劑對氰甲烷之氣態吸附等溫線….. 63
圖 4-7 25℃下三種吸附劑對甲醇之氣態吸附等溫線…….. 65
圖 4-8 不同土壤與環境反應所需平衡時間範圍 ………… 66
圖 4-9 Poly(benzyl methacrylate)對四種吸附質之吸附動力曲線…………………………………………...……..68
圖 4-10
圖 4-11 Poly(acrylic acid)對四種吸附質之吸附等溫線……..
Poly(benzyl methacrylate)對四種吸附質之吸附等溫線…………………………………………………….. 70
70
圖 4-12 Poly(acrylonitrile)對四種吸附質之吸附等溫線…71
圖 4-13 Carbowax對兩種吸附質之吸附等溫線……………. 71
圖 4-14 相對壓力P/Po<0.05下環己烷之氣態吸附等溫線... 76
圖 4-15 相對壓力P/Po<0.05下苯之氣態吸附等溫線…….. 76
圖 4-16 相對壓力P/Po<0.05下氰甲烷之氣態吸附等溫線.. 79
圖 4-17 相對壓力P/Po<0.05下甲醇之氣態吸附等溫線…... 79
表 目 錄
目次 頁次
表2-1 partitioning和adsorption之比較……………………11
表3-1 吸附劑之物理性質………………………………….. 38
表3-2 吸附質之理化性質………………………………….. 39
表3-3 文獻之系統操作參數……………………………….. 46
表4-1 吸附劑相關結構參數……………………………….. 52
表4-2 各吸附劑之表面影像(左為放大1000倍、右為放大2000倍)……………………………………………… 54
表4-3 土壤有機質(SOM)中重要的官能基一覽表…… 73
表4-4 各吸附組合之明顯非線性吸附量………………….. 81
參考文獻 參考文獻
1. 戴國邦, “土壤礦物 能源資源與環境”,第六卷,第三期,第16-21頁,1993
2. 王一雄、陳尊賢、李達源, “土壤污染學”,國立空中大學,初版,1995
3. 洪崑煌譯, “土壤化學”,國立編譯館,初版,1996
4. Bear, F. E. (Ed.), “Chemistry of The Soils”, New York, 1964
5. Donald L. Sparks原著,王明光譯,“環境土壤化學”,五南圖書,初版,2000
6. 石濤, “環境化學”,景茂圖書,四版,2000
7. Stevenson, F. J., “Humus Chemistry”, John Wiley & Sons, Somersel, N. J., pp. 17, 1982
8. Felbeck, G. T., “Structural Chemistry of Soil Humic Substances ”, Adv. Agron. pp. 327-368, 1965
9. Chiou, C. T.;Shoup, T. D., “Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity”, Environ. Sci. Technol., Vol. 19, pp. 1196-1200, 1985
10. Chiou, C. T.;Kile, D. E., “Water Solubility Enhancement of DDT and Trichlorobenene by Some Surfactant Below and Above the Critical Micelle Concentration”, Environ. Sci. Technol., Vol.23, No.7, pp.832-838, 1989
11. Chiou, C.T.;Lee, J.F.;Boyd, S.A., “The Surface Area of Soil Organic Matter”, Environ. Sci. Technol., Vol.24, No.8, pp.1164-1166, 1990
12. Pannell, K. D.;Boyd, S. A.;Abriola, L. M., “Surface Area of Soil Organic Matter Reexamined”, Soil. Sci. Soc. Am. J., 59, p1010-1018, 1995
13. Lambert, S. M., “Functional Relationship Between Sorption in Soil and Chemical Structure”, Journal of Agric. Food Chem., 15, pp.572-576, 1976
14. Chiou, C. T.;Shoup, T. D.;Porter, P. E., “Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solution”, Org. Geochem., 8, pp.9-14, 1985
15. Kopinke, F. D.; Georgi, A.;Mackenzie, K., “Sorption of Pyrene to Dissolved Humic Substances and Related Model Polymers.1.Structure-Property Correlation”, Environ. Sci. Technol., Vol. 35, pp.2536-2542, 2001
16. Tate III, Robert L., “Soil organic matter”, John Wiley & Sons, 1987
17. Jae-Hoon Choung;Young-Whan Lee; Dae-Ki Choi, “Adsorption Equilibria of Toluene on Polymeric Adsorbents”, J. Chem. Eng. Data , Vol. 46, pp.954-958, 2001
18. LeBoeuf, E. J.; Weber, W. J., Jr., “Macromolecular Characteristics of Natural Organic Matter. 2. Sorption and Desorption Behavior”, Environ. Sci. Technol., Vol. 34, pp.3632-3640, 2000
19. Rutherford, D. W.;Chiou, C. T., “Effect of water saturation in soil organic matter on the partition of organic compounds”, Environ. Sci. Technol., Vol. 26, pp.965-970, 1992
20. Chiou, C. T.; Peterand, L. J.;Freed, V. H. “A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds”, Science, Vol. 206, pp.831-832, 1979
21. Doner, H. E.;Mortland, M. M., “Benzene complexes with Cu (II) montmorillonite”, Science, 166, pp.1406-1407, 1969
22. Ruiz, J.;Bilbao, R.;Murillo, M. B., “Adsorption of different VOC onto soil minerals from gas phase: influence of mineral, type of VOC, and air humidity”, Environ. Sci. Technol., Vol32, pp.1079-1084, 1998
23. Goss, K. U., “Effects of temperature and relation humidity on the sorption of organic vapors on quartz sand”, Environ. Sci. Technol., Vol. 26, pp.2287-2294, 1992
24. Ong, S. K.;Lion, L. W., “Mechanisms for trichloroethylene vapor sorption onto soil minerals”, J. Environ. Qual., Vol. 20, pp.180-188, 1991
25. Ong, S. K.;Lion, L. W., “Trichloroethylene vapor sorption onto soil minerals”, Soil Sci. Soc. Am. J., Vol. 55, pp.1559-1568, 1991
26. Ong, S. K.;Lion, L.W. “Effects of Soil Properties and Moisture on the Sorption of Trichloroethylene Vapor”, Water Res., Vol. 26, pp. 2287-2294, 1992
27. Huang, W.;Young, T. M.; Schlautman, M. A.; Weber, W. Jr., “A Distributed Reactivity Model for Sorption by Soils and Sediments. 9. General Isotherm Nonlinearity and Applicability of the Dual Reactive Domain Model”, Environ. Sci. Technol., Vol. 31, No.6, pp1703-1710, 1997
28. Spurlock, F. C.; Biggar, J. W., “Thermodynamics organic chemical partition in soils. 2. nonlinear partition of substituted phenylureas from aqueous solution”, Environ. Sci. Technol., Vol. 28, pp.996-1002, 1994
29. Xing, B.;Pignatello, J. J.; Gigliotti, B. “Competitive sorption between atrazine and other organic compounds in soils and model sorbents”, Environ. Sci. Technol., Vol. 30, pp.2432-2440, 1996
30. Guangyao Sheng;C. T. Johnston;Brian J. Teppen;Stephen A. Boyd, “Potential Contributions of Smectite Clays and Organic Matter to Pesticide Retention in Soils”, J. Agric. Food Chem., Vol. 49, pp.2899-2907, 2001
31. 化學化工百科辭典,曉元出版社
32. 簡明化學辭典
33. Chiou, C. T.;Kile, D. E.;Malcolm, R. L., “Sorption of vapors of some organic liquids on soil humic acid and its relation to partition of organic compounds in soil organic matter”, Environ. Sci. Technol., Vol. 22, pp.298-303, 1988
34. Chiou, C. T.;Rutherford, D. W.;Manes, M., “Sorption of N2 and EGME vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data”, Environ. Sci. Technol., Vol. 27, pp.1567-1574, 1993
35. Chiou, C. T.;Kile, D. E., “Effect of polar and nonpolar groups on the solubility of organic compounds in soil organic matter”, Environ. Sci. Technol., Vol. 28, pp.1139-1144, 1994
36. Campagnolo, J. F.;Akgerman, A., “A prediction method for gas-phase VOC Isotherms onto soils and soil constituents”, J. Hazard. Mater., Vol. 49, pp.231-245, 1996
37. Dural, N. H.;Chen, C. H., “Analysis of vapor phase adsorption equilibrium of 1,1,1-trichloroethane on dry soils,” J. of Hazard. Mater., Vol. 53, pp.75-92, 1997
38. The Dow Chemical Company , “Carbowax PEGs and MPEGs Overview Brochure”, pp.6, 2002
39. Amacher, M. C., “Methods of obtaining and analyzing linetic data.-In Rates of Soil Chemical Processes”, (Sparks, D. L., and D. L. Suarez), SSSA Spec. Publ., 27, pp.19-59, 1991
40. 黃富昌,「土壤結構及化性對有機污染物吸/脫附特性之研究」,博士論文,國立中央大學環境工程研究所,中壢,2004
41. Sparks, D. L., “Environmental Soil Chemistry”, Academic Press, San Diego
42. Chiou, C. T.;Kile, D. E., “Deviations from Sorption Linearity on Soils of Polar and Nonpolar Organic Compounds at Low Relative Concentrations”, Environ. Sci. Technol., Vol. 32, pp.338-343, 1998
指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2004-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明