博碩士論文 92326002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.117.137.241
姓名 王之群(Chen-Chun Wang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 台北都會區近三年連續監測及事件日氣膠特性
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
大氣氣膠對環境的衝擊及人體健康的效應,已經引起重視,台灣第一座「氣膠超級測站」於2002年3月正式運轉,超級測站可連續監測PM2.5與PM10質量濃度、氣膠粒徑分布、PM2.5碳成分、PM2.5硫酸鹽、PM2.5硝酸鹽、散光係數、黑碳濃度(吸光係數)、氣膠總多環芳香烴以及氣象因子。
本文彙整2002年3月至2005年2月三年的監測數據顯示PM2.5年平均質量濃度為31~33 μg m-3,主要化學成分為有機碳(3.4~8.2 μg m-3)、元素碳(2.5~4.1 μg m-3)、硫酸鹽(5.0~7.7 μg m-3)及硝酸鹽(1.3~3.6 μg m-3)。Hysplit模擬的逆溯氣流軌跡線可分成大陸沿岸傳輸、海洋傳輸及高壓迴流三類,其PM2.5分別為40 μg m-3、28 μg m-3及56 μg m-3。硫酸鹽平均鹽濃度在大陸沿岸傳輸及高壓迴流都為8 μg m-3左右,硝酸鹽平均濃度只有在高壓迴流有高值為6.1 μg m-3。發生高濃度事件日(PM2.5> 65μg m-3)以高壓迴流最多,共有63次。使用EC-tracer方法推估新莊地區二次有機碳濃度,加上以氯損失推估的二次無機氣膠,可推估出二次氣膠,另外,使用PM2.5/CO的比值計算一次氣膠也可推估出二次氣膠,後者推估的二次氣膠在O3 > 120 ppb時,平均濃度可達30 μg m-3。
本文於2005年4月4日至2005年4月9日在超級測站進行為期6天的人工採樣,結果顯示氣膠粒徑分布中質量濃度及硝酸鹽有雙峰,其他離子都是單峰分布,主要的尖峰粒徑為0.56 μm或3.2 μm。大氣羰基類的分析顯示新莊地區以甲醛、乙醛及丙酮為主。甲醛、乙醛及丙酮平常日的濃度分別為4.4±2.0 μg m-3、9.8±8.3 μg m-3及16.5±10.0 μg m-3;事件日的濃度則分別為11.0±6.3 μg m-3、17.1±11.9 μg m-3及34.0±19.1 μg m-3。上班時段 (06:00~12:00) 的羰基類濃與當日日臭氧最大小時值有正相關,羰基類化合物與有機碳中的OC2關係較佳,且與粒徑越小氣膠的OC2關係更佳,顯示這些小粒徑的OC2來自於光化學反應。
摘要(英) Abstract
The environmental impact and health effect of atmospheric aerosol has drawn a great attention. The first Taiwan aerosol supersite for continuous aerosol properties has been fully operated at Hsin-Chuang City in March 2002. Aerosol properties include PM2.5 and PM10 mass concentrations, size distribution, carbon content, sulfate, nitrate, light-scattering coefficient, black carbon, and polyaromatic hydrocarbons are monitored continuously. In addition, meteorological factors are collected collocatedly.
The annual average of PM2.5 mass concentrations ranging from 31 to 33 μg m-3 are found based on data collected from March 2002 to February 2005 at aerosol supersite. Concentrations of major aerosol properties are 3.4-8.2 μg m-3 for organic carbon, 2.5-4.1 μg m-3 for elemental carbon, 5.0-7.7 μg m-3 for sulfate, and 1.3-3.6 μg m-3 for nitrate, respectively. Back trajectory analysis from Hysplit model shows air masses arriving at Hsin-Chuang site can be divided into from mainland China’s coastline transport, oceanic transport, and anticyclonic outflow during the stidy period. The PM2.5 mass concentrations for these three types of air mass are 40 μg m-3, 28 μg m-3, and 56 μg m-3, respectively. Sulfate average for air masses from mainland China’s coastline transport and anticyclonic outflow is around 8 μg m-3. In contrast, the highest nitrate is at 6.1 μg m-3, which occurred only under anticyclonic outflow. The statistic of high aerosol concentration event (PM2.5> 65μg m-3) shows anticyclonic outflow is the most frequent occurring type for the occurrence of 63. The estimation of senondary aerosol formation at Hsin-Chuang site is conducted by using EC-tracer method for calculating secondary organic carbon and chlorine loss for secondary inorganic aerosol. The estimation of secondary aerosol can also be calculated by using the ratio of PM2.5/CO for estimating primary aerosol. The secondary aerosol from the latter method can reach as high as 30 μg m-3 when O3 > 120 pp.
In this study, an intensive aerosol collection for six days was conducted from April 4 to 9, 2005. The aerosol size-distribution analysis reveals that most aerosol water-soluble ions are unimodally distributed except for mass concentration and nitrate they are bimodally distributed. Peak aerosol diameter is either 0.56 μm for unimodal distribution or 0.56 and 3.2 μm for bimodal distribution. Aerosol carbonyl analysis shows major components at Hsin-Chuang site are formaldehyde, acetaldehyde, and acetone. Normal day concentrations for formaldehyde, acetaldehyde, and acetone are 4.4±2.0 μg m-3, 9.8±8.3 μg m-3, and 16.5±10.0 μg m-3, respectively. In contrast, event day concentrations for formaldehyde, acetaldehyde, and acetone are 11.0±6.3 μg m-3, 17.1±11.9 μg m-3, and 34.0±19.1 μg m-3, respectively. A positive correlation between aerosol carbonyl and daily maximum ozone concentration is found. Among carbon fractions, aerosol carbonyl has a better relationship with OC2 and is even better as aerosol diameter getting smaller. It suggests these small particles with OC2 composition are originated from photochemical reactions.
關鍵字(中) ★ 氣膠連續監測特性
★ 氣膠輻射作用力
★ 氣膠污染事件
★ 氣膠超級測站
關鍵字(英) ★ Aerosol radiative forcing
★ Aerosol continuous monitoring
★ Aerosol supersite
★ Aerosol pollution event
論文目次 目錄
中文摘要……………………………I
Abstract………………………………………………………………Ⅲ
第一章 前言…………………………………………1
1.1 研究動機………………………………………………….………1
1.2 研究目的……………………………………………….………….3
第二章 文獻回顧.........................................................5
2.1 氣膠的來源及物化特性…………………………….…………….5
2.1.1 氣膠主要的來源……………………………….……………..5
2.1.2 氣膠的化學特性……………………………….…..…………7
2.1.2.1 氣膠碳成分………………………………….…..………….9
2.1.2.2 氣膠水溶性離子成分………………………..…………….11
2.1.2.3 氣膠中微量金屬元素…………………..…….……………14
2.1.3 氣膠的物理及光學特性…………………….….……………15
2.2二次氣膠…………………………………………….…………….17
2.3氣膠特性連續監測………………………………….…………….18
2.3.1 氣膠質量濃度的量測………………………….…………….18
2.3.2 氣膠碳成分的量測……………………………………….….19
2.3.3 氣膠硫酸鹽成分的量測……………………………………..20
2.3.4 氣膠硝酸鹽成分的量測……………………………….……21
2.3.5 氣膠粒徑濃度分布的量測………………………………….22
2.3.6 氣膠的光學性質…………………………………………….23
2.4 大氣中的醛酮特性………………………………………………23
2.4.1 醛酮形成的機制…………………………………….……….23
2.4.2 羰基類化合物與二次有機氣膠的關係…………...………..26
2.4.3 二次羰基類濃度估算………………….…….………………29
2.4.4 大氣中羰基類監測…………………….…….…………...….30
2.5氣膠對環境的衝擊與健康的危害………….……...……………..32
2.5.1 氣膠對於環境的影響……………………….…………….…32
2.5.2 氣膠與氣象因子的關係…………………….……….……….33
2.5.3 氣膠對於人體健康的影響………………………….………..33
第三章 研究方法……………………..…….………37
3.1 監測及採樣地點環境說明…………………………….……...…39
3.2 氣膠特性的監測及採集方法……………………..………...…….41
3.2.1 自動監測儀器…………………………………..…………….41
3.2.1.1 氣膠質量濃度監測儀 (R&P 1400a)…………..…..……….41
3.2.1.2 氣膠碳成分監測儀 (R&P 5400)……………...……………47
3.2.1.3 氣膠硫酸鹽監測儀 (R&P 8400S)…………….……...…….51
3.2.1.4 氣膠硝酸鹽監測儀 (R&P 8400N)……………….….……..55
3.2.1.5 氣膠黑碳濃度連續監測儀 (吸光儀,AE-31)…….....……58
3.2.1.6 氣膠數目粒徑分布監測儀 (PMS Model PCASP-X)….…..62
3.2.1.7 次微米氣膠粒徑分布監測儀 (SMPS)………………..……64
3.2.2 人工採樣器……………………………………………..……..69
3.2.2.1 R&P Partisol Model 2300 Speciation Sampler………..….....69
3.2.2.2 微孔均勻沈降衝擊器 (Micro-Orifice Uniform Deposit Impactor, MOUDITM)………………………………..….…..72
3.2.2.3 醛酮採樣管 (Formaldehyde sampling tube)………...…..….73
3.3 樣品分析………………………………………………….…..…....75
3.3.1 濾紙的前處理…………………………………………………75
3.3.2 樣品的運送與保存……………………………………...….…75
3.3.3 濾紙重量分析…………………………….….………………..76
3.3.4 氣膠水溶性離子成分分析…………………….………….…..77
3.3.5 有機氣膠衍生物分析 (醛、酮)……………….……………..79
3.3.5.1 醛酮化合物前處理步驟…………………….………………79
3.3.5.2. 高效能液相層析儀 (HPLC)………………..………….…..80
3.3.5.3 高效能液相層析儀設定參數………….……………………82
3.3.6 氣膠碳成分分析………………………………………………84
3.4 二次氣膠估算方法……………………….………………….…….86
3.4.1 氯離子損失法……………………….………………….……..86
3.4.2 EC-tracer method………………………….……………………91
第四章 結果與討論……………………………….…93
4.1 自動儀器監測與人工採樣的數據比對………….………….…….94
4.2 台北都會區氣膠物化特性探討………………….………………100
4.2.1 超級測站周遭氣象概述……………………………………..100
4.2.2 氣膠質量濃度特性………………………………………..…107
4.2.3 氣膠水溶性離子特性…………………………………….….112
4.2.3.1 氣膠硫酸鹽特性………………………………………..….112
4.2.3.2 氣膠硝酸鹽特性……………………………………….…..114
4.2.4 氣膠碳成分特性…………………………………….……….116
4.2.4.1 氣膠有機碳及元素碳成分特性………………………...…116
4.3 氣膠來源分類及事件日探討…………………………………….121
4.3.1 不同氣流來源與氣膠特性……………………………..……123
4.3.2 高濃度事件日探討…………………………………………..128
4.3.3 海洋傳輸 (2003/4/23~2003/4/24)………………………….129
4.3.4 大陸沿岸傳輸 (2003/1/10~2003/1/11)……………….……132
4.3.5 高壓迴流 (2004/2/18~2004/2/19)…….……………………135
4.3.6 黃沙事件日 (2004/2/13~2004/2/16)………..…………...…137
4.4 都會區二次氣膠推估……………………………………………140
4.4.1 二次的無機氣膠估算………………………………………..140
4.4.2 估算大氣二次有機氣膠量 (EC-tracer and BC-tracer)……..154
4.4.3 估算大氣二次氣膠量 (CO-tracer)…………………...……..157
4.5 都會區氣膠光學特性…………………………………………….163
4.6 密集採樣期間氣膠物化特性…………………………………….165
4.6.1 採樣期間環境的描述………………………………..………166
4.6.2 氣膠質量濃度特性……………………………….………….171
4.6.3 氣膠水溶性離子…………………………………..…………176
4.6.4 氣體前驅物與細粒徑氣膠關係探討……………..…………181
4.6.5 氣膠碳成分……………………………………….………….183
4.6.6 大氣醛酮…………...………………………………….……..187
第五章 結論與建議……………………..………….201
5.1 結論……………………………………………………………….201
5.2 建議…………………………………………………………….…204
參考文獻……………………………………………………..205
附錄一……………..……………………………………………..……221
參考文獻 Ackermann-Librich, U., Leuenberger, Ph., Schwartz, J., Schindler, Ch., SAPALDIA-term, 1997. Lung function and long term exposure to air pollutants in Switzerland. Journal of Respiratory and Critical Care Medicine 155, 122-129.
Allen, G., Sioutas, C., Koutrakis, P., Reiss, R., Lurmann, F. W., Roberts, P.T., 1997. Evaluation of the TEOM method for measurement of ambient particulate mass in urban areas. Journal of Air and Waste Management Association. 47, 682-689.
Altshuller, A. P., 1993. Production of aldehydes as primary emissions and from secondary atmospheric reactions of alkenes and alkanes during the night and early moring hours. Atmospheric Environment. 27A, 21-23
Anastasio, C., Martin, S.T., 2001. Nanoparticles and the environment: Atmospheric nanoparticles. Washington, DC : Mineralogical Society of America 293-349
Appel, B.R., Tokiwa, Y., Hsu, J., Kothny, E.L., and Hahn, E., 1985. Visibility as Related to Atmospheric Aerosol Constituents. Atmos. Environ. 19, pp1525-1534.
Artaxo, P., Castanho, A. D., Yamasoe, M. A., Martins, J. V., 1999. Analysis of atmospheric aerosol by PIXE: the importance of real time and complementary measurements. Nuclear instruments and methods in physics research B. 150, 312-321.
Ayers, G. P., Keywood, M. D., Gras J.L., 1999. TEOM vs. manual gravimetric methods for determination of PM2.5 aerosol mass concentrations. Atmospheric Environment. 33, 3717-3721.
Baez, P.A., Belmont, R., Padilla, H., 1995. Measurements of formaldehyde and acetaldehyde in the atmosphere of Mexico City. Environmental pollution 89, 163-167.
Ball, J., Willie, C., Young, C. 1992. Evidence of a new class of mutagens in diesel particulate extracts. Environmental Science and Technology 26, 2181-2186.
Baugh, J., Ray, W., Black, F., 1987. Motor vehicle emissions under reduced ambient temperature idle operating conditions. Atmospheric Environment 21, 2077-2082.
Bennett, R. L., Stockburger., 1994. Sampling carbonaceous aerosol: Review of methods and previous measurements. U.S. Environmental Protection Agency. Atmospheric Research and Exposure Assessment Laboratory, Research Triangle Park, NC, November 1994, EPA/600/SR-94/192.
Boucher, O. and Anderson, T.L., 1996. GCM assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. Journal Geophys. Res. 100, pp26117-26134.
Bréon F.-M., Tanré, D., Generoso, S., 2002. Aerosol effect on cloud droplet size monitored from satellite. Science 295, 834-838
Broday, D. M., and Georgopoulos, P. G., 2001. Growth and Deposition of Hygroscopic Particulate Matter in the Human Lungs. Aerosol Science and Technology 34, 144-159.
Brown, D.M., Stone, V., Findlay, P., MacNee, W., Donaldson, K., 2000. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occupational and Environmental Medicine 57, 685–691.
Cadle, S.H., Dash, J.M., 1988. Wintertime concentrations and sinks of atmospheric particulate carbon at a rural location in Northern Michigan. Atmospheric Environment 22, 1373-1381.
Carlier, P., Hannachi, H., Mouvier, G., 1986. The chemistry of carbonyl compounds in the atmosphere- a review. Atmospheric Environment 20, 2079-2099.
Castanho, A.D.A., Artaxo, P., 2001. Wintertime and summertime São Paulo aerosol source apportionment study. Atmospheric Environment. 35, 4889-4902.
Castro, L.M., Pio, C.A., Harrison, R.M., Smith, D.J.T., 1999.
Carbonaceous aerosol in urban and rural European atmospheres:
estimation of secondary organic carbon concentrations. Atmospheric Environment 33, 2771–2781.
Chan, Y. C., Simpson, R. W., Mctainsh, G. H., Cohen, D. D. and Bailey, G. M., 1999. Source Apportionment of PM2.5 and PM10 Aerosols in Brisbane (Australia) by Receptor Model. Atmospheric Environment 33, 3251-3268.
Chang, S. G., Brodzinsky, R., Gundel, L. A., Novakov, T., 1982. Chemical and catalytic properties of elemental carbon. In: Wolff, G.T., Klimisch, R.L. (Eds.), Particulate Carbon: Atmospheric Life Cycle. Plenum Press, New York, pp. 158-181.
Chang, Y., Kurita, H. and Ueda, H. 1990. Transport and Formation of Sulfates and Nitrates. Atmospheric Environment 29, 1749-1773.
Chen, L.W.A., Doddridge B.G., Dickerson, R.R., Mueller, P., 2001. Seasonal variations in elemental carbon aerosol, carbon monoxide, and sulfur dioxide: Implications for sources. Geophy. Res. Lett. 28, 1711-1714
Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Maglino, K.L., Ziman, S.D., Richards, L.W., 1993. PM10 and PM2.5 compositions in California's San Joaquin Valley. Aerosol Science and Technology 18, 105-128.
Chow, J. C., Watson, J. G., Fujuta, E. M., Lu, Z. and Lawson, D. R., 1994. Temporal and Spatial Variations of PM2.5 and PM10 Aerosol in the Southern California Air Quality Study. Atmospheric Environment 28, 2061-2080.
Christensen, C.S., Skov, H., Nielsen, T., Lohse, C., 2000. Temporal variation of carbonyl compound concentrations at a semi-rural site in Denmark. Atmospheric Environment 34, 287-296.
Chu, Shao-Hang., 1997. Meteorological Conditions Conducive to Regional High Particulate Matter Episodes. AWMA 90th Annual Meeting and Exhibition, Vol.112,.06.
Chu, Shao-Hang., 2004. PM2.5 episodes as observed in the speciation trends network . Atmospheric Environment 38, 5237-5246.
Daisey, J.M., Cheney, J.L., Lioy, P.J., 1986. Profiles of organic particulate emissions from air pollution sources: status and needs for receptor source apportionment modeling. Journal of the Air Pollution Control Association 36, 17-33.
Day, D. E. and Malm, W.C., 2001. Aerosol light scattering measurements as a function of relative humidity:a comparison between measurements made at three different sites. Atmospheric Environment 35, 5169-5179.
Dick, C.A., Brown, D.M., Donaldson, K., Stone, V., 2003. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhalation Toxicology15, 39–52.
Dockery, D.W., Pope, C.A., Xu, X., Sprengler, I.D., 1993. An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine 329, 1573-1579.
Draxler, R.R., 1999. Hybrid single-particle lagrangian integrated trajectories (HYSPLIT): Version 4.0-User’s Guide. NOAA Technical Memorandum ERL ARL-230, Air Resources Laboratory, Silver Spring, MD, USA.
Dutkiewiez,V.A.,Qureshi,S.,Khan,A.R.,Ferraro,V.,Schwab,J.,Demerjian,K.,Husain,L., 2004. Sources of fine particulate sulfate in New York. Atmospheric Environment 38, 3179-3189.
Feng, Y., Wen, S., Chen, Y., Wang, X., Sheng, G., He, Q., Tang, J., Fu, J., 2004. Indoor and outdoor carbonyl compounds in the hotel ballrooms in Guangzhou, China. Atmospheric Environment 38, 103-112.
Feng, Y., Wen, S., Chen, Y., Wang, X., Lu, H., Bi, X., Sheng, G., Fu, J., 2005. Ambient levels of carbonyl compounds and their sources in Guangzhou, China. Atmospheric Environment 39, 1789-1800.
Finlayson-Pitts. B.J., Pitts, J.N., 2000. Chemistry of the upper and lower atmosphere: theory, experiments, and applications. San diego: Academic press.
Gertler, A.W., Abu-Allaban, M., Coulombe, W., Gillies, J.A., Pierson, W.R., Rogers, C.F., Sagebiel, J.C., Tarnay, L., Cahill, T.A., 2000. On-road measurement of mobile source particulate emission. Presented at the 93rd Annual Meeting, Air Waste Management Assoc., Salt Lake City, UT, 2000, June 19-22, paper 00-342.
Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., Rau, J.A., 1986. Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles. Environmental Science and Technology 20, 580-589.
Green, D., Fuller, G., Barratt, B., 2001. Evaluation of TEOMTM correction factor for assessing the EU Stage 1 limit values for PM10. Atmospheric Environment. 35, 2589-2593.
Grosjean, D., 1984. Particulate carbon in the Los Angeles air. Science of the Total Environment 32, 133-145.
Grosjean, D., Miguel, A.H., Tavares, T.M., 1990. Urban air pollution in Brazil: acetaldehyde and other carbonyls. Atmospheric Environment 24B, 101-106.
Grosjean, E., and Grosjean, D., 1996. Carbonyl products of the gas-phase reaction of ozone with 1-alkenes. Atmospheric Environment 30, 4107-4113.
Grosjean, E., and Grosjean, D., 1997. Gas Phase Reaction of Alkenes with Ozone: Formation Yields of Primary Carbonyls and Biradicals. Environment Sciences and Technology. 31, 2421-2427
Grosjean, D., Grosjean, E., Gertler, A. W., 2001a. On-Road Emissions of Carbonyls from Light-Duty and Heavy-Duty Vehicles. Environment Sciences and Technology. 35, 45-53
Grosjean, D., Grosjean, E., Gertler, A. W., 2001b. On-Road Measurement of Carbonyls in Califorina Light-Duty Vehicle Emissions. Environment Sciences and Technology. 35, 4198-4204
Grosjean, D., Grosjean, E., Moreira, L. F. R., 2002. Speciated Ambient Carbonyls in Rio de Janeiro, Brazil. Environment Sciences and Technology. 36, 1389-1395
Hansen, A.D.A., Rosen. H., Novakov. T., 1984. The aethalometer-an instrument for the real-time measurement of optical absorption by aerosol particles. Science of the Total Environment. 36, 191-196.
Harrison, R. M., and Yin, J., 2000. Particulate matter in the atmosphere: which particle properties are important for its effects on health? Science of the Total Environment 249, 85-101.
Haywood, J.M., Ramaswamy, V., Soden, B.J., 1999. Tropospheric aerosol climate forcing in clear-sky satellite observations over the ocean. Science 283, 1299-1303.
Heinrich, U., Dungworth, L. 1991. The carcinogenic effects of carbon black particles and tar/pitch condensation aerosols after inhalation exposure of rates. Seventh International Symposium on Inhaled Particles, Edinburgh.
Hering, S.V., Stolzenburg, M.R., Hand, J.L., Kreidenweis, S.M., Lee, T., Collett Jr., J.L., Dietrich, D., Tigges, M., 2003. Hourly concentrations and light scattering cross sections for fine particle sulfate at Big Bend National Park. Atmospheric Environment 37, 1175-1183.
Ho, K.F., Lee, S.C., Louie, Peter K.K., Zou, S.C., 2002. Seasonal variation of carbonyl compound concentrations in urban area of Hong Kong. Atmospheric Environment 36, 1259-1265.
Hopke, P. K., 1982. Trace Element Concentrations in Summer Aerosols at Rural Sites in New York State and Their Possible Sources, and Seasonal Variations in the Composition of Ambient Sulfate-Containing Aerosols in the New York Area. Atmospheric Environment 16A, 1379-1386.
Horvath, H., 1993. Atmospheric Light Absorption — A Review Atmospheric Environmen27A, 293-317.
Jang, M., Carroll, B., Chandramouli, B., Kamens, R. M., 2003. Particle Growth by Acid-Catalyzed Heterogeneous Reactions of Organic Carbonyls on Preexisting Aerosol. Environment Sciences and Technology. 37, 3828-3837
Japar, S.M., Brachaczek, W.W., Gorse, R.A., Norbeck, J.M., Pierson, W.R., 1986. The contribution of elemental carbon to the optical properties of rural atmospheric aerosols. Atmospheric Environment 20, 1281-1289.
John, W., Wall, S. M., Ondo, J. L. and Winklmayr, W., 1990. Modes in the Size Distribution of Atmospheric Inorganic Aerosol. Atmospheric Environment 24A, 2349-2359.
Kean, A. J., Grosjean, E., Grosjean, D., Harley, R. A., 2001. On-Road Measurement of Carbonyls in Califomia Light-Duty Vehicle Emissions. Environment Sciences and Technology. 35, 4198-4204
Kennedy, K. J., and Hinds, W. C., 2002. Inhalability of large solid particles. Journal Aerosol Scence and Technology. 33, 237 –255.
Kim, S., Shen, S., Zhu, Y., Hinds, W. C., March, 2002. Size Distribution and Diurnal and Seasonal Trends of Ultrafine Particles in Source and Receptor Sites of the Los Angeles Basin. Journal Air & Waste Manage 52, 297-307.
Koloutsou-Vakakis, S., Carrico, C. M., Li, Z., Rood, M. J., and Ogren, J. A., 1999. Characterization of Aerosol Properties and Radiative Forcing at an Anthropogenically Perturbed Continental Site. Phys. Chem. Earth. 24, 541-546.
Koutrakis, P., Sioutas, C., Ferguson, S. T., Wolfson, J. M., Mulik, J. D., 1993. Development and Evaluation of a Glass Honeycomb Denuder/ Filter Pack System to Collect Atmospheric Gases and Particles. Environmental Science and Technology 27, 2497- 2501.
Kulmala, M., Keronen, P., Laaksonen, A., Vesala, T. and Korhonen, P. 1995. The Effect of HCl on Cloud Droplet Formation. Journal Aerosol Science 26, 413-414.
Lavanchy, V. M. H., Gaggeler, H. W., Nyeki, S., Baltensperger, U., 1999. Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the high-alpine research station Jungfraujoch. Atmospheric Environment. 33, 2759-2769.
Lee, C.T., Hsu, W.C., 1996. The source apportionment of urban aerosol from chemical properties of aerosol spectra near atmospheric sources. J. Chinese Institute of Engineers 19, 1-13.
Lim, Y.B., Ziemann P.J., 2005. Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of NOx. Environmental Science and Technology 39, 9229-9236.
Lim, H.J., Turpin, B, 2002. Origins of primary and secondary organic aerosol in Atlanta: results of time-resolved measurements during the Atlanta supersite experiment. Environmental Science and Technology 36, 4489–4496.
Liu, D. Y., Prather, K. A., Hering, S. V., 2000. Variation in the size and chemical composition of nitrate-containing particles in Riverside,CA. Aerosol Science and Technology. 33, 71-86.
Lohmann, U., Feichter, J., Penner, J., Leaitch, R., 2000. Indirect effect of sulfate and carbonaceous aerosol: A mechanistic treatment. J. Geophy. Res. 105, 193-206
Makela, J.M., Aalto, P., Jokinen, V., Pohja, T., Nissinen, A., Palmroth, S., MarkKanen, T., Seitsonen, K., Lihavainen H., Kulmala, M., 1997. Observations of ultrfine aerosol particle formation and growth in boreal forest. Geophy. Res. Lett. 24, 1219-1222
Mamane, Y., 1986. Estimate of Municipal Refise Incinerator Contribution to Philadelphia Aerosol Using Single Particle Analysis. Atmospheric Environment 24B, 127-135.
Mangelson, N. F., Lewis, L., Joseph,J. M., Cui, W., Machir, J., Williams, N. W., Eatough, D. J., Rees, L. B., Wilkerson, T. and Jensen, D. T., 1997.The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in cache valley, utah. AWMA 47, 167-175.
Marple, V.A., Rubow, K.L., Behm, S.M., 1991. A Microorifice Uniform Deposit Impactor (MOUDI): Description, Calibration, and Use. Aerosol Science and Technology 14, 434-446.
Meyer, M., Lijek, J., Ono, D., 1992. Continuous PM10 measurements in a woodsmoke environment, PM10 Standards and Nontraditional Particulate Source Controls. In: Chow, J.C., Ono, D.M. (EDS.), Air and Waste Management Association. TR-22, vol 1, 24-38.
Molnar, A. and Meszaros, E., 2001. On the relation between the size and chemical composition of aerosol particles and their optical properties. Atmospheric Environment 35, 5053-5058.
Morawska. L., Johnson. G., Ristovski Z. D., Agranovski V., 1999. Relation between particle mass and number for submicrometer airbone particles. Atmospheric Environment. 33, 1983-1990.
Neusuess, C., Gnauk, T., Plewka, A., Herrmann, H., Quinn, P.K., 2002. Carbonaceous aerosol over the Indian Ocean: OC/EC fractions and selected specifications from size-segregated onboard samples. J. Geophys. Res. 107
Novakov, T. 1982. Soot in the atmosphere. In: Wolff, G.T., Klimisch, R.L., (Eds.), Particulate Carbon: Atmospheric Life Cycle. Plenum, New York, 19-41.
Oberdorster, G., Utell, M.J., 2002. Ultrafine particles in the urban air: to the respiratory tract—and beyond? Environmental Health Perspectives 110, A440–A441.
Ohta, S. and Okita, T., 1990. A Chemical Characterization of Atmospheric Aerosol in Sapporo. Atmospheric Environment 24A, 815-822.
Penner, J.E., Charloson, R.J., Hales, J.M., Laulainen, N.S., Leifer, R., Novakov, T., Ogren, J., Radke, L.F., Schwartz, S.E., Travis, L., 1994. Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosol. Bull. Am. Meteorol. Soc. 75, 375-400.
Possanzini, M., Di Palo, V., Petricca, M., Fratarcangeli, R., Brocco, D, 1996. Measurements of lower carbonyls in Rome ambient air. Atmospheric Environment 27A, 1309-1330.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environmen 30, 3757-3764.
Rupprecht, G., Patashnick, H., Beeson, D. E., Green, R. N., Meyer, M. B., 1995. A new automated monitor for the measurement of particulate carbon in the atmosphere. Particulate Matter: Health and Regulatory Issues, Pittsburgh, PA.
Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 2001. Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood. Environmental Science and Technology 35, 1716-1728.
Schroeder, W. H., Dobson, M., Kane, D. M., and Johnson, N. D, 1987. Toxic Tracer Element Associated with Air bone Particulate Matter: A Review. Journal of Air and Waste Management 37,1267-1285.
Schroeter,J. D., Musante,C. J., Hwang, D., Burton, R., Guilmette,R., and Martonen, T. B., (2001) Hygroscopic Growth and Deposition of Inhaled Secondary Cigarette Smoke in Human Nasal Pathways. Aerosol Science and Technology 34, 137-143.
Schwartz, J., 1994. Particulate air pollution and chronnic respiratory disease. Environmental Research 62, 7-13.
Schwartz, J., Dockery, D.W., Neas, L.M., 1996. Is daily mortality associated specifically with .fine particles? Journal of the Air and Waste Management Association 46, 927–939.
Seaton, A., MacNee, W., Donaldson, K., Godden, D., 1995. Particulate air pollution and acute health effects. Lancet 345, 176-178.
Seinfeld, J.H. and Pandis S. N., 1998. Atmospheric chemistry and physics :From air pollution to climate change. Wiley-Interscience, New York
Serne, J. C. and Mauch, S. C., 1988. Ambient Air Toxics Monitoring for Greater Detroit Resource Recovery Facility: Inter-Site Comparisions. AWMA 84th Annual Meeting and Exhibition, Vol.91-80,.16
Shah, J.J., Johnson, R.L., Heyerdahl, E.K., Huntzicker, J.J., 1986. Carbonaceous aerosol at urban and rural sites in the United States. Journal of the Air Pollution Control Association 36, 254-257.
Shepson, P.B., Hastie, D.R., Schiff, H.I., Polizzi, M., 1991. Atmospheric concentrations and temporal variations of C1-C3 carbonyl compounds at two rural sites in central Ontatio. Atmospheric Environment 25A, 2001-2015.
Sillman, S., 1999. The relation between ozone, NOx, and hydrocarbons in urban and polluted rural environments. Atmospheric Environment 33, 1821-1845.
Sioutas, C., Wang, P.Y., Ferguson, S.T., Koutrakis, P.; Mulik, J.D., 1996. Laboratory and Field Evaluation of an improved Glass Honeycomb Denuder/Filter Pack Sampler. Atmospheric Environment 30, 885-895.
Stehr, J.W., Ball, W.P., Dickerson, R.R., Doddridge, B.G., Pirty, C.A., Johnson, J., 2002. Latitudinal gradients in O3 and CO during INDOEX 1999. J. Geophys. Res. 107
Stolzenburg, M. R. and Hering, S. V., 1999. Automated measurement of PM2.5 nitrate and sulfate. 93rd Annual Conference of the Air & Waste Management Association.
Stolzenburg, M. R. and Hering, S. V., 2000. Method for the Automated Measurement of Fine Particle Nitrate in the Atmosphere. Environment Sciences Technology. 34, 907-914.
Strader, R., Lurmann, F., Pandis, S.N., 1999. Evaluation of secondary organic aerosol formation in winter. Atmospheric Environment 33, 4849–4863.
Tang, J., 2002. Preliminary study of aldehydes and other volatile organic compounds in the atmospheric environment of Guangzhou. Master’s degree thesis, 44-50 (in Chinese)
Turnbull, A.B., Harrison, R.M., 2000. Major component contributions to PM10 composition in the UK atmosphere. Atmospheric Environment 34, 3129-3137.
Turpin B.J., and Huntzicker J.J., 1991. Secondary formation of organic
aerosol in the Los Angeles Basin: adescriptive analysis of organic and
elemental carbon concentrations. Atmospheric Environment. 25A, 207-215.
Turpin, B.J., and Huntzicker, J.J., 1995. Identification of secondary organic aerosol concentrations during SCAQS. Atmospheric Environment 29, 3527-3544.
Twomey, S.A., 1991. Aerosol clouds and radiation. Atmpspheric Environment 25A, 2435-2442.
U.S. Environment Protection Agency, 1999 . Air Quality Criteria for Particulate Matter Volume 1. EPA/600/P-99/002a, Office of Research and Development , Washington, DC
Utell, M.J., Frampton, M.W., 2000. Acute health effects of ambient air pollution: the ultrafine particle hypothesis. Journal of the Air and Waste Management Association 13, 355–359.
Valaoras, G., Huntzicker, J.J., White, W.H., 1988. On the contribution of motor vehicles to the Athenian “Nephos”; an application of factor signitres. Atmpspheric Environment 22, 965-971.
Villauneva, I., Popp, C.J., Martin, R.S., 2004. Biogenic emissions and ambient concentrations of hydrocarbons, carbonyl compounds and organic acids from ponderosa pine and cottonwood trees at rural and forested sites in central New Mexico. Atmospheric Environment 38, 249-260.
Wang, D., Fuentes, J.D., Travers, D., Dann, T., Connolly, T., 2005. Non-methane hydrocarbons and carbonyls in the Lower Fraser Valley during PACIFIC 2001. Atmospheric Environment 398, 5261-5272.
Watson, J. G., Chow, J. C., Lowenthal, D. H., Stolzenburg, M. R., Kreisberg, N. M., Hering, S. V., 2002. Particle Size Relationships at the Fresno Supersite. Journal Air and Waste Management. 52, 822-827.
Wedepohl, K. H., 1987. The Composition of the Upper Earth’s Crust and the Natural Cycles of Selected Metals. Metals and their Compounds in the Environment.
Whitby, K.T., Cantrell, B., 1976. Fine particles. In international conference on environmental sensing and assessments, Las Vegas, NV, Institute of Electric and Electronic Engineers.
Wilson, T.R.S., 1975. Salinty and the major elements of sea water. Chemical Oceanography, 1, 2nd edtion., Riley, J.P., and Skirrow, G. (eds), Academic, Orlando, Fla.
Woo, K. S., Chen, D. R., Pui, D.Y. H., McMurry, P. H., 2001. Measurement of Atlanta aerosol size distributions:observations of ultrafine particle events. Aerosol Science and Technology. 34, 75-87.
Yu, S., Dennis, R.L., Bhave, P.V., Eder, B.K., 2004. Primary and secondary organic aerosols over the United State:estimates on the baisi of observed organic carbon (OC) and elemental carbon (EC),and air quality modeled primary OC/EC ratios. Atmospheric Environment.38, 5257-5268.
Zhang, J., He, Q., Lioy, P.J., 1994. Charcteristics of aldehydes: concemtrations, source, and exposures for indoor and outdoor residential microenvironments. Environmental Science and Technology 28, 146-152.
Zhang, J., Smith, K.R., 1999. Emissions of carbonyls compounds from various cook stoves in China. Environmental Science and Technology 33, 2311-2320.
彭啟明,1993 台灣北部地區混合層高度的觀測與模擬,國立中央大學物理研究所碩士論文
詹俊南,1996 臺灣地區PM10污染特性分析,國立台灣大學環境工程研究所碩士論文。
胡漢升,1998 ”環境醫學”,科技圖書股份有限公司。
梁永志,2003 北台灣長程傳輸氣膠化學特性,國立中央大學環境工程研究所碩士論文
朱宏勳,2004 長程傳輸對北台灣大氣氣膠特性的影響,國立中央大學環境工程研究所碩士論文
沈士翔,2006 綜觀天氣及不同氣流軌跡影響下的北台灣氣膠特性,國立中央大學環境工程研究所碩士論文
指導教授 李崇德(Chung-Te Lee) 審核日期 2006-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明