博碩士論文 92326001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.219.104.129
姓名 陳俊成(Chun-Cheng Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 低揮發性化合物亨利常數量測方法之研究
(A method to measure Henry’s law constants of low volatile compounds)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要內容在於建立新的量測方法,用以估算低揮發性化合物之亨利常數值。傳統上測量低揮發性化合物之亨利常數值常使用氣提法或者是密閉系統法,然而在使用上述方法估算亨利常數時,會有化合物吸附、平衡時間過長和實驗設備要求高等問題存在。為了克服上述問題,本研究以半密閉系統之模廠,在不同擾流條件下,測量低揮發性有機化合物揮發速率常數,最後利用表面損失揮發模式(surface depletion rate-limiting, SDRL),在氣相參數β已知與擾流常數α假設為一的情形下,求得低揮發性化合物之亨利常數值。藉由文獻值與以模式預測獲得到之亨利常數值來驗證本研究發展之方法所求得亨利常數的準確性。
由實驗結果顯示,所選擇有機化合物均能利用一階反應方程式求得揮發速率常數值,所計算之亨利常數值亦都在文獻值的範圍內,且相對於傳統密閉系統來說,本研究所使用的時間較短且容易控制,不過所使用的化合物亨利常數值愈高,高擾流條件的效率愈差。至於本研究求得之結果與蒸氣壓/水溶解度、官能基與鍵結貢獻模式等預測模式推估之值有所差距的原因,應是本研究選用低水溶解度與化學結構式複雜的化合物所導致。與傳統二層膜理論計算之亨利常數值相比較,表面損失揮發模式所求得的亨利常數值相對較低,其原因可能在於質量傳送假設與參考化合物不同所造成。由各模式相互比較之後,以本研究之表面損失揮發模式計算的亨利常數值較具準確性。
摘要(英) The lack of accurate Henry’’s law constants (H) is one of the major problems on determining fates of organic compounds in the environment. Methods of experimentally determine H can be roughly divided into kinetic and static thermodynamic measurement. It takes more than half month for the traditional static methods to experimentally determining the Henry’s law constants of low volatility organic compounds. Thus, a new approach in this study has been developed to measure the H of low volatility organic compounds(dimensionless < 10-4).
According to the traditional concepts, the volatilization rate constants of low H compounds in aqueous solution have a good correlation with their H values. Thus, the H values of low H compounds (dimensionless < 10-4) were considerably obtained from the kinetic method based on the loss rate of a substance from water. In our previous investigation, the surface depletion rate-limiting model (SDRL) for calculating volatilization rates of low H compounds under gas and liquid turbulence was developed. As a result, the H values of the low H compounds under the gas and liquid turbulence were estimated with the SDRL model. The obtained H values were compared with other approaches including traditional two film theory, vapor pressure /aqueous solubility, bond contribution method and group contribution method.
As the H values obtained form the above-mentioned method was compared the literature values, SDRL model shows more accuracy than the other method. It can be concluded that the presented approach is a good way on determining the H values for the low H compounds.
關鍵字(中) ★ 揮發
★ 亨利常數
★ 表面損失揮發模式
★ 擾流
★ 風速
關鍵字(英) ★ surface depletion rate-limiting model
★ volatilization
★ liquid stirring
★ wind speed
★ Henry’s law constant
論文目次 目錄
目次 頁次
目錄 I
圖目錄 VI
表目錄 VIII
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 4
第二章 文獻回顧 5
2-1 基本理論介紹 5
2-1-1 勞特定律 5
2-1-2 亨利定律 6
2-1-3 二層膜理論 8
2-1-4 氣體動力學觀念 10
2-1-5表面損失揮發模式 11
2-1-6 Arrhenius 活化能方程式 12
2-1-7 增溶作用 13
2-1-8 UNIFAC模式 13
2-2亨利常數之測量 15
2-2-1直接測量兩項濃度值 15
2-2-2 密閉系統 16
2-2-3測量農藥亨利常數值 17
2-2-4 氣提法測量亨利常數 18
2-3 模式預測亨利常數值 20
2-3-1 水溶解度與蒸氣壓模式 20
2-3-2 以活性係數推估亨利常數值 21
2-3-3 官能基/鍵結貢獻模式 22
2-3-4 分子關連模式 24
2-3-5 線性溶解能量關係 26
2-3-6 類神經網路估算亨利常數的方法 27
2-4 影響亨利常數因子 27
2-4-1 溫度 28
2-4-2 大分子有機物與界面活性劑 29
2-4-3 鹽類 31
2-4-4 共同溶劑效應 32
2-5 影響揮發速率之因素 32
2-5-1 液相體積 32
2-5-2 氣、液相擾流 33
第三章 實驗材料、設備與方法 36
3-1 研究架構 36
3-2 實驗材料 38
3-2-1 有機化合物 38
3-2-2 其他有機溶劑 43
3-3 實驗設備 44
3-4 實驗方法 47
3-4-1 有機化合物揮發速率之量測 47
3-4-2 液相擾流強度之控制 49
3-4-3 氣相擾動之控制 50
3-4-4 溫度控制 51
3-4-5 反應槽尺寸 51
3-4-6 反應時間 51
3-4-7 取樣時間 51
3-4-8 萃取溶劑 54
3-4-9 水揮發修正 54
3-5 以實驗方式計算亨利常數方法 56
3-5-1 計算KOL值 56
3-5-2 利用表面損失揮發模式計算亨利常數值 57
3-5-3 利用二層膜理論計算亨利常數值 58
第四章 結果與討論 61
4-1 實驗條件與化合物揮發特性之探討 61
4-1-1 取樣時間 61
4-1-2 化合物質量傳送係數之選擇 64
4-1-3 揮發速率與擾流之關係 68
4-2 表面損失揮發模式所得結果 73
4-2-1 不同液相擾流強度下之亨利常數值 73
4-2-2 不同氣相擾流下之亨利常數值 75
4-2-3 氣相與液相擾流下之亨利常數值 78
4-2-4 表面損失揮發模式與文獻值差異 79
4-3 以其他方式計算亨利常數值 85
4-3-1 蒸氣壓/水溶解度 86
4-3-2 鍵結與官能基貢獻模式 88
4-3-3傳統二層膜理論 92
4-4 各種不同模式之比較 95
4-4-1 各評估模式對文獻值之相關係數圖 95
4-4-2 各評估模式對文獻值之差距百分比 99
4-5 各種模式優缺點分析 103
4-5-1 發展方式與傳統測量亨利常數值方法比較 103
4-5-2 靜態與動態方式求得亨利常數值比較 104
4-5-3 二層膜理論與表面損失揮發模式比較 105
4-5-4 各模式優缺點比較 106
第五章 結論與建議 107
5-1 結論 107
5-2 建議 108
參考文獻 109
圖目錄
目次 頁次
圖2-1 二層膜理論所假設之揮發過程 8
圖2-2 測有機氯農藥亨利常數之實驗設備圖 18
圖2-4 氣提方法測量亨利常數之實驗設備圖 19
圖3-1 研究架構圖 37
圖3-2 實驗模廠設計圖 45
圖3-3 實驗流程圖 55
圖4-1 氯苯胺總採樣時數8小時濃度變化圖 62
圖4-2 氯苯胺總採樣時數48小時濃度變化圖 62
圖4-3 安沙番於相同擾流條件下揮發速率常數對濕度作圖 67
圖4-4 DDE轉速對質量傳送係數圖 69
圖4-5 DDE風速對質量傳送係數圖 69
圖4-6 安沙番轉速對質量傳送係數圖 70
圖4-7 安沙番風速對質量傳送係數圖 70
圖4-8 氯苯胺轉速對質量傳送係數圖 71
圖4-9 氯苯胺風速對質量傳送係數圖 71
圖4-10 表面損失揮發模式與文獻之亨利常數對數比較 96
圖4-11二層膜理論與文獻之亨利常數對數比較 96
圖4-12 蒸氣壓/水溶解度與文獻之亨利常數對數比較 97
圖4-13 鍵結貢獻模式與文獻之亨利常數對數比較 97
圖4-14 官能基貢獻模式與文獻之亨利常數對數比較 98
表目錄
目次 頁次
表2-1 在25℃之鍵結貢獻值 23
表3-1 有機化合物之物理化學特性 38
表3-2 有機化合物之分子結構式 39
表3-3 各化合物之偵測儀器與條件 48
表3-4 標的化合物在液相擾流中之實驗參數表 49
表3-5 標的化合物在氣相擾流中之實驗參數表 50
表3-6 各化合物之實驗時間 52
表3-7 各化合物理論之實驗時間 53
表3-8 在不同擾流條件下之氣相擾流因子β 58
表3-9 參考化合物苯在各種環境條件下之質傳係數 59
表3-10 水在不同風速下之氣相質傳係數 60
表4-1 各化合物在各種氣相擾流條件下之質量傳送係數 65
表4-2 各化合物在各種液相擾流條件下之質量傳送係數 66
表4-3 各化合物於不同液相擾流之亨利常數對數值 74
表4-4 各化合物於不同氣相擾流之亨利常數對數值 76
表4-5 各化合物於同時和單獨氣相與液相擾流之亨利常數對數值 78
表4-6 計算之亨利常數值與文獻值比較 80
表4-7 化合物在液相擾流下之平均差距百分比 83
表4-8 化合物在氣相擾流下之平均差距百分比 84
表4-9 各化合物由蒸氣壓/水溶解度所得之亨利常數比較 87
表4-10 官能基貢獻模式係數表 89
表4-11 化合物由官能基與鍵結模式所得亨利常數比較 91
表4-12 化合物二層膜理論與文獻之亨利常數比較 93
表4-13 各模式對文獻值之差距百分比 100
表4-14各模式優缺點比較 106
參考文獻 1.Prausnitz, J. M., Molecular Thermodynamics of Fluid Phase Equilibria, prentice Hall, Englewood Cliffs, N. J, 1969
2.Liss P. S. and Slater P.G. "Flux of Gases across the Air-Sea Interface", Nature, 247, 181-184, 1974.
3.Mackay, D. and Yeun, A. T. K. "Mass Transfer Coefficient for Volatilization of Organic Solutes from Water" Environmental Science & Technology, 17(4), 211-216, 1983.
4.賈秉文譯,物理化學,四版,台灣東華,台北,民國69年
5.Chiou, C. T. "On the Validity of Codistillation Model for the Evaporation of Pesticides and Other Solutes from Water Solution", Environmental Science & Technology, 14, 1253-1256,1980.
6.Chiou, C.T. "Evaporation of Components from a Miscible Solution ", Environment International, 4, 15-19,1980.
7.Chiou, C.T.; Freed. V. H.; Peters, L. J. and Kohnert, R. L. "Evaporation of Solutes from Water", Environment International, 3, 231-235, 1980.
8.Chiou, C.T.; Kohnert, R.L.; Freed, V. H. and Tonkyn, R.G. "Prediction of Evaporative Loss Rate of Solutes in Stagnant and Turbulent Waters in Relation to Rates of Reference Materials ", Environment International, 9, 13-17,1983.
9.Reid, R. C., Prausnitz, J. M. and Sherwood, T. K. "The Properties of Gases and Liquids", McGraw-Hill, New York,1977.
10.Lohmann, J.; Joh, R.; Gmehling, J. "From UNIFAC to modified UNIFAC (Dortmund) ". Ind. Eng. Chem. Res., 40, 957-964, 2001.
11.Ornektekin, S.; Paksoy, H.; Demirel, Y. "The performance of UNIFAC and related group. contribution models Part II. Prediction of Henry’s Law Constant. " Thermochim. Acta, 287, 251-259, 1996.
12.Hwang, S.-M.; Lee, J.-M.; Lin, H. "New group-interaction parameters of the UNIFAC model: Aromatic methoxyl binaries. " Ind. Eng. Chem. Res., 40, 1740-1747, 2001.
13.Gmehling, J.; Lohmann, J.; Jakob, A.;, Li, J.; Joh, R. "A modified UNIFAC (Dortmund) Model. " 3. Revision and Extension. Ind. Eng. Chem. Res., 37, 4876-4882, 1998.
14.Fischer, R.G. and Ballschmiter, K. "Determination of Vapor Pressure, Water Solubility, Gas-Water Partition Coefficient PGW, Henry’s Law Constant, and Octanol-Water Partition Coefficient Pow of 26 Alkyl Dinitrates", Chemosphere, 36(14), 2891-2901,1998.
15.J.M. Gosset, Measurement of Henry’s Law Constants for C, and C2 Chlorinated Hydrocarbons, Environmental Science & Technology, 21 , 202, 1987.
16.P.C.N. Ayuttaya et al, "Henry’s law constants derived from equilibrium static cell measurements for dilute organic–water mixtures", Fluid Phase Equilibria 185 ,359–377, 2001.
17.Nicholas J. Fendlnger and Dwlght E. Glotfelty, "A Laboratory Method for the Experimental Determination of Air-Water Henry’s Law Constants for Several Pesticides", Environmental Science & Technology, 22, 1289 - 1293, 1988.
18.Joachlm Altschuh and Ralner Bruggemann, "Henry's Law Constants for Polychlorinated Biphenyls: Experimental Determination and Structure-Property Relationships", Environmental Science & Technology, 24, 1751–1754, 1990.
19.Mackay, D.and Shiu,W. N. "A Critical Review Henry's Law Constants for Chemicals of Environmental Interest", Journal of Physical and Chemical Reference Data, 10(4) ,1175 -1199, 1981.
20.Hine J.and Mookerjee P K, "the intrinsic hydrophobic character of organic compounds. correlations in terms of structural contribution" J. org. chem. 40,292-298, 1975
21.Cabani, S.; Gianni, P.; Mollica, V.; Lepori, L. "Group Contributions to the Thermodynamic Properties of Non-Ionic Organic Solutes in Dilute Aqueous Solution. " J. Solution Chem., 10(8), 563-595, 1981.
22.Meylan, W. M.; Howard, P. H. "Bond Contribution Method for Estimating Henry’s Law Constants." EnViron. Tox. Chem., 10, 1283-1293, 1991.
23.Nirmalakhandan, N. N.; Speece, R. E. "QSAR Model for Predicting Henry’s Constant." Environmental Science & Technology, 22, 1349-1357, 1988.
24.Nirmalakhandan, N.; Brennan, R. A.; Speece, R. E. "Predictive Henry’s Law Constant and the effects of Temperature on Henry’s Law Constant. " Water Res., 31(6), 1471-1481, 1997.
25.Russell, C. J.; Dixon, S. L.; Jurs, P. C.; "Computer-Assisted Study of the Relationship between Molecular-Structure and Henry’s Law." Constant. Anal. Chem., 64, 1350-1355, 1992.
26.Abraham, M. H.; Andonian-Haftvan, J.; Whiting, G. S.; Leo, A.; Taft, R. S. "Hydrogen Bonding. Part 34. The Factors that Influence the Solubility of Gases and Vapours in Water at 298K, and a New Method for its Determination. " J. Chem. Soc., Perkin Trans. 2, 1777-1791, 1994.
27.Katritzky, A.; Mu, L. "A QSPR study of the solubility of gases and vapors in water." J. Chem. Inf. Comput. Sci., 36, 1162-1168, 1996.
28.Katritzky, A. R.; Wang, Y.; Sild, S.; Tamm, T.; Karelson, M. "QSPR Studies on Vapor Pressure, Aqueous Solubility, and the Prediction of Water-Air Partition Coefficients." J. Chem. Inf. Comput. Sci., 38, 720-725, 1998.
29.English, N. J.; Carroll, D. G.; " Prediction of Henry’s Laws Constant by a Quantitative Structure-Property Relationship and Neural Networks".J. Chem. Inf. Comput. Sci., 41, 1150-1161, 2001.
30.Zhou, X. and Mopper, K."Apparent Partition Coefficient of 15 Carbonyl Compounds between Air and Freshwater; Implication for Air-Sea Exchange" Environmental Science & Technology, 24(12), 864-1869, 1990
31.Mark A.J. Harrison,J. Neil Cape,Mathew R. Heal ; "Experiment determined Henry’s law coefficients of phenol, 2-methylphenol and 2-nitrophenol in the temperature range 281-302K",Atmospheric Environment 36,843-1851,2002.
32.Chao, H.-P. and Lee, J.-F. "Volatilization Reduction Effects of BTEX by Surfactant and High-Molecular-Weight Organic Compounds in Aqueous Solutions ", IWA Asia-Pacific Regional Conference, Fukuoka, Japan,2001.
33.Chao, H-.P.; Lee, J.-F. and Lee, C.-K. "Effects of Dissolved Chemicals on the Volatilization Rates of BTEX", Journal of Environmental Science and Health Part A, A35(6), 869-881, 2000.
34.Chiou, C.T.; Malcoim, R. L.; Brinton, T. I. and Kile, D.E." Water Solubility Enhancement of Some Organic Pollutnats and Pesticides by Dissolved Humic and Fulvic Acids", Environmental Science & Technology, 20(5), 502-508, 1986.
35.Smith, J.H.; Bomberger, D.C. and Haynes, D.L." Predication of the Volatilization Rate of High-Volatility Chemicals from Natural Water Bodies", Environmental Science & Technology, 14(11), 1332-1336, 1980.
36.Tsutomu Shimotori and William A. Arnold “Measurement and Estimation of Henry’s Law Constants of Chlorinated Ethylenes in Aqueous Surfactant Solutions” Journal of Chemical and Engineering Data, 48, 253-261, 2003
37.Mehran Alaee,Randy M. Whittal and Willian M.J.strachan ”The effect of water temperature and compositeon on Henry’s law constant for various PAH’s” chemophere, 32(6), 1153-1164, 1996
38.Kerry R. Bullock and Amyn S. Teja” Henry’s Constants of Volatile Organic Compounds in Aqueous Salt Solutions” Ind. Eng. Chem. Res., 42, 6494-6498, 2003
39.連文琪,「有機物於不同環境條件下揮發特性之探討」,國立中央大學環境工程研究所碩士論文,民國九十二年七月
40.Ladaa, T. I.; Lee, C. M.; Coate, J. T.; Falta, R. W. "Cosolvent Effects of Alcohols on the Henry’s Law Constant and Aqueous Solubility of Tetrachloroethylene (PCE). " Chemosphere, 44, 1137-1143, 2001.
41.Vane, L. M.; Giroux, E. L. "Henry’s Law Constants and Miceller Partitioning of Volatile Organic Compounds in Surfactant Solutions." J. Chem. Eng. Data, 45 (1), 38-47, 2000.
42.Masashi Takenouchi, Ryo Kato, and Hideo Nishiumi” Henry’s Law Constant Measurements of CCl2F2, CHClF2, CH2F2,C2ClF5, C2HF5, CH2FCF3, and CH3CHF2 in Methanol, Ethanol, and2-Propanol” Journal of Chemical and Engineering Data, Vol. 46, No. 3, 2001
43.Tsutomu Shimotori and William A. Arnold” Henry’s Law Constants of Chlorinated Ethylenes in Aqueous Alcohol Solutions: Measurement, Estimation, and Thermodynamic Analysis” Journal of Chemical and Engineering Data, 47, 183-190, 2002.
44.Michael E. Miller and James D. Stuart, “Measurement of Aqueous Henry’s Law Constants for Oxygenates and Aromatics Found in Gasolines by the Static Headspace Method”, Analytical Chemistry, Vol. 72, No. 3,622-625, 2000
45.Peng, J.; Bewtra, J.K.and Biswas, N. "Volatilization of Selected Organic Compounds from Quiescent Water", Journal of Environmental Engineering-ASCE, 120(3), 662- 669,1994.
46.Southworth, G.R. "The Role of Volatilization in Removing Polycyclic Aromatic Hydrocarbon from Aquatic Environments", Bulletin of Environmental Contamination and Toxicology, 21, 507-514, 1979.
47.Gholson, A. R.; Aibittion, J. R. and Jayanty, R. K. M. "Evaluation of an Enclosure Method for Measuring Emission of Volatile Organic Compound from Quiescent Liquid Surfaces", Environmental Science & Technology, 25 (3),519-524,1991.
48.Cohen, N.; Cocchio, W. and Mackay, D. "Laboratory Study of Liquid-Phase ontrolled Volatilization Rates in Presence of Wind Waves", Environmental science & Technology, 12 (5), 553-558,1978.
49.Peng, J. ; Bewtra, J.K. and Biswas, N."Effect of Tutbulence on Volatilization of Selected Organic Compounds from Water" Water Environment Research, 67 (1),101-107, 1995.
50.Samiy. Sheikheldin ,Terence J. Cardwell ,Robert W. Cattrall ,Maria D. Luque De Castro ,and Spas D. Kolev ,” Determination of Henry’s Law Constants of Phenols by Pervaporation-Flow Injection Analysis” Environmental science & Technology, 35(1), 178-181 , 2001
51.趙煥平 “有機物自水中揮發之研究” 國立中央大學環境工程研究所博士論文,民國九十二年十一月
52.Chao, H-P; Lee, J-F; Lee, C-K; Huang, H-C “An alternative method for predicting organic solute volatilization rates under gas and liquid turbulence” Chemosphere Volume: 59, Issue: 5, 711-720, 2005
53.Rene P. Schwarzenbach ”Environmental organic chem.istry” New York J. Wiley , 2003
54.R. A. Brennan ,N. Nirmalakhandan and R. E. Speece “Comparison of predictive methods for Henrys law coefficients of organic chemicals“ water research ,vol 32,No 6,1901-1911,1998
指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2005-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明