博碩士論文 91326012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.118.184.237
姓名 詹明月(Ming-Yueh Chan)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 黏土中交換性陽離子催化加氯副產物之研究
(The study of Disinfection by-products(DBPS) catalyed by exchangable cations of clay)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 淨水程序中有機污染物之氯化機制相當複雜,且很可能受到原水中共同存在之黏土物質或陽離子催化的影響而加強其作用。本研究群過去已針對幾種含不同交換性陽離子之黏土進行氯化產物探討,但對於不同量交換性陽離子黏土及不同型態交換性陽離子催化機制,則尚待更多瞭解與釐清,故本研究嘗試控制不同的置換因子,製備具不同飽和度的土壤,以腐質酸及高分子凝聚劑作為催化過程所需的有機物,以一連串之批次實驗進行分析探討,來釐清含不同量交換性陽子離子之黏土的催化機制,實驗結果並與不同型態陽離子之氯化產物相比較,以期瞭解更多交換性陽離子的催化機制,藉以深入探討水中懸浮微粒催化原水中天然腐植質氯化反應時之行為及其反應機制。
不同金屬陽離子黏土催化氯化反應後之消毒副產物生成總量依序為:鈦-蒙特石>鐵-蒙特石>銅-蒙特石>錳-蒙特石>鈣-蒙特石,不同自由態金屬陽離子,催化所得消毒副產物之生成量多寡依序為TiCl4 > FeCl3 > FeCl2 > CuCl2 >MnCl2 > CaCl2>CuCl,研究結果顯示,不論是在不同金屬陽離子黏土或是自由態金屬陽離子的催化,催化能力均深受金屬陽離子本身的特性影響,其中均以含鈦離子之催化效果最佳,推估主要因為鈦離子之價軌域為3d04S0,含有較多空的d軌域,因而提供有機物電子較多的反應位置,使得催化效果較佳。另外催化隨著土壤克數的增加,催化所生成的消毒副產物也隨之增加,置換率的提升有也住於消毒副產物生成量的提升,但整體而言金屬種類的影響大於飽和度的影響。
摘要(英) The mechanism of organic compound chlorination during drinking water purification process is complicated. General speaking, in presence of cation in either clay or solution may cause a significant increase in formation of disinfection by-products(DPBs). In our earlier studies, the effects of the different exchangeable cations on clay surface to catalyze chlorinated reaction of organic compounds have ever been elucidated. However, the importance for the exchangeable cation amount in the chlorination reaction needs to be described further. For this reason, the montmorillonite with Ca2+ exchanged by different amounts of cation, including Cu2+, Fe3+,and Ti4+, was employed as the catalyst to examine the product using the NaOCl chlorination humic acid or polymer under a series of batch experiments. A comparable result between cation on the montmorillonite and free cation in the solution was observed to discuss the mechanism of organic compound chlorination.
The results indicated that the total formation potential of disinfection by-products (DBPs) for cation-montmorillonite is in the following order :Ti-Mont> Fe-Mont> Cu-Mont> Mn-Mont> Ca-Mont. For the free cation, the order is TiCl4 > FeCl3> FeCl2> CuCl2> MnCl2 >CaCl2> CuCl. The similar result was attributed to that the transition-mental cations process an empty d-orbital, especially in a higher valence state, to act as strong Lewis acid sites and electron acceptors, leading to higher valence state, on the other hand, although the higher amount of the exchange cation can promote the DBPs, the increase trend is unapparent relative to different metal species. The result can be concluded that cation species on the clay is a dominant factor due to they offer a catalytic center where the reaction occur
關鍵字(中) ★ 不同表面特性黏土
★ 表面催化
★ 消毒副產物
★ 氯化反應
關鍵字(英) ★ chlorination
★ clay
★ catalysis
★ disinfection by-products (DBPs)
論文目次 目 錄………………………………………………………………….. I
圖目錄………………………………………………………………….. IV
表目錄………………………………………………………………….. Ⅶ
第一章 前言………………………………………………………….. 1
1-1 研究緣起……………………………………………………. 1
1-2 研究目的與內容……………………………………………. 2
第二章 文獻回顧…………………………………………………….. 4
2-1 有機物之氯化反應…………………………………………. 4
2-1-1水中之氯化反應…………..………………….……... 4
2-1-2 水體中有機物……..………………………….…….. 7
2-1-2-1天然有機物及腐植酸………………………….. 7
2-1-2-2高分子凝聚劑………………………………….. 11
2-1-3 氯與水中有機污染物的反應………………………. 16
2-2 黏土與有機物之作用………………………………………. 20
2-2-1表面反應介紹……………………………….…….. 20
2-2-2黏土表面各種狀況………………………………….. 21
2-2-3影響黏土表面反應之因子…………………………... 22
2-2-4黏土礦物與有物間各表面反應之作用機制…….….. 23
2-2-4-1氧化反應和電荷轉移反應……………….…… 24
2-2-4-2氧化聚合反應………………………………….. 25
2-2-4-3重排反應……………………………….….…... 26
2-2-4-4水解反應………………………………….…... 27
2-2-4-5其 它…………………………………………… 27
2-3 金屬陽離子與有機物之作用………………………………. 29
2-3-1金屬陽離子對氯化反應的催化效益………………... 29
目 次 頁次
2-3-2金屬離子的催化機制………………………………... 29
2-4 消毒副產物…………………………………………………. 31
2-4-1揮發性之消毒副產物………………………………... 34
2-4-2非揮發性之消毒副產物—鹵化乙酸………………... 35
第三章 實驗設備、材料與方法………………..…………………….. 37
3-1 實驗架構及內容………………….………………………… 37
3-2 實驗材料………………………………….………………… 39
3-2-1催化劑………………………………………………... 39
3-2-1-1土樣…………………………………………….. 39
3-2-1-2氧金屬氯化物………………………………….. 40
3-2-2有機物………………………………………………... 41
3-2-3氯劑…………………………………………………... 41
3-3 實驗設備……………………………….…………………… 42
3-3-1前處理設備…………………………………………... 42
3-3-2水中揮發性有機物之分析設備……………………... 44
3-4 實驗方法……………………………….…………………… 48
3-4-1含過渡金屬陽離子黏土製備與性質分析…………... 48
3-4-1-1含過渡金屬陽離子黏土製備………………….. 48
3-4-1-2不同表面特性黏土交換性陽離子含量分析….. 51
3-4-1-3不同表面特性黏土表面積及孔隙值測定…….. 56
3-4-2催化劑催化水中有機物之氯化反應………………... 56
3-4-3水中揮發性有機物之分析…………………………... 59
3-4-4水中餘氯測定………………………………………... 65
第四章 結果與討論………………………………………………….. 67
4-1 土壤基本性質………………………….…………………… 67
4-1-1不同表面特性黏土交換性陽離子飽和度……….….. 67
目 次 頁次
4-1-2不同表面特性黏土特性分析…………………….….. 68
4-2 不同表面特性黏土之消毒副產物生成量…………………. 71
4-2-1含不同交換性陽離子之蒙特石,在不同置換氯化消
毒副產物之產生………………………………..….... 71
4-2-1-1以腐植酸作為有機質之氯化反應…………….. 72
4-2-1-2以高分子凝聚劑作為有機質之氯化反應…….. 78
4-2-2黏土的催化機制……………………………………... 82
4-3 不同表面特性黏土之消毒副產物生成物種………………. 84
4-4 自由態金屬陽離子之消毒副產物生成量…………………. 97
4-4-1自由態金屬陽離子催化有機質之消毒副產物生成
量……………………………………………………. 97
4-4-1-1以腐植酸作為有機質之氯化反應…………….. 99
4-4-1-2以高分子凝聚劑作為有機質之氯化反應……. 100
4-5 自由態金屬陽離子之消毒副產物生成物種………………. 103
第五章 結論與建議………………………………………………… 114
5-1 結論…………………………………………………………. 114
5-2 建議…………………………………………………………. 115
參考文獻……………………………………………………………….. 117
圖 目 錄
目 次 頁次
圖2-1 15℃,µ=0.1,HOCl-OCl-之pC-pcH……………………….. 6
圖2-2 有機質之分離流程圖……………………………………….. 9
圖2-3 Stevenson [12]所推估的腐質酸結構式……………………… 10
圖3-1 研究流程圖………………………………………………….. 38
圖3-2 蒙特石結構示意圖…………………….................................. 39
圖3-3 水中揮發性有機物之分析設備示意圖……………….......... 47
圖3-4 含過渡金屬黏土樣品製備圖………………………....…….. 50
圖3-5 土壤王水消化流程圖………………………………………... 53
圖3-6 土壤氫氟酸消化法流程圖…………………...……………… 55
圖3-7 氯化反應步驟……………………...………………………… 58
圖3-8 GC/MS AutoTune 之結果…………………...……………… 64
圖4-1 鈦-蒙特石層間隙示意圖…………………………………… 70
圖4-2 不同交換性金屬陽離子催化腐質酸氯化反應之消毒副產物生成量………………….…………………………………. 74
圖4-3 低飽和度金屬陽離子催化腐質酸氯化反應之消毒副產物
生成量……………………………………………………….. 77
圖4-4 高飽和度金屬陽離子催化腐質酸氯化反應之消毒副產物生成量……….…................................................................... 77
圖4-5 陽離子性高分子凝聚劑結構式……………………….......... 78
圖4-6 不同交換性金屬陽離子催化高分子凝聚氯化反應之消毒
副產物生成量………………………...................................... 80
圖4-7 低飽和度金屬陽離子催化高分子凝聚劑氯化反應之消毒副產物生成量………………….……………………………. 81
圖4-8 高飽和度金屬陽離子催化高分子凝聚劑氯化反應之消毒
副產物生成量…………………..………................................ 81
圖4-9 無黏土催化下高分子凝聚劑產生DBPs物種比例圖……… 86
圖4-10 鈣-蒙特石催腐植酸產生DBPs物種比例圖……………… 86
圖4-11 錳-蒙特石7.95%催腐 植酸產生DBPs物種比例圖……… 86
圖4-12 錳-蒙特石53.47%催腐植酸產生DBPs物種比例圖…… 86
圖4-13 銅-蒙特石8.48%催化腐植酸產生DBPs物種比例圖…… 87
圖4-14 銅-蒙特石52.03%催化腐植酸產生DBPs物種比例圖…. 87
圖4-15 鐵-蒙特石7.32%催化腐植酸產生DBPs物種比例圖…… 87
圖4-16 鐵-蒙特石99.9%催化腐植酸產生DBPs物種比例圖…… 87
圖4-17 鈦-蒙特石8.31%催化腐植酸產生DBPs物種比例圖…… 88
圖4-18 鈦-蒙特石99.9%催化腐植酸產生DBPs物種比例圖…… 88
圖4-19 無黏土催化下高分子凝聚劑產生DBPs物種比例圖…… 88
圖4-20 鈣-蒙特石催化高分子凝聚劑產生DBPs物種比例圖…… 88
圖4-21 錳-蒙特石7.95%催化高分子凝聚劑產生DBPs物種比例
圖…………………………………………………………… 89
圖4-22 錳-蒙特石53.47%催化高分子凝聚劑產生DBPs物種比
例圖………………………………………………………… 89
圖4-23 銅-蒙特石8.48%催化高分子凝聚劑產生DBPs物種比例
圖…………………………………………………………… 89
圖4-24 銅-蒙特石52.03%催化高分子凝聚劑產生DBPs物種比
例圖………………………………………………………… 89
圖4-25 鐵-蒙特石7.32%催化高分子凝聚劑氯化反應產物生成比
例圖………………………………………………………… 90
圖4-26 鐵-蒙特石99.9%催化高分子凝聚劑氯化反應產物生成比
例圖….……………………………………………………... 90
圖4-27 鈦-蒙特石8.31%催化高分子凝聚劑氯化反應產物生成比
例圖………………………………………………………… 90
圖4-28 鈦-蒙特石99.9%催化高分子凝聚劑氯化反應產物生成比
例圖………………………………………………………… 90
圖4-29 自由態離子催化腐質酸之消毒副產物生成量…………… 100
圖4-30 自由態離子催化高分子凝聚劑之消毒副產物生成量…… 101
圖4-31 0.1克交換當量催化劑催化高分子凝聚劑氯化反應之消
毒副產物生成量…………………………………………… 102
圖4-32 0.2克交換當量催化劑催化高分子凝聚劑氯化反應之消
毒副產物生成量…………………………………………… 102
圖4-33 0.3克交換當量催化劑催化高分子凝聚劑氯化反應之消
毒副產物生成量…………………………………………… 102
圖4-34 無黏土催化腐植酸產生DBPs物種比例圖………………. 104
圖4-35 CaCl2催化腐植酸產生 DBPs物種比例圖……………….. 104
圖4-36 CuCl催化腐植酸產生DBPs物種比例圖………………… 104
圖4-37 CuCl2催化腐植酸產生DBPs物種比例圖……………….. 104
圖4-38 FeCl2催化腐植酸產生DBPs物種比例圖………………… 105
圖4-39 FeCl3催化腐植酸產生DBPs物種比例圖………………… 105
圖4-40 MnCl2催化腐植酸產生DBPs物種比例圖………………... 105
圖4-41 TiCl4催化腐植酸氯化反應產生DBPs物種比例圖……… 105
圖4-42 無黏土催化高分子凝聚劑產生DBPs物種比例圖………. 106
圖4-43 CaCl2催化高分子凝聚劑產生DBPs物種比例圖………… 106
圖4-44 CuCl催化高分子凝聚劑產生DBPs物種比例圖………… 106
圖4-45 CuCl2催化高分子凝聚劑產生DBPs物種比例圖………… 106
圖4-46 FeCl2催化高分子凝聚劑產生DBPs物種比例圖………… 107
圖4-47 FeCl3催化高分子凝聚劑產生DBPs物種比例圖………… 107
圖4-48 MnCl2催化高分子凝聚劑產生DBPs物種比例圖……….. 107
圖4-49 TiCl4催化高分子凝聚劑產生DBPs物種比例圖………… 107
表 目 錄
目 次 頁次
表2-1 水體天然有機物的組成……………………………………... 8
表2-2 利用13C NMR方法分析腐質酸與黃酸的官能基…………. 11
表2-3 美國環保署公告可用於飲用水處理之高分子聚合物種類.. 15
表2-4 消毒副產物的形態與種類…………………………………... 32
表2-5 有機物與消毒副產物的關係……………………………….. 33
表3-1 Purge& Trap與GC/MS分析操作條件…………………….. 46
表3-2 製備不同置換率土壤之反應條件………………………….. 51
表3-3 五十四種標準品的物化特性……………………………….. 60
表3-4 五十四種標準品的定性定量離子………………………...... 61
表3-5 質量之相對感應強度可接受質………………….................. 63
表4-1 黏土表面之過渡金屬陽離子置換…………………………... 68
表4-2 不同表面特性黏土之表面積及孔隙性質………………….. 70
表4-3 各金屬陽離子之價軌域…………………………………….. 72
表4-4 不同飽和度金屬陽離子黏土催化腐植質氯化反應二十四小時總量統計表.................................................................... 73
表4-5 不同飽和度金屬陽離子黏土催化高分子凝聚劑氯化反應二十四小時總量統計表.......................................................... 79
表4-6 0.1克之不同飽和度金屬陽離子黏土催化腐植質氯化反應生成物種統計表………………….......................................... 91
表4-7 0.2克之不同飽和度金屬陽離子黏土催化腐植質氯化反應生成物種統計表…………………………………………….. 92
表4-8 0.3克之不同飽和度金屬陽離子黏土催化腐植質氯化反應生成物種統計表…………………………………………….. 93
表4-9 0.1克之不同飽和度金屬陽離子黏土催化高分子凝聚劑氯化反應生成物種統計表…………………………………….. 94
表4-10 0.2克之不同飽和度金屬陽離子黏土催化高分子凝聚劑氯化反應生成物種統計表………………………………… 95
表4-11 0.3克之不同飽和度金屬陽離子黏土催化高分子凝聚劑氯化反應生成物種統計表………………………………… 96
表4-12 自由態金屬陽離子催化有機質氯化反應總量統計……… 98
表4-13 0.1克交換當量之自由態金屬陽離子催化腐植質氯化反應生成物種統計表………………………………………… 108
表4-14 0.2克交換當量之自由態金屬陽離子催化腐植質氯化反應生成物種統計表………………………………………… 109
表4-15 0.3克交換當量之自由態金屬陽離子催化腐植質氯化反應生成物種統計表………………………………………… 110
表4-16 0.1克交換當量之自由態金屬陽離子催化高分子凝聚劑氯化反應生成物種統計表………………………………… 111
表4-17 0.2克交換當量之自由態金屬陽離子催化高分子凝聚劑氯化反應生成物種統計表………………………………… 112
表4-18 0.3克交換當量之自由態金屬陽離子催化高分子凝聚劑氯化反應生成物種統計表………………………………… 113
參考文獻 1. Rook, J. J., “Formation of Haloforms During Chlorination of Natural Waters,” Water Treatment Exam., 23 (5), pp.234-242 (1974).
2. Ueno, H., T. Moto, Y. Sayato, and K. Nakamuro, “Disinfection By-Products in the Chlorination of Organic Nitrogen Compounds: By-Products form Kynurenine,” Water Science and Technology, 33 (8), pp.1425-1433 (1996).
3. Zhou, S. W., F. D. Xu, S. M. Li, R. X. Song, S. Qi, Y. Zhang, and Y. P. Bao, “Major Origin of Mutagneicity of Chlorinated Drinking Water in China: Humic Acid or Pollutants,” The Science of the Total Environment, 196, pp.191-196 (1997).
4. Lee, J. F., M. P. Liao, H. D. Tseng, and T. P. Wen, “Behavior of Organic Polymers in Drinking Water Purification,” Journal of Chemosphere, 37(6), pp.1045-1061 (1998).
5. 彭紀綸,「不同表面特性黏土於淨水程序中對高分子凝聚劑氯化反應影響之研究」,碩士論文,中央大學環境工程研究所,中壢(1999)。
6. 林百顯,「不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究」,碩士論文,中央大學環境工程研究所,中壢(2000)。
7. Biber, M. V., F. O. Gulacar, and J. Buffle, “Seasonal Variations in Principal Groups of Organic Matter in a Eutrophic Lake Using Pyrolysis /GC/MS,” Environment Science and Technology, 30(12), pp.3501-3607 (1996).
8. Singer, P. C., “Humic Substances as Precursors for Potentially Harmful Disinfection By-Products,” Water Science and Technology, 40(9), pp.25-30 (1999).
9. Jansen, S. A., M. Malaty, S. Nwabara, E. Johenson, E. Ghabbour, G. Davies and J. M. Varnum, “Structural Modeling in Humic acid,” Materials Science and Engineering C4, pp.175-179 (1996).
10. Scheck, C. K. and F. H. Frimmel, “Degradation of Phenol and Salicylic Acid by Ultraviolet Radiation/Hydrogen Peroxide /Oxygen,” Wat. Res., 29(10), pp. 2346-2352 (1995).
11. Bohn et al., “ Soil Chemistry” : 142, Wiley , New York, 1985.
12. Stevenson, F. J., “ Human Chemistry Genesis, Composition, Reactions”, Wiley, J and Sons, Inc, pp. 337-354 (1982).
13. Reckhow, D. A., P. C. Singer., R. L. Malcolm, “Chlorination of Humic Materials: Byproduct Formation and Chemical Interpretations,” Environment Science and Technology, 24(11), pp.1655-1664 (1990).
14. Wu, W. W., P. A. Chadik, W. M. Davis, J. J. Delfino and D. H. Powell, “The Effect of Structural Characteristics of Humic Substances on Disinfection By-Product Formation in Chlorination,” Natural Organic Matter and Disinfection By-Products, New York, pp.109-121 (2000).
15. Cook, R. L., and C. H. Langford, “Structural Characterization of a Fulvic Acid and a Humic Acid Using Solid-State Ramp-CP-MAS 13C Nuclear Magnetic Resonance,” Environment Science and Technology, 32(5), pp.719-725 (1998).
16. Croll, B. T., Arkell, G. M. and R. P. J. Hodge, “Residues of Acrylamide in Water”, Water Research, Vol.8, pp.989~993(1974)
17. Singer, P. C. and S. D. Chang, “Correlations Between Trihalomethanes and Total Organic Halides Formed During Water Treatment”, Journal of American Water Work Association (Research and Technology), pp.61~65(1989)
18. Stump, V.L. and J.T. Novak, “Polyelectrolyte Selection for Direct Filtration”, Journal of AWWA, No.71, pp.338~342(1979)
19. Li, G. B. and J. Gregory, “Flocculation and Sedimentation of High Turbidity Waters”, Water Research, Vol.25, No.9, pp.1137~1143(1991)
20. Narkis, N., Ghattas, B., Rebhun, M. and A. J. Rubin, “The Mechanism of Flocculation with Aluminium Salts in Combination with Polymetric Flocculants as Flocculants Aids”, Water Supply, Vol.9, pp.37~44, (1991)
21. Let erman, R. D. and R. W. Pero, “Contaminants in Polyelectrolytes Used in Water Treatment”, Journal of AWWA, pp.87~97, November (1990)
22. Bellar T. A. and J. J. Lichtenberg, “The Occurrence of Organohalides in Chlorinated Drinking Waters,” J. AWWA, pp. 703-706 (1974).
23. Christman, R. F., D. L. Norwood, D. S. Millington, J. D. Johnson, “Identity and Yields of Major Halogenated Products of Aquatic Fulvic Acid Chlorination,” Environment Science and Technology, 17(10), pp.625-631 (1983).
24. 李敏華譯著,水質化學,復漢出版社印行,第401-406頁,1992。
25. Li, C. W., M. M. Benjamin, G. V. Korshin, “Use of UV Spectroscopy to Characterize the reaction Between NOM and Free Chlorine,” Environment Science and Technology, 34(12), pp.2570-2575 (2000).
26. Voudrias, E. A. and M. Reinhard, “Abiotic Organic Reactions at Mineral Surfaces,” Amer. Chem. Soc. Sympos. Ser, 323, pp.462-486 (1986).
27. Pickering, W. F., “Heterogeneous Oxidation Reactions,” Rev. Pure Appl. Chem, 16, pp.185-208 (1966).
28. Hawthorne, D. G. and D. H. Solomon , “Catalytic Activity of Sodium Kaolinites,” Clays. Clay Minerals, 20, pp.75-78 (1972).
29. Solomon, D. H. and H. H. Murray, “Acid-Base Interactions and the Properties of Kaolinite in Non-aqueous Media,” Clays. Clay Minerals, 20, pp.135-141 (1972).
30. Bailey, G. W. and S. W Karickhoff, “An Ultraviolet Spectroscopic Method for Monitoring Surface Acidity of Clay Minerals under Varying Water Content,” Clays. Clay Minerals, 21, pp.471-478 (1973).
31. Frenkel, M., “Surface Acidity of Montmorillonite,” Clays. Clay Minerals, 22, pp.435-442 (1974).
32. Helsen, J. A.; R. Drieskens, and J.Chaussidon, “Position of Exchangeable Cations in Montmorillonite,” Clays. Clay Minerals, 23, pp.334-335 (1975).
33. Hasegawa, H., “Spectroscopic Studies on the Color Reaction of Acid Clay with Amines,” J. Phys. Chem., 66, pp.834-835 (1962).
34. Furukawa, T. and G. W. Brindley, “Adsorption and Oxidation of Benzidine and Aniline by Montmorillonite and Hectorite,” Clays. Clay Minerals, 21, pp.279-287 (1973).
35. Thompson, T. D. and W. F. Moll, “Oxidative Power of Smectites Measured by Hydroqunone,” Clays. Clay Minerals, 21, pp.337-350 (1973).
36. Lahav, N. and D. M. Anderson, “Montmorillonite-benzidine Reactions in the Frozen and Dry States,” Clays. Clay Minerals, 21, pp.137 (1973).
37. Besson, G.; H. Estrade,; L. Gatineau,; C. Tchoubar, and J. Mering, “A kinetic Survey of The Cation Exchange and The Oxidation of A Vermiculite,” Clays. Clay Minerals, 23, pp.318-322 (1975).
38. Uytterhoeven, J., “Organic Derivatives of Silicates and Aluminosilicates,” Silicates Inds., 25, pp.403-409 (1960).
39. Uytterhoeven, J., “Determination of the Surface Hydroxyl Groups of Kaolinite by Organometallic Compounds (CH3MgI and CH3Li),” Bull. Groupe Franc. Argiles., 13, pp.69-76 (1962).
40. Solomon, D. H., “Clay Mineral as Electron Acceptors and/or Electron Donors in Organic Reactions,” Clays. Clay Minerals, 16, pp.31-39 (1968).
41. Yariv, S. and H. Cross, “Geochemistry of Colloid System,” Springer Verlag:Berlin (1979).
42. Mortland, M. M. and K. V. Raman, “Surface Acidity of Smectites in Relation to Hydration, Exchangeable Cation, and Structure,” Clays. Clay Minerals, 16, pp.393-398 (1968).
43. Mortland, M. M., “Proceedings of the International Clay Conference,” Wilmette, Illinois (1975).
44. Soma, Y. and M. Soma, “Raman Spectroscopic Evidence of Fromation of p-Dimethoxybenzene Cation on Cu-Montmorillonites,” Chem. Phys. Letters, 94, pp.475-478 (1983).
45. Soma, Y. and M. Soma, “Reaction of Aromatic Molecules in the Interlayer of Transition-Metal Ion-Exchanged Montmorillonite Studied by Resonance Raman Spectroscopy. 2. Monosubstituted Benzene and 4,4’-Disubstituted Biphenyls,” J. Phys. Chem., 89, pp.738-742 (1985).
46. Frenkel, M. and L. Heller-Kallai, “Interlayer Cations as Reaction Directors in the Transformation of Limonene on Montmorillonite,” Clays. Clay Minerals, 31, pp.92-96 (1983).
47. Solomon, D. H., B. C. Loft, and J. D. Swift, “Reactions Catalyzed by Minerals. IV. The Mechanism of the Benzidine Blue Reaction on Silicate Minerals,” Clay Miner., 7, pp.289-398 (1968).
48. Furukawa, T. and G. W. Brindley, “Adsorption and Oxidation of Benzidine and Aniline by Montmorillonite and Hectorite,” Clays. Clay Minerals, 21, pp.279-288 (1973).
49. Isaacson, P. J. and B. L. Sawhney, “Sorption and Transformaiton of Phenols on Clay Surface:Effect of Exchangeable Cations,” Clay Minerals, 18, pp.253-265 (1983).
50. Sawhney, B. L., “Vapor-Phase Sorption and Polymerization of Phenols by Semectite in Air Nitrogen,” Clays. Clay Minerals, 33, pp.123-127 (1985).
51. Shindo, H. and P. M. Huang, “Catalytic Polymerization of Hydroquinone by Primary Minerals,” Soil Science, 139, pp.505-511 (1985).
52. Wang, Thomas S. C., L. S. Wu and F.Y. Lang, “Catalytic Polymerization of Phenoilic Compoinds by Primary Minerals,” Soil Science, 126, pp.15-21 (1978).
53. Philp. R. P., J. R. Maxwell, and G. Eglinton, “Environmental Geochemistry of Aquatic Sediments,” Sci. Progr. (Oxf.), 63, pp.521-545 (1976).
54. Sieskind, O. and P. Albrecht, “Efficient Synthesis of Rearranged Cholest-13(17)-enes Catalysed by Montmorillonite Clay,” Tetrahedron Lett., 26, pp.2135-2136 (1985).
55. Mingerlgrin, U. and S. Salzman, “Surface Reactions of Parathion on Clays,” Clays. Clay Minerals, 27, pp.72-78 (1979).
56. March, J., “Advanced Organic Chemistry, Reactions, Mechanisms, and Structure,” 3rd. Ed. ; John Wiley & Sons : New York (1985).
57. El-Amamy, M. M. and T. Mill, “Hydrolysis Kinetics of Organic-Chemicals on Montmorillonite and Kaolinite Surfaces As Related to Moisture-Content,” Clays. Clay Minerals, 32, pp.67-73 (1984).
58. Saltzman, S., U. Mingelgrin, and B. Yaron, “Role of Water Hydrolysis on Parathion and Methylparathion on Kaolinite,” J. Agric. Food Chem., 24, pp.739-743 (1976).
59. Solomon, D. H. and G. H. Hawthorne, “Chemistry of Pigmers and Fillers,” John Wiley & Sons : New York (1983).
60. Alexander, O., R. I. Kagi, and A. V. Larcher, “Clay Catalysis of Aromatic Hydrogen-Exchange Reactions,” Geoshim. Cosmochim. Acta., 46, pp.219-222 (1982).
61. Alexander, O., R. I. Kagi, and A. V. Larcher, “Clay Catalysis of Alkyl Hydrogen-Exchange Reactions - Reaction-Mechanisms,” Org. Gesmochim., 6, pp.755-760 (1984).
62. .Thmopson, T. D. and W. F. Moll, “ Oxidative Power of Semctites Measured by Hydroquinone,” Clays. Clay Minerals, 21, pp.337-350 (1973).
63. Soma, Y., M. Soma, and I. Harada, “The Oxidative Polymerization of Aromatic Molecules in the Interlayer of Montmorillonites Studuied by Resonance Raman Spectroscopy,” J. Contaminant Hydrology, 1, pp.95-106 (1986).
64. Sawhney, B. L., R. K. Kozloski, P. J. Isaacson, and M. P. N. Gent, “Polymerization of 2,6-Dimethylphnol on Smectite Surfaces,” Clays. Clay Minerals, 32 (2), pp.108-114 (1984).
65. Lee, G. F., “Kinetics of Reactions Between Chlorine and Phenolic Compounds,” principles and applications of water chemistry, S. D. Faust and J. V. Hunted, eds., John Wiley, New York (1967).
66. Scully FE, Howell GD, speed M, “ Effects of copper(Ⅱ) on the production of trihalomethanes in model and natural waters”, In: Jolley RL, editor. Water chlorination: environmental impact and health wffwcts, vol.6. Am Arbor, MI: Ann Arbor Science; 1987.p.703-29712.
67. Barnes D, Fitzgerald PA, Swan HB. “Catalyzed formation of chlorinated organic materials in water”, Water Sci. Technol.,1989;21(2):59-63
68. Morland,M.M.,Urea complexes with montmorillonite: “An Infrared Absorption Study”, Clay Minerals,6,pp.143-156,1996
69. Sawhney,B.L. “Vapor-Phase Sorption and Polumerization of Phenols by Smectite in Air and Nitrogen”, Clay Minerals, Vol.33, pp.234-239, 1974
70. Pampillon, J. F., Palacios, M.,and M. E. Rodriguez, “Organolhalogenated Compounds Levels in Chlorinated Drinking Water and Current Compliance with Quality Standards Throughout the European Union”,Wat.Res.Vol.34,No.3,pp.1002-1016,2000
71. HDR Engineering Inc., Handbook of Public Water Syserms, 2nd ED, John Wiley & Sons, United States of America, pp. 78 (2001).
72. Peters, R. H., W. B. Leer, F. M. Versteegh, “Identification of Halogenated Compounds Produced By Chlorination of Humic Acid in the Presence of Bromide,” Journal of Chromatography A, 686, pp.253-261 (1994).
73. De Nevers N., Air Pollution Control Engineering, Mc Graw-Hill, Singapore, (1995).
74. Peters R. J. B., C. Erkelens, E. W. B. De Leer, and L. De Galan, “The Analysis of Halogenated Acetic Acids in Dutch Drinking Water,” Water Research, 25, pp.473-477 (1991).
75. Buytenhuys F. A., “Ion Chromatography of Inorganic and Organic Ionic Species Using Refractive Index Detection,” J. Chromatogr., 218, pp.57-64 (1981).
76. .Buytenhuys F. A., “Ion Chromatography of Inorganic and Organic Ionic Species Using Refractive Index Detection,” J. Chromatogr., 218, pp.57-64 (1981).
77. Yuefeng X., J. Z. Haojiang, and P. R. Joseph, “Development of a Capillary Electrophoresis Method for Haloacetic Acid,” Natural Organic Matter and Disinfection By-Products, pp.139-153 (2000).
78. Pfeifer, P.; Krim, J.; Wu, Y. J. and M. W. Cole, “Multilayer Adsorption on a Fractally Rough-Surface ”,Physcial Review Letters, Vol.62, No.17, pp.1997-2000(1989)
79. Pfeifer, P. and M. W. Cole, “Fractals in Surface Science - Scattering and Thermodynamics of Adsorbed Films .2 ”,New Journal of Chemistry, Vol.14, No.3, pp.221-232( 1990)
80. Neimark, A. V. “A New Approach to the Determination of the Surface Fractal Dimension of Porous Solids, ”Physical A, Vol.191, pp.258-262 (1992)
81. Kohki, E., k. Tomonori, N. Kohji, M. Tomoo, and K. Kaneda, “Simple and clean syntheses of 9,9-bis{4-(2-hydroxyethoxy)phenyl}fluorine from the aromatic alkylation of phenoxyrthanol with fluoren-9-one catalysed by titanium cation-exchanged montmorillonite , ”Green Chemistry,2,2pp.157-160(2000)
82. Solomon, D. H.; Loft, B. C. and J. D. Swift, “Reactions Catalyzed by Minerals. IV. The Mechanism of the Benzidine Blue Reaction on Silicate Minerals” ,Clay Miner., Vol.7, pp.289-398(1968)
83. Solomon, D. H.; Loft, B. C. and J. D. Swift, “Reactions Catalyzed by Minerals. V. The Reaction of Leuco Dyes and Unsaturated Organic Compounds with Clay Minerals”, Clay Miner., Vol.7, pp.399-408 ( 1968)
84. Thomas, S. C.; Wang, S. W. L. and L. F. Yue, “Catalytic Polymerization of Phenolic Compounds by Clay Minerals”, Soil Science, Vol.126, No.1, pp.15-21( 1978)
指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2004-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明