博碩士論文 91346003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.149.255.10
姓名 陳志維(Chih-wei Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 非熱電漿技術液相殺菌之研究
(Inactiviation of Aquatic Microorganisms by Nonthermal Plasma Technology)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了避免飲用水受微生物污染,原水在飲用之前應當經過消毒及過濾除臭的程序,但是目前並沒有一套統一最有效的淨水處理法廣為世界各國所採納。
近年來廢水的高級氧化技術(AOTs)越來越受到重視且蓬勃發展,特別是針對殺菌及生物難分解污染物的去除方面。高級氧化程序種類很多,其中,非熱電漿技術在廢水處理的應用已被廣泛的應用於食品或液體的殺菌、大氣的殺菌及去除有害化學物質。本研究將以非熱電漿技術進行液體的殺菌研究,並分別以兩種電源供應器(A C及脈衝式電源供應器),利用氣-液混合式反應器對大腸桿菌及酵母菌進行實驗。
AC液相電漿實驗結果,發現刷對面的實驗結果比針對面的實驗具有較佳的殺菌效果,可能是刷狀電極在放電的過程中,產生較多的震波及自由基生成而使其殺菌效果較佳。AC (13 kV, 60 Hz)及脈衝式液相電漿技術(10 kV, 30 Hz)對於革蘭氏陰性菌(大腸桿菌)的殺菌效果較真菌(酵母菌)佳。AC及脈衝式液相電漿的放電過程,pH值均會下降 (放電15分鐘,pH由6.9降至4),但是其在電漿系統中的殺菌效能不大。AC及脈衝式液相電漿實驗發現放電前後大腸桿菌似乎有突變的情形發生,而且都造成環境適應力的上升。
超音波輔助電漿的加成效應只發生在無曝氣的純液相系統,曝氣時則不會發生。加成效應並不會發生於氣-液混合式的反應器,無論有無曝氣都不會發生。微生物的物種也不會影響加成效應的發生與否。造成加成效應的可能機制,為超音波處理時會造成空穴現象,此現象會生成小氣泡,而在超音波輔助電漿中,放電比較容易發生在氣泡中,因為氣泡中的電場強度是液體中的數百倍,也因此造成了加成效應,進而提升了殺菌效率。
超音波輔助電漿將可能是未來殺菌的新技術,相信此技術將可為廢污水及食物的殺菌效能帶來更大的提升。
摘要(英) Disinfection techniques have been utilized to killing microorganisms in water treatments to prevent diseases. Recently, AOTs technologies have been developed for killing microbes. Nonthermal plasma is one of AOTs technologies and it can be applied for sterilization and degrading chemical.
Hybrid gas-liquid electrical discharge has been investigated in recent years as an innovative technology for contaminated water treatment. A high-voltage pulsed power supply is commonly needed for generation of electrical discharges. One of this study aims, in lieu of cost effectiveness, to evaluate the degradation efficiency of electrical discharges with alternating current (AC) power since it is generally cheaper than a pulsed one. An AC power supply with a fixed voltage of 13 kV and a fixed frequency of 60 Hz is therefore adopted in this study for inactivation of aquatic microorganism. Pulsed electrical discharge (10 kV, 30 Hz) was also produced to kill E. coli and Yeast in water. The time courses of pH, conductivity and inactivation efficiency were determined in a hybrid gas-liquid reactor. The obtained results showed that the pH decreased from 6.9 to 4 within 15 min of (AC or pulsed) electrical discharges. By compared with a set of comparative experiment, the inactivation of E. coli is mainly contributed by electrical discharges but not by the low pH solution. On the other hand, buffer solutions (carbonate and phosphate) could reduce the inactivation efficiency due to consumption of chemically active species formed in electrical discharges. This study also found that the plasma-treated water has the residual inactivation ability to kill E. coli, and E. coli might own the environmental adaptation ability to electrical discharges.
Either ultrasound (US) or plasma discharge is capable of inactivation of microorganisms in liquid phase. A novel method by combining these two techniques or calls ultrasound-assisted plasma (USaP) is proposed. Extensive experimental tests were carried out with two kinds of electrode layout (submerged and hybrid reactors), aeration or not, and two microorganisms E. coli and yeast. For a submerged reactor without aeration, the inactivation efficiency achieved with USaP (?USaP) is not only greater than ?US or ?plasma, but also greater than the summation of ?US and ?plasma. In other words, a synergistic effect was observed. It is also noted that synergistic effect was neither observed in hybrid reactor nor in aeration cases. Synergism mechanism is speculatively in virtue of the bubbles generated by ultrasound which lead plasma discharges easily induced in water.
關鍵字(中) ★ 超音波
★ 廢水處理
★ 非熱電漿
★ 消毒
★ 環境適應力
關鍵字(英) ★ Nonthermal plasma (NTP)
★ Disinfection
★ Wastewater treatment
★ Environmental adaptation ability
★ Mutation
★ Ultrasound
論文目次 摘要 .................................................................................. i
Abstract ........................................................................... iii
誌謝 ...................................................................................... v
目 錄 .............................................................................. vi
表 目 錄 ................................................................................ ix
圖 目 錄 ................................................................................. x
第一章 前言 .............................................................................. 1
1.1、研究動機 ....................................................................................... 1
1.2、研究內容 ......................................................................................... 1
第二章、文獻回顧 .............................................. 3
1. 給水消毒現況 .......................................................................................... 3
2、電漿基本原理與種類............................................................................ 5
2.1、氣體非熱電漿原理 ............................................................................ 8
3、液相非熱電漿 ..................................................................................... 9
3.1、液體電漿原理 .................................................................................... 9
3.2、液相電漿放電類型 ......................................................................... 11
3.3、液相電漿放電反應器的放電形式 ................................................. 12
3.4、脈衝式高壓電場殺菌 .................................................................... 13
3.5、脈衝式高壓電場殺菌操作因子 ...................................................... 17
3.6、進行PEF殺菌的相關研究 ............................................................. 19
3.7、氣-液混合式放電殺菌 .................................................................................. 23
3.8、氣-液混合式放電殺菌操作因子 ...................................................................................................... 26
4. 超音波殺菌 .............................................................................................. 29
4.1 、超音波 ........................................................................................... 29
4.2、超音波殺菌原理 .............................................................................. 31
4.3 、超音波殺菌的操作因子 ................................................................................................................. 33
4.4、超音波結合和傳統殺菌技術共同殺菌 ........................................................................................... 35
4.5、超音波結合和非熱殺菌技術共同殺菌 ........................................................................................... 36
第三章、研究方法與步驟 ..................................................... 37
1、研究流程 ................................................................................................. 37
2、實驗儀器與設備 ..................................................................................... 38
3、高壓電力產生系統 ................................................................................ 40
4、實驗菌種 .............................................. 41
5、實驗方法 ..................................................................................... 43
第四章、液相AC電漿殺菌 .............................................................................. 47
1、電漿殺菌基礎研究 ............................................................................... 47
1.1、不同型式電極測試 ......................................................................... 48
2、電漿環境研究 ...................................................................................... 51
2.1、電導度 ........................................................................................ 51
2.2、溫度 ................................................................................................ 52
2.3、pH值 ............................................................................................... 53
3、菌種環境適應研究 .................................................................................. 60
4、混合菌種之電漿殺菌............................................................................... 62
第五章、液相脈衝式電漿殺菌 ........................................... 63
1、電漿殺菌基礎研究 ................................................................................. 63
1.1、不同型式電極測試 ......................................................................... 63
2、電漿環境研究 .......................................................................................... 66
2.1、電導度 ............................................................................................. 66
2.2、溫度 ................................................................................................ 67
2.3、pH值 ............................................................................................. 68
3、菌種環境適應研究 ................................................................................ 73
4、混合菌種之電漿殺菌............................................................................. 76
第六章、超音波輔助電漿殺菌 .............................................................................................. 78
1、曝氣的純液相實驗 ........................................................................................ 78
2、無曝氣的純液相實驗.............................................................................. 81
3、曝氣的氣-液混合實驗 ............................................................................ 84
4、無曝氣的氣-液混合實驗 ........................................................................ 86
5、曝氣與否的實驗比較.............................................................................. 88
7、加成效應的發生機制............................................................................. 94
8、混合菌種之電漿殺菌............................................................................. 97
第七章、結論與建議 ...................................................... 103
1、結 論 ....................................................... 103
2、建議 ........................................................... 104
參考文獻 ........................................................................... 105
參考文獻 Akiyama H., (2000) Streamer discharges in liquids and their applications. IEEE Trans. Dielectr. Electr. Insul., 5, 646-653.
Barbosa-Cánovas G. V., Gongora-Nieto M. M., Pothakamury U. R. and Swanson B. G., (1999) “Preservation of foods with pulsed electric fields”, 1-9, 76-107, 108-155. Academic Press Ltd. London.
Butz P. and Tauscher B., (2002) “Emerging technologies: chemical aspects”, Food Research International, 35(2), 279-284, 2002.
Chang, J. S., (2001) “Recent development of plasma pollution control technology: a critical review”, Sci. Tech. Adv. Mater., 2, 571-576.
Dadjoura M. F., Ogino C., Matsumura S., Nakamura S. and Shimizu N., (2006) “Disinfection of legionella pneumophila by ultrasonic treatment with TiO2,” Water Research, 40, 1137-1142.
Dunn J. E. and Pearlman J. S., (1987) “Methods and apparatus for extending the shelf-life of fluid food products”, Maxwell Laboratories, Inc. U. S. Patent, 4,695,472.
Dunn J., (1992) “Pulsed light and pulsed electric field for foods and eggs”, Poul Sci., 75(9), 1133-1136.
Dunne C. P., Dunn J., Clark W., Ott T. and Bushnell A. H., (1996) ”Application of high energy electric field pulses to preservation of foods for combat rations”, Science and Technology for Force XXI. Department of the Army. Norfolk, Virginia., June 24-27, 7.
Earnshaw R.G., Appleyard J. and Hurst R. M., (1995) “Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure”, Int. J. Food Microbiol., 28 (2), 197-219.
Entezari M. H. and Pétrier C., (2004) “A combination of ultrasound and oxidative enzyme: sono-biodegradation of phenol,” Applied Catalysis B: Environmental, 53, 257-263.
FDA(Food and Drug Administration of the U.S. Department of Health and Human Services) website, (2000) http://vm.cfsan.fda.gov/~comm/ift-toc.html
Fellows P., (2000) “Food processing technology: principles and practice”, 2nd ed. CRC Press, New York.
Grahl T., Sitzmann W. and Markl H., (1992) “Killing of microorganisms in fluid media by high-voltage pulses”, DECHEMA Biotechnology Conferences, 675-679.
Grahl T. and Maerkl H., (1996) “Killing of microorganisms by pulsed electric fields”, Applied MicrobiolBiotechnol., 45, 148-157
Grymonpre D. R., Finney W. C., Clark R. J., and Locke B. R., (2004) “Hybrid gas–liquid electrical discharge reactors for organic compound degradation”, Ind. Eng. Chem. Res., 43, 1975-1989.
Guerreroa S., L´opez-Malob A. and Alzamora S. M., (2001) “Effect of ultrasound on the survival of saccharomycescere_isiae: influence of temperature, pH and amplitude”, Innov. Food Sci. Emerg., 2, 31-39.
Ho S. Y., Cross J. D., and Griffiths M. W., (1995) “Inactivation of pseudomonas fluorescens by high voltage electric pulses”, J. Food Sci., 60(6), 1337-1343.
Ho S. Y., Mittal G. S. and Cross J. D., (1997) “Effects of high field electric pulses on the activity of selected enzymes”, J. Food Eng., 31(1), 69-84.
Huang E., Mittal G. S. and Griffiths M. W., (2006) “Inactivation of Salmonella enteritidis in liquid whole egg using combination treatments of pulsed electric field, high pressure and ultrasound”, Biosystems Engineering, 94, 403-413.
Hülsheger, H. and Nieman, E. G. (1980) “Lethal effect of high-voltage pulses on E. coli K12”, Radiat. Environ. Biophys. 18, 281-288
Hülsheger, H., Pottel, J. and Niemann, E. G. (1983) “Electric field effects on bacteria and yeast cells” Radiat. Environ. Biophys. 22, 149-162.
Jayaram S., Castle G. S. P., and Margaritis A., (1992) “Kinetics of sterilization of lactobacillus brevis cells by the application of high voltage pulses”, Biotechnol Bioeng., 40(11), 1412-1420, 1992.
Johnson L. L., Peterson R.V. and Pitt W. G., (1998) “Treatment of bacterial biofilms on polymeric biomaterials using antibiotics and ultrasound”, J. Biomater. Sci.-Polym. Ed., 9(11), 1177-1185.
Joshi A. A., Locke B. R. and Finney W. C., (1995) “Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution”, J. Hazard. Mater., 4, 13-30.
Jacob H. E., Forster W. and Berg H., (1981) “Microbial implications of electric field effects. II. Inactivation of yeast cells and repair of their cell envelope.” Z. Allg. Microbial 21(3):225-232
Joyce E., Phull S. S., Lorimer J. P. and Mason T. J., (2003) “The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power andsonication time on cultured Bacillus species”, Ultrason. Sonochem., 10, 315-318.
Kinosita K. J., and Tsong T. Y., (1977) “Voltage induced pore formation and haemolysis erythrocytes”, Biochem. Biophys. Acta., 471, 227-242.
Knorr D., Geulen M., Grahl T., and Sitzmann W., (1994) “Food application of high electric field pulses”, Trends Food Sci Technol., 5, 71-75.
Limaye M. S. and Coakley W. T., (1998) “Clarification of small volume microbial suspensions in an ultrasonic standing wave”, J. Appl. Microbiol., 84(6), 1035-1042.
Love P., (1998) “Correlation of fourier transforms of pulsed electric field waveform and microorganism inactivation”, IEEE Trns. Dielectr. Electr. Insul., 5(1), 142-147.
Malik M.A., Ghaffar A., and Malik S. A., (2001) “Water purification by electrical discharges”, Plasma Source Sci. Technol., 10, 82-91.
Manas P., Pagan R. and Raso J., (2000) “Predicting lethal effect of ultrasonic waves under pressure treatments on Listeria monocytogenes ATCC 15313 by power measurements”, J. Food Sci., 65 (4), 663-667.
Marquez V. O., Mittal G. S. and Griffiths M. W., (1997) “Destruction and inhibition of bacterial spores by high voltage pulsed electric field”, J. Food Sci., 62(2), 399-401.
Martin-Belloso O., Vega-Mercado H., Qin B. L., Chang F. J., Barbosa-Cánovas G. V. and Swanson B. G., (1997a) “Inactivation of Escherichia coli suspended in liquid egg using pulsed electric fields”, J. Food Process Preserv., 21, 193-208.
Martin-Belloso O., Qin B. L., Chang F. J., Barbosa-Cánovas G. V. and Swanson B., (1997b) “Inactivation of Escherichia coli in skim milk by high intensity pulsed electric fields”, J. Food Process Eng., 20, 317-336.
Mart´ın M. F. S., Harte F. M., Lelieveld H., Barbosa-C´anovas G. V. and Swanson B. G., (2001) “ Inactivation effect of an 18-T pulsed magnetic field combined with other technologies on Escherichia coli”, Innov. Food Sci. Emerg. Technol., 2, 273-277.
Mason T. J., (1990) “Sonochemistry the uses of ultrasound in chemistry”, Royal Society of Chemistry.
Matsumoto Y., Satake T., Shioji N. and Sakuma A., (1991) “Inactivation of microorganisms by pulsed high voltage applications”, Conference Record of IEEE Industrial Applications Society Annual Meeting. 652-659.
McClements D. J., (1995) “Advances in the application of ultra sound in food analysis and Processing”, Trends Food Sci. Technol., 6(9), 293-299.
Mizuno A. and Hori Y. (1991) “Destruction of living cells by pulsed high-voltage application”, IEEE Trans. Ind. Appl. 24(3), 387-394.
Ordonez J. A., Sanz B., Hernandez P. E. and Lopez-Lorenzo P., (1984) “A note on the effect of combined ultrasonic and heat treatments on the survival of thermoduric streptococci”, Journal of Applied Bacteriology, 54, 175-177.
Park J. Y. and Lee J. D., (2004) “The effect of conductivity on active species products by electrical discharge with air bubble in water”, ISNTPT-4, 556-559.
Peleg M., (1995) ”A model of microbial survival after exposure to pulse electric fields”, J. Sci. Food Agric., 67(1), 93-99.
Picart L., Dumay E. and Cheftel J. C., (2002) “Inactivation of listeria innocua in dairy fluids by plused electric fields: influence of electric parameters and food composition”, Inno. Food Sci. Eng. Technol., 3, 357-369.
Pilar M., Barsotti L. and Cheftel J. C., (2001) “Microbial inactivation by pulsed electric fields in a batch treatment chamber: effects of some electrical parameters and food constituents”, Inno. Food Sci. Eng. Technol., 2, 239-249.
Piyasena P., Mohareb E. and McKellar R.C., (2003) “Inactivation of microbes using ultrasound: a review”, Int. J. Food Microbiol., 87, 207-216.
Pothakamury U. R., Monsalve-Gonzalez A., Barbosa-Cánovas G. V. and Swanson B. G., (1995) “Inactivation of Escherichia coli and Staphylococcus aureus in model foods by pulsed electric field technology”, Food Res. Int. 28 167-171.
Qin B. L., Barbosa-Cánovas G. V., Swanson B. G., and Pedrow P. D., (1998) “Inactivating microorganism using a pulsed electric field continuous treatment system”, IEEE Trans. Indus. Applic. 34(1), 43-49.
Qin B. L., Zhang Q., Barbosa-Cánovas G. V., Swanson B. G. and Pedrow P. D., (1994a) “Inactivation of microorganisms by pulsed electric fields with different voltage waveforms”, IEEE Trans. Dielec. Insul. 1(6), 1047-1057.
Qin B., Pothakamury U. R., Vega H., Martin O., Barbosa-Cánovas G. V. and Swanson B. G., (1994b) “Food pasteurization using high intensity pulsed electric fields”, J. Food Technol. 49(12), 55-60.
Qin B. L., Chang F. J., Barbosa-Cánovas G. V. and Swanson B. G., (1995a) “Nonthermal inactivation of S. cerevisiae in apple juice using pulsed electric fields”, Lebensm Wiss Technol. 28, 564-568
Qin B. L., Zhang Q. H., Barbosa-Cánovas G. V., Swanson B. G. and Pedrow P. D. (1995b) “Pulsed electric field treatment chamber design for liquid food pasteurization using a finite element method”, Transactions of the ASAE. 38, 557-565.
Read A. J., Strachan T. (2004) “Human molecular genetics 3” New York:Garland Science.
Rediske A. M., Rapoport N. and Pitt W. G., (1999) “Reducing bacterial resistance to antibiotics with ultrasound”, Letters in Applied Microbiology, 28(1), 81-84.
Reina L. D., Jin Z. T., Yousef A. E. and Zhang Q. H., (1998) “Inactivation of listeria monocytogenes in milk by pulsed electric field”, J. Food Protect. 61(9), 1203-1206.
Sala F. J., Burgos J., Condon S., Lopez P. and Raso J., (1995) “Effect of heat and ultrasound on microorganisms and enzymes”, Gould, G.W. (Ed.), New Methods of Food Preservation. Blackie Academic & Professional, London, 176-204.
Sale A. J. H. and Hamilton W. A., (1967) “Effects of high electric fields on microorganisms I. Killing of bacteria and yeast”, Biochimt Biophys Acta. 148, 781-788
Sams A. R. and Feria R., (1991) “Microbial effects of ultrasonication of broiler drumstick skin”, J. Food Sci., 56(1), 247-248.
Sato M., Ishida N. M., Sugiarto A. T., Ohshima T., and Taniguchi H., (2001) ”High-efficiency sterilizer by high-voltage pulse using concentrated-field electrode system”, IEEE Trans. Ind. Appl., 37.
Sato M., Sun B., Ohshima T. and Sagi Y., (1999) “Characteristics of active species and removal of organic compound by a pulsed corona discharge in water”, J. Adv. Oxid. Technol., 4, 339-342.
Sato M., Tokutake T., Ohshima T., and Sugiarto A. T., (2005) “Aqueous phenol decomposition by pulsed discharge on water surface”, Industry Applications Conference, 2005. Fourtieth IAS Annual Meeting, 2895-2899.
Sato M., Tokutake T., Ohshima T., and Sugiarto A. T., (2008) “Aqueous phenol decomposition by pulsed discharge on water surface”, IEEE Trans. Indus. Applic. 44(5), 1397-1402.
Sun B., Sato M. and Clement J. S., (1999) “Use of a pulsed HV discharge for removal of organic compounds in aqueous solution”, J. Appl. Phys., l32, 1908-1915.
Suslick K. S., (1989) “The chemical effects of ultrasound”, Sci. Am., 80, 80-86.
Tsukamoto I., Constantinoiu E., Furuta M., Nishimura R. and Maeda Y., (2004) “Inactivation effect of sonication and chlorination on Saccharomyces cerevisiae. Calorimetric Analysis”, Ultrason. Sonochem., 11, 167-172.
Vega-Mercado H., Pothakamury U. R., Chang F. J., Barbosa-Cánovas G. V., Swanson B. G. (1996) “Inactivation of Escherichia coli by combining pH, ionic strength and pulsed electric fields hurdles”, Food Res. Int., 29, 117-121.
Yao M., Mainelis G., An H. R., (2005) “Inactivation of microorganisms using electrostatic fields”, Environ. Sci. Technol., 39, 3338-3334.
Yavorovsky N. A., Peltsman S. S., Kornev J. I. and Volkov Y. V.,(1995) “Technology of water treatment using pulsed electric discharges”, IEEE Trans. Dielec. Insul., 2(5), 147-152.
Zhang G. and Hua I., (2000) “Cavitation chemistry of polychlorinated biphenyls: decomposition mechanisms and rates”, Environ. Sci. Technol., 34, 1529-1534.
Zhang P., Zhang G. and Wang W., (2007) “Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation”, Bioresource Techol., 98, 207-210.
Zhang Q. H., Barbosa-Cánovas G. V. and Swanson B. G., (1995) “Engineering aspects of pulsed electric field pasteurization”, J. Food Eng. 25(2), 261-281.
Zhang Q. H., Monsalve-Gonzalez A., Barbosa-Cánovas G. V. and Swanson B. G. (1994a) “Inactivation of E. coli and S. cerevisiae by pulsed electric fields under controlled temperature conditions” Transactions of the ASAE., 37, 581-587.
Zhang Q. H., Chang F. J. and Barbosa-Cánovas G. V., (1994b) “Inactivation of microorganisms in a semisolid model food using high voltage pulsed electric fields”, Lebensm. Wiss. Technol. 27 (6), 538-543.
Zhao D., Shi H. and Wang D., (2003) “Degradation of phenol wastewater by dualfrequency ultrasound technology”, Journal of Chemical Industry and Engineering 54(4), 570-574.
Zimmermann U. and Benz R., (1980) ”Dependence of the electrical breakdown voltage on the charging time in valonia utricularis”, J. Membrane Biol., 53, 33-43, 1980.
Zimmermann U., (1986) “Electrical breakdown, electropermeabilization and electrofusion”, Rev. Phys. Biochem. Pharmacol., 105, 175-256.
李季眉,(1993) ”大腸桿菌菌類多管發酵法與濾膜法檢測比較”,行政院環境保護署,EPA 82-E3J1-09-14。
周麗珍,李冰,李琳,張喜梅,(2006) 超聲非熱處理對細菌殺菌效果的影響,食品科學, 27(12)。
周麗珍,李冰,李琳,張喜梅,(2007) 超聲處理對酵母細胞的致死及相關影響,Journal of South China University of Technology,35(12)。
鐘楊聰,方繼,基礎微生物學,偉明圖書有限公司,台北,2002。
科學月刊,(1996) 68~70頁,8月號。
李灝銘,(2001)「以低溫電漿去除揮發性有機物之研究」,國立中央大學環境工程研究所博士論文。
陳永增,(2003)「超音波空泡破壞應用在鋁合金氧化膜診斷上之研究」,國立中央大學機械工程研究所博士論文。
鄭閔魁,劉文佐,(2000)「生物除磷反應槽中可分離微生物菌相多樣性的探討」,生命科學研究所碩士論文。
賴竺均,(2005)「超音波對於合成樹酯脫附行為之影響」,國立臺灣科技大學化學工程系碩士學位論文。
行政院環境保護署 http://www.epa.gov.tw/
指導教授 張木彬(Moo-been Chang) 審核日期 2009-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明