博碩士論文 91326008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.191.97.85
姓名 黃秋華(Chia-Hun Huang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 焚化系統及電弧爐煉鋼廠多氯聯苯排放特性之初步探討
(Evaluation of PCBs Congener Distribution in Gas/Particle Phases in Incineration Processes and Electric Arc Furnace)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 多氯聯苯(PCBs)為環境賀爾蒙之一,近年來陸續有許多研究證實在焚化系統中會產生PCBs,本研究針對大型垃圾焚化廠(MSWI)、電弧爐煉鋼廠(EAF)及小型廢棄物焚化廠(IWI)進行煙道氣及灰渣採樣,以建立焚化系統中灰份及煙道氣中PCBs含量資料,並探討不同系統對多氯聯苯含量及物種分佈相異之處。並掌握各廠中多氯聯苯之流佈特性。
MSWI兩次採樣結果顯示該廠APCD對多氯聯苯並無明顯的去除效果;兩次採樣其PCBs物種分佈相當一致,主要優勢物種為PCB-77、118和126;就毒性當量濃度百分比而言,PCB-126為最主要之物種(90%以上),PCB-169次之,此兩種物種即佔總濃度之95%以上。EAF相同批次中,不管氧化及還原期,各採樣點PCBs濃度皆以煙道排氣中PCBs濃度低;在PCBs物種分佈方面,三個採樣點氣流中PCBs物種以PCB-77、105、118及126為主要物種;氣固相比率方面,不管氧化及還原期,氣流愈往下游固相比率有下降趨勢,顯示EAF廠中cyclone及baghouse能有效去除粒狀物,導致固相比率減少。IWI濕式EP前後固相PCBs濃度分別為16.46 ng/Nm3及3.48 ng/Nm3,固相濃度大量減少;而煙囪處氣相PCBs濃度(5.5 ng/Nm3)低於活性碳吸附塔前氣相濃度(17.9 ng/Nm3),顯示活性碳對於PCBs有吸附能力,導致氣相濃度的減少。因IWI及MSWI為焚化系統而EAF則為高溫製程系統,由三廠中煙道排氣PCBs物種分佈結果IWI與MSWI煙道排氣中PCBs分佈相似,顯示相似的焚化系統會產生相似的物種分佈;而三廠排放濃度以EAF廠最高,MSWI最低;就毒性當量濃度而言,因IWI產生毒性最高的PCB-126濃度高於其他兩廠,導致IWI毒性當量濃度為三廠中最高。
摘要(英) Previous studies indicate the industrial activities containing combustion process contribute significantly to PCB emissions. This study investigates PCB concentrations and their characteristics in stack gases and ashes in MSWI, EAF and IWI, respectively. In the MSWI investigated, the results reveal the APCD did not remove PCBs effectively. Major PCB congeners measured in flue gases include PCB-77, 118, and 126. PCB-126 accounts for more than 90% of the TEQ contributed by coplanar PCBs. If combined with PCB-169, these two non-ortho-substituted PCB accounts for more than 95% of PCB-TEQ. The PCBs concentration in stack of the EAF are the lowest among three emission sources investigated. As for the distribution between gas and particle phases, the ratios of gas/particulate phase PCBs increases as the flue gases flow downstream. Characteristics of PCB congeners distribution and removal efficiency of wet-EP and fixed carbon bed of an IWI are investigated in the study. The concentration of particle-phases PCBs at wet-EP outlet was reduced compared to that measured at wet-EP inlet. The results indicate that the particle-phase PCB concentrations are significantly reduced. Hence, wet-EP could effectively remove particulate-phase PCBs. Gas-phase PCBs the concentration at stack was lower than that at fixed carbon bed inlet. Results show that activated carbon bed could adsorb PCBs, hence reduce gas-phase PCBs. Characteristics of PCB congeners distribution of IWI and MSWI were similar. This indicates that similar processes had the similar PCBs congeners distribution. The PCBs concentration in stack of EAF was the highest among three sources investigated, while of the IWI had the highest PCBs TEQ concentration. It is attributed to the higher PCB-126 concentration measured at the IWI than other two plants.
關鍵字(中) ★ 小型廢棄物焚化廠
★ 電弧爐煉鋼廠
★ 多氯聯苯
關鍵字(英) ★ electric arc furnace
★ Polychlorinated biphenyls (PCBs)
★ industical waste incinerator
論文目次 目錄
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與範疇 3
第二章 文獻回顧 4
2.1 多氯聯苯的基本性質與特徵 4
2.1.1 多氯聯苯的物理化學特性 7
2.1.2 多氯聯苯的污染及毒性 10
2.2 多氯聯苯來源及生成機制 12
2.2.1 多氯聯苯的來源 12
2.2.2 焚化過程多氯聯苯生成機制 18
2.3 大型焚化廠、小型及電弧爐煉鋼廠多氯聯苯排放量 24
2.3.1 國外大型垃圾焚化廠多氯聯苯排放量 24
2.3.2 小型事業廢棄物焚化廠及電弧爐煉鋼廠多氯聯苯排放量 28
第三章 實驗方法 30
3.1 研究方法 30
3.2 實驗藥品及試劑 31
3.3 實驗材料與設備 32
3.4 多氯聯苯分析方法 34
3.4.1 樣品前處理 34
3.4.2 儀器分析條件之設定 42
3.4.3 滯留時間窗的建立 43
3.4.4 建立檢量線與起始校正 44
3.4.5 檢量線離子強度比與相對感應因子計算 44
3.4.6 檢量線持續校正 45
3.4.7 數據的處理 46
第四章 結果與討論 50
4.1 大型垃圾焚化廠多氯聯苯濃度排放量 50
4.1.1 大型垃圾焚化廠多氯聯苯濃度排放量 50
4.1.2 大型垃圾焚化廠多氯聯苯氣固比及濃度分佈探討 55
4.2 EAF廠多氯聯苯濃度排放量 62
4.2.1 EAF廠多氯聯苯濃度排放量 62
4.2.2 EAF廠多氯聯苯氣固相比及濃度分佈探討 65
4.2.3 EAF實廠操作參數與PCBs濃度之關係 69
4.3 小型焚化廠多氯聯苯濃度排放量 73
4.3.1 小型焚化廠多氯聯苯濃度排放量 73
4.3.2 小型事業廢棄物焚化廠多氯聯苯氣固比及濃度分佈探討 76
4.3.3 小型事業廢棄物焚化廠實廠操作參數與PCBs濃度之關係 78
4.4 各廠各種灰份中多氯聯苯濃度值 81
4.5 各廠多氯聯苯濃度分佈之比較 90
4.6 各廠多氯聯苯排放推估 100
4.6.1 大型垃圾焚化廠多氯聯苯整廠排放推估 100
4.6.2 大型垃圾焚化廠多氯聯苯排放係數 102
4.6.3 EAF廠多氯聯苯整廠排放推估 103
4.6.4 EAF廠多氯聯苯排放係數 105
4.6.5 小型事業廢棄物焚化廠多氯聯苯整廠排放推估 106
4.6.6 小型事業廢棄物焚化廠多氯聯苯排放係數 110
第五章 結論與建議 111
5.1 結論 111
5.2 建議 112
參考文獻 113
參考文獻 Alcock, R.E., Behnisch, P.A., Jones, K.C., Hagenmaier, H., “Dioxin-like PCBs in the environment – human exposure and the significance of sources”, Chemosphere 39, pp.1457~1472 (1998).
Alcock, R.E., Gemmill, R., Jones, K.C., “Improvements to the UK PCDD/F and PCB atmospheric emission inventory following an emissions measurement programme”, Chemosphere 38, pp.759~770 (1999).
Aries, E., Anderson, D.R., Ordsmith, N., Hall, K., Fisher, R., “Development and validation of a method for analysis of dioxin-like PCBs in environment samples from the steel industry”, Chemosphere 54, pp.23~31 (2004).
Buekens, A., Stieglitz, L., Hell, K., Huang, H., Seger P., “Dioxin from thermal and metallurgical processes: recent studies for the iron and steel industry”, Chemosphere 42, pp.729~735 (2001).
Bolgar, M., Cunningham, J., “Physical, spectral and chromatographic properties of all 209 individual PCB congeners”, Chemosphere 31, pp.2687~2705 (1995).
Backe, C., Larsson, P., Okla, L., “Polychlorinated biphenyls in the air of southern Sweden- spatial and temporal variation”, Atmospheric Environment 34, pp.1481~1486 (2000).
Bavel, B., Andersson, P., Takeda, N., Rappe, C., “Results from the second round of the international intercalibration on PCDDs, PCDFs and PCBs in a fly ash extract”, Chemosphere 37, pp.2077~2089 (1998).
Brunciak, P.A., Dachs, J., Gigliotti, C.L., Nelson, E.D., Eisenreic S.J., “Atmosphereic polychlorinated biphenyl concentrations and apparent degradation in coastal New Jersey”, Atmospheric Environment 35, pp.3325~3339 (2001).
Brown, J. F., Bedard, D. L., Brennan, M. J., Carnahan, J. C., Feng, H., Wagner, R. E., “Polychlorinated biphenyl dechlorination in aquatic sediments”, Science. 236, pp. 709~712 (1987).
Barber, J.L., Kurt, P.B., Thomas, G., Kerstiens, G., Jones, K., “Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plant”, Environ. Sci. Technol. 36, pp.4282~4287 (2002).
Bachmiter, K., Zell, M.,. “Analysis of polychlorinated biphenyls (PCBs) by glass capillary gas chromatography fresenius Z. Anal”, Chem., 302, pp.20~31 (1980).
Boer, J.P., de Leer, E.W.B., Gramberg, L., de Koning, J., “Levels of coplanar PCB in flue gases and their occurrence in environment samples”, Fresenius Journal of Analytical Chemistry 348, pp.163~166 (1994).
Chang, Y.S., Kong, S.B., Ikonomou, M.G., “PCBs contribution to the total TEQ released from Korean municipal and industrial waste incinerators”, Chemosphere 39, pp.2629~2640 (1999).
Cordle F, Cornelissen P, Jelinek C, “Human exposure to polychlorinated biphenyls and polybrominated biphenyls”, Environ Health Persp. 24, pp.157~74 (1978).
指導教授 張木彬(Moo-Been Chang) 審核日期 2004-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明