博碩士論文 91326005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.222.163.88
姓名 羅家麒(Chia-Chi Lo)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 連續流循序批分式活性污泥系統自動控制策略發展與系統建立-好氧相線上即時監測系統攝氧率方法建立與溶氧控制之研究
(Development of a novel method for respirometric measurementsand DO control)
相關論文
★ 彩色濾光片生產線清潔生產之改善研究★ 以離子交換法處理半導體廠氫氧化四甲基銨廢液之研究
★ 建立量測水位、MLSS濃度與SS濃度及污泥沉澱速度光學量測裝置之研究★ 奈米晶相Fe(OH)3催化臭氧反應程序處理油煙VOCs之發展
★ 無塵室揮發性有機污染物防制對策的探討★ 應用數位影像技術於廢水真色色度監測之研究
★ 污水處理廠操作最佳化之研究★ 河川流域水土資源承載力與永續力評量模式之發展
★ 單槽連續進流回分式活性污泥系統微生物菌相之研究★ 單槽連續進流回分式活性污泥系統溶氧控制之研究
★ 工業區廢水管理資訊系統之發展與建立-以觀音工業區為例★ 河川流域水管理系統動力學模式之發展與建立
★ 連續流回分式活性污泥系統好氧相曝氣控制策略之研究-線上即時量測溶氧轉換率與需氧量方法之建立★ 智慧型環境詞彙庫之發展與建置
★ 環境法規資料庫之發展與建置★ 連續流循序批分式活性污泥系統 好氧相即時曝氣控制策略之發展 — 低溶氧生物脫氮除磷程序控制技術之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 連續流循序批分式活性污泥系統(Continuous-Flow Sequencing Batch Reactor, CFSBR)在自動監測控制系統的發展上,主要利用監測ORP與pH發生之折點,達成即時監測控制好氧相及缺氧相之操作反應時間,並以達到節省操作時間及提高處理效率為目標。然而,傳統之好氧相控制策略採取固定曝氣量方式進行,此等操作方式,並無法依循系統生化反應與系統微生物活性狀態進行曝氣量調整,易造成系統效率與效益之減低。是故,本研究透過系統動態溶氧平衡式之建置作為CFSBR系統好氧相曝氣控制策略之研擬基礎,以提昇系統之整體效率及效益;然而,此控制策略必須根據系統溶氧轉換係數與系統攝氧率之監測資訊以達成回饋控制系統欲維持溶氧狀態與其所需之曝氣量。故本研究主要建立一線上即時監測系統溶氧轉換係數與攝氧率方法,以期能達成氧相曝氣控制。由研究結果指出,利用線上量測溶氧轉換係數與系統攝氧率之監測,不但能有效達成欲控制之系統溶氧濃度,亦可使結合監測ORP與pH之折點變化進行即時控制,以提高其操做效益。此外,利用長期線上即時監測系統攝氧率資料,不但可以反應出系統微生物活性變化,亦可瞭解系統微生物所處之F/M ratio 之狀態與系統穩定度之變化。另一方面,利用系統好氧相累積攝氧量進行分析發現, 其比攝氧利用率可作為系統反應動力參數與預測好氧相操作終點之參考依據,最後,控制系統可根據即時量測系統攝氧率的變化,做為現場操作系統異常判定之依據。
摘要(英) As a simple and compact wastewater treatment system, the continuous-flow sequencing batch reactor (CFSBR) is capable of removing the organic carbonaceous materials, nitrogen and phosphorus biological nutrients by cycling anaerobic, aerobic, anoxic, settling and discharge phases. To increase the comprehensive performance of this system, automation is the optimal procedure for increasing the performance of a wastewater treatment system. The original control strategy for aerobic phase was usually executed under high DO level conditions by fixed aeration time, and by the ORP/pH real-time control approaches to ensure the performances of biological nitrogen removal. But, these control approaches always led to poor stability of biological phosphate removal, sludge bulking and highly aeration costs. Therefore, developing an aeration control approach for increasing the comprehensive performance of CFSBR is the critical point. In this reason, this study tries to develop a novel real-time control strategy by using dynamic oxygen mass balance equation with two monitoring parameters, oxygen transfer ratio and respiration. And the results showed this method was not only reaching DO set point effectively, but also understanding the activity of the biological organisms in this system. In addition, analyze the accumulation respiration data could help us to ensure the biochemical reaction in aerobic phase was over. Finally, the real-time monitoring information could help local operator to distinguish unusual state of CFSBR system easily.
關鍵字(中) ★ 系統攝氧率
★ 系統溶氧轉換係數
★ 系統動態溶氧平衡式
★ 自動監測控制
★ 連續流循序批分式活性污泥系統
★ 累積攝氧量
★ 異常判定
關鍵字(英) ★ respiration
★ oxygen transfer ratio
★ unusual state
★ real-time control
★ automation
★ Continuous-Flow Sequencing Batch Reactor (CFSBR)
論文目次 第一章 前言1
1.1 研究緣起1
1.2 研究目的2
1.3 研究內容及流程 3
第二章 文獻回顧6
2.1 CFSBR系統概述 6
2.1.1系統厭氧相活性污泥反應機制及其影響因子7
2.1.2系統好氧相活性污泥反應機制及其影響因子11
2.1.3系統缺氧相活性污泥反應機制及其影響因子13
2.1.4系統再曝氣相活性污泥反應機制及其影響因子16
2.1.5系統沉澱相活性污泥反應機制及其影響因子17
2.2 CFSBR系統控制之發展18
2.2.1 傳統活性污泥程序好氧相控制方法18
2.2.1.1溶氧設定點控制18
2.2.1.2生物攝氧率與呼吸儀控制20
2.2.1.3呼吸儀控制量測原理22
2.2.2 CFSBR系統好氧相控制方法27
2.3 CFSBR系統操作問題確認28
第三章 系統原理與架構29
3.1 CFSBR系統好氧相生化反應界定29
3.1.1 CFSBR系統好氧相含碳有機物代謝假說32
3.1.2 CFSBR系統好氧相生物除氮代謝假說34
3.1.3 CFSBR系統好氧相生物除磷代謝假說37
3.2 CFSBR系統好氧相生物同時除磷去氮控制方法假說42
3.3線上即時量測系統溶氧轉換率係數與系統攝氧速率方法假說43
3.3.1系統溶氧轉換率係數之影響因子45
3.3.2系統溶氧轉換係數監測與動態曝氣方法建置52
第四章 研究設備與實驗設計 57
4.1研究設備及材料57
4.1.1連續流循序批分式活性污泥系統57
4.1.2人工廢水組成與活性污泥67
4.1.3實驗分析設備與水質分析方法71
4.2實驗設計73
4.2.1線上即時監測系統溶氧轉換率方法建立75
4.2.2線上即時監測系統攝氧速率與動態曝氣方法建立76
4.2.3 CFSBR好氧相曝氣控制策略之擬定77
4.2.4動態控制下系統基質去除率算法80
4.2.5比基質去除率計算方法81
第五章 結果與討論 83
5.1好氧相曝氣控制策略之擬定 83
5.1.1線上即時監測溶氧轉換率方程式建置 83
5.1.2線上即時監測系統攝氧率方程式建置 89
5.1.3好氧相曝氣控制策略之溶氧控制成效 90
5.2系統長期攝氧率表現關係 93
5.2.1系統馴養期狀態與攝氧率之表現 93
5.2.2系統馴養期之攝氧率變化與基質代謝關係 95
5.2.3系統穩定期微生物反應參數分析 98
5.2.4系統穩定期攝氧率整體表現分析100
5.3線上即時監測系統攝氧率方法在系統好氧相上之應用102
5.3.1 CFSBR系統好氧相控制之效益評估102
5.3.2 CFSBR系統好氧相之異常判定105
5.4 CFSBR系統整體再建立106
5.4.1 CFSBR系統概念層106
5.4.2 CFSBR系統邏輯層110
5.4.3 CFSBR系統展示124
5.5 CFSBR分散式系統攝氧率工具建置127
第六章 結論與建議 133
6.1結論 133
6.2建議 134
參考文獻 135
參考文獻 [1]卓伯全(2003),連續流循序批分式活性污泥系統好氧相即時曝氣控制策略之發展─低溶氧生物脫氮除磷程序控制技術之研究,國立中央大學環境工程研究所博士論文,6-7。
[2]陳萬原、廖述良、余瑞芳,「單槽連續流SBR廢水處理系統即時自動控制之研究」,第二十一屆廢水處理技術研討會論文集,台中(1996)。NSC-84-2211-E-008-006
[3]余瑞芳、陳萬原、廖述良、張鎮南,「類神經網路於連續流SBR廢水處理系統即時控制之應用」,第二十一屆廢水處理技術研討會論文集,台中(1996)。NSC-84-2211-E-008-006
[4]Yu, R. F., S. L. Liaw, C. N. Chang, H. J. Lu and W. Y. Cheng, “The Monitoring and Control Using On-line ORP on Continuos-flow Sludge Batch Reactor,” Water Science and Technology, Vol. 35, No. 1, pp. 57-66 (1997). NSC-84-2211-E-008-002
[5]Yu, R. F., S. L. Liaw, C. N. Chang and W. Y. Cheng, ”Enhancing the Performance of Nitrogen Removal in Continuous-flow SBR system Using Real-time Control,” Journal of the Chinese Institute of Environmental Engineering Vol. 7, No. 4, pp. 319-328 (1997). NSC-86-2211-E-008-005
[6]Yu, R. F, S. L. Liaw, C. N. Chang, and W. Y. Cheng, “Applying Real-time Control to Enhance the Performance of Nitrogen Removal in Continuous-flow SBR System,” Water Science and Technology, Vol. 38, No. 3, pp. 271-280 (1998). NSC-86-2211-E-008-005
[7]楊素禎、廖述良、余瑞芳、卓伯全、黃香賓珽,「單槽連續流回分式活性污泥系統處理動態進流污水自動控制之研究」,第二十四屆廢水處理技術研討會論文集,中壢(1999)。 NSC-86-2211-E-008-005
[8]卓伯全、廖述良、余瑞芳、楊素禎,「應用類神經網路推估硝化及脫硝反應終點之可行性研究」,第二屆環境系統分析研討會,台南(1999)。NSC-86-2211-E-008-005
[9]卓伯全、廖述良、邱柏仁、余瑞芳,「應用類神經網路輔助建立動態連續進流循序批分式活性污泥系統之即時控制策略」,第二十五屆廢水處理技術研討會論文集,雲林 (2000)。 NSC-89-2211-E-008-070
[10]Yu, R. F, S. L. Liaw, C. N. Chang, and W. Y. Chen, “Performance Enhancement of a SBR Applying Real-time Control,” J. of Environmental Engineering, ASCE, Vol. 126, No. 10, pp. 943-948 (2000). NSC-86-2211-E-008-005
[11]Cho, B. C., C. N. Chang, S. L. Liaw, P. T. Huang, “The Feasible Sequential Control Strategy of Treating High Strength Organic Nitrogen Wastewater with Sequencing Batch Biofilm Reactor,” Water Science and Technology , Vol 43, No. 3, pp. 115-122. (2000).
[12]Yu, R. F., S. L. Liaw, B. C. Cho, and S. J. Yang, “Dynamic Control of a Continuous-inflow SBR with Time-varying Influent Loading,” Water Science and Technology, Vol. 43, No. 3, pp.107-114. (2001). NSC-86-2211-E-008-005
[13]Cho B. C, S. L. Liaw, C. N. Chang, R. F. Yu, S. J. Yang and B. R. Chiou “Development of a real-time control system with artificial neural network for automatic control of a continuous-flow sequencing batch reactor.” Water Science and Technology, Vol. 44, No. 1, pp.95-104. (2001). NSC 88-2211-E008-023.
[14]邱柏仁、廖述良、卓伯全、許添財,「單槽連續流回分式活性污泥系統溶氧控制之研究」,第二十六屆廢水處理技術研討會論文集,高雄 (2001)。NSC 89-2211-E-008-070
[15]許添財、廖述良、卓伯全、林孟君、王祥洲,「連續流循序批分式活性污泥好氧相曝氣控制策略之研究—線上即時量測溶氧轉換率與需氧量方法之建立」,第二十七屆廢水處理技術研討會論文集,台北 (2002)。NSC 89-2211-E-008-070
[16]卓伯全、廖述良、許添財、林孟君、王祥洲,「連續流循序批分式活性污泥系統低溶氧生物攝磷現象之探討」,第二十七屆廢水處理技術研討會論文集,台北 (2002)。NSC 89-2211-E-008-070
[17]歐陽嶠暉,下水道工程學(2001),增改訂三版,長松文化公司。
[18]Mino T. (1987). Effect on Phosphorus Accumulation on Acetate Metabolism in the Biological Phosphorus Removal Process. In Advances in Water Pollution Control: Biological Phosphate Removal from Wastewaters. R. Ramadori (Ed.), Pergamon Press, Oxford, Eng.
[19]Comeau Y. (1987). In Advances in Water Pollution Control: Biological Phosphate Removal from Wastewaters. R. Ramadori (Ed.), Pergamon Press, Oxford, Eng.
[20]Schon G., Geywitz S and Mertens F. (1993). Influence of Dissolved Oxygen and Oxidation Reduction Potential on Phosphate Release and Uptake by Activated Sludge from Sewage Plants with Enhance Biological Phosphorus Removal. Wat. Res., 27, 3, 349-354.
[21]Peter, A.V. (2002) Principles of Respirometry in activated wastewater treatment. Universities Gent Department of Applied Mathematics, Biometrics And Process Control, 1-18.
[22]Lindberg, C.F. (1997) Control and estimation strategies application to activated sludge process. Uppsala University Department of Materials Science System and Control Group, 70-80.
[23]Rittman, B.E. and McCarty, P.L. (2000) Environmental Biotechnology: Principles and Applications. McGraw Hill.
[24]Walker, I and Davies, M. (1997) The relationship between viability and respiration rate in the activated sludge process, Water Res., Vol.11, 575-578.
[25]Huang, J. Y. C. and Mueller, J. T.(1985) Oxygen uptake rates for determining microbial activity and application, Water Res., Vol.19, 373-381.
[26]IAWQ TASK GROUP ON RESPIROMETRY.(1998), Respirometry in control of the activated sludge process : principles.30-47
[27]陳萬原、廖述良、余瑞芳,「單槽連續流SBR廢水處理系統即時自動控制之研究」,第二十一屆廢水處理技術研討會論文集,台中(1996)。NSC-84-2211-E-008-006
[28]黃香賓珽,「單槽連續流活分式活性污泥系統位生物菌項之研究」,國立中央大學土木工程研究所博士論文,2001
[29]Peter, A.V. (2002) Control of activated Sludge Wastewater Treatment by using Respirometry. Universities Gent Department of Applied Mathematics, Biometrics And Process Control, 1-18.
[30]Miloslav D., Peter N., Karol K., Igor B. and Vladislav, K.(1995) Acidobasic balance in the course of heterotrophic denitrification. Water Res., Vol.29, 1353-1360.
[31]Painter H. A. (1970). A review of literature on inorganic nitrogen metabolism in microorganisms. Wat. Res., 4, 6, 393.
[32]McCraty P. L. (1964). Thermodynamics of biological synthesis and growth. Proceedings of the 11th Int. Conf. on Water Poll. Res., Tokyo, Japan, 169-199.
[33]Susanne T. (1997). Propionate oxidation in E. Coli. Arch. Microbiol., 168, 428-436.
[34]Gaudy F. A. (1978). Microbiology of environmental scientists and engineers. McGraw-Hill Book Company: New York.
[35]Smolders G. J. F., Meiji v. d. j, Loodrecht v. M. C. M. and Heijnen J. J. (1994). Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process. Biotechnol. Bioeng., 44, 837-848.
[36]Eusip C. and RHU D. (2001). NUR and OUR relationship in BNR processes with sewage at different temperatures and its application. Water Res., Vol.35. 1748-1756.
[37]Trariq A. and Michael J.S. (2003). Gas transfer form small spherical bubble in natural and industrial system. J. environmental system, Vol.29, 101-123.
[38]Motarjemi G. and Jameson G.J. (1978) Mass transfer from very small bubbles- the optimum bubble size for aeration. Chemical Engineering Sci. Vol.32. 1415-1423.
指導教授 廖述良(Shu-Liang Liaw) 審核日期 2004-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明