博碩士論文 92326004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:52.15.63.145
姓名 林何印(He-Yin Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 超濾與逆滲透薄膜程序處理及回收工業廢水之研究
(Treatment and reuse of industrial wastewater with ultrafiltration and reverse osmosis)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究選擇用水量較大之產業,包含工業區二級(KI2)/三級處理水(KI3)、化學機械研磨廢水(CMP)與染整廠放流水(TEX),以超濾(UF)與逆滲透(RO)薄膜程序加以處理,探討水質特性與薄膜特性對兩種薄膜處理效率影響,並評估UF/RO程序回收廢水之可行性。
研究結果顯示,UF過濾四種水樣之滲透液通量探討中,由Hermia模式模擬之阻塞機制以標準阻塞與濾餅過濾兩種為主,其中微粒之粒徑與界達電位為影響滲透液通量的主要因子。水樣經過UF處理後 SDI 值有明顯的下降,KI2、KI3、CMP與TEX分別降至 6.3、6.0、6.0 與 3.3,此對RO膜操作仍可能有很高的阻塞趨勢,但經過 UF 前處理確實可維持較佳的RO滲透液通量,顯示 UF前處理仍有其必要性。此外,本研究亦以原子力顯微鏡(AFM)、掃描式電子顯微鏡(SEM)、膠體滲透層析儀(GPC)、界達電位與膜面接觸角等膜面特性與各項水質分析,推測UF與RO去除污染物之機制,UF去除懸浮微粒的機制應包含篩除與靜電排斥力,而RO對於微粒也以篩除機制加以去除;UF與RO對於有機物質的去除,皆包含有篩除機制、靜電排斥力與疏水性交互作用,而RO膜之膜孔甚小於UF薄膜,膜面亦帶有負電性,且其疏水性高於UF薄膜,所以可將有機物大量的去除;在無機鹽類方面,UF對於導電度的去除效果,應該由膜面所帶電性造成,至於RO方面,由於其屬於表面緻密薄膜,對於水中無機鹽類去除應該以溶解擴散機制為主。
另一方面,經UF/RO程序處理後,KI2與KI3之滲透液濁度、色度及導電度去除率,分別為99 %、95 % 及 96 % 以上,處理水可用於冷卻水與低壓鍋爐用水;CMP滲透液的濁度去除率可達 99 % 以上,處理水可作為超純水製水機的飼水;TEX之滲透液色度與導電度去除率,分別為96 %與95 %以上,處理水符合自來水與紡織業用水標準,僅pH值有略高之現象。此外,於回用時需考量是否會有微生物與管線腐蝕問題。最後本研究分析不同水樣之造水成本,KI2、KI3、CMP與TEX分別為 31.1、27.7、13.1與 27.4 元/噸,以工業取水現狀而言,造水成本偏高,但若基於零排放的目標與用水合理化的考量下,未來徵收水污費、調整水價及以法規規範各產業之水回收再利用率後,則UF/RO 程序回收廢水將具有潛在優勢與可行性。
摘要(英) The purpose of this research is to evaluate the performance relationship between wastewater chemistry and membrane properties using UF and RO membrane process to treat four types of heavily water-consuming industrial wastewaters, containing Industrial Park Secondary discharge/ Tertiary effluent (KI2/KI3), chemical mechanical polishing wastewater (CMP) and textile effluent (TEX). Simultaneously, the feasibility of water reuse treated by UF/RO membrane process was also accessed.
The result shows that the major blocking mechanism of UF membrane process simulating by Hermia model is standard blocking and cake filtration. The variation of permeate flux was effected by the particle size and zeta potential of suspended colloid materials. Although the SDI value of permeate from four types of industrial wastewater treated by UF process was significantly decreased to 6.3, 6.0, 6.0 and 3.3, respectively, it also had a high fouling potential for the feed water into RO process. On the other hand, the UF pretreatment process was also needed to increase the optimum RO permeate flux. In addition, this research utilized the innovative analytical technologies, such as AFM, SEM, contact angle, zeta potential of membrane properties, and the analysis of wastewater chemistry to elucidate the pollutant removal mechanism of UF and RO membrane process. For the rejection of suspended colloid materials, the size exclusion and electrostatic repulsion for UF process and the size exclusion for RO process are the major mechanism. For the rejection of organic substance, the size exclusion, electrostatic repulsion and hydrophobic interaction are the major mechanism for UF and RO process. Moreover, there are a lot of tinier membrane pore and higher hydrophobic on RO membrane surface resulting in the removal of organic substance on RO process was more than UF process. As far as the rejection of salt, the electrostatic repulsion for UF process and the solution and diffusion within nonporous denser membrane for RO process are the major mechanism.
On the other hand, the water quality of the reuse of permeate for four types of industrial wastewater treated by UF/RO process was also evaluated. The turbidity, color and conductivity removal efficiencies of KI2 and KI3 permeate are more than 99%, 95%, and 96%, respectively, this permeate can utilize to the reuse of cooling water and low-pressure boiler make-up water. For CMP permeate, the removal efficiency of turbidity is more than 99% and the permeate can reuse to the feed of pure water machine. For TEX permeate, the removal efficiency of color and conductivity are more than 96% and 95%, respectively, and the permeate can reuse to textile process water and tap water. In order to find the potential of application and feasibility of UF/RO process, this investigation try to analysis the treatment cost of four types of industrial wastewaters. The cost for KI2, KI3, CMP and TEX are 31.1, 27.7, 13.1 and 27.4 NT/ton, respectively.
關鍵字(中) ★ 逆滲透
★ 薄膜程序
★ 超濾
★ 薄膜阻塞模式
★ 水回收
關鍵字(英) ★ water reuse
★ membrane blocking model
★ ultrafiltration
★ reverse osmosis
★ membrane process
論文目次 摘要……………………………………………………………….…….Ⅰ
Abstract……………………………………………………………..…Ⅱ
目錄…………………………………………………………………..…Ⅲ
圖目錄………………………………………………………………..…Ⅵ
表目錄………………………………………………………………..…Ⅹ
第一章 前言……………………………………………………....01
1.1 研究緣起……………………………………………………...01
1.2 研究目的……………………………………………………...02
第二章 文獻回顧…………………………………………………..03
2.1 工業廢水處理技術與回收再利用目標水質………………...03
2.1.1 工業廢水處理及回收再利用潛勢………………………03
2.1.2 工業用水分類與回收再利用目標水質…………………05
2.1.3 薄膜程序處理及回收工業廢水…………………………09
2.2 薄膜程序……………………………………………………...18
2.2.1 薄膜種類與形式…………………………………………18
2.2.2 薄膜原理與機制…………………………………………21
2.2.3 薄膜模式……....………………………………………23
2.2.4 影響薄膜操作效率因子…………………………………28
2.2.5 薄膜程序應用限制與改善方式…………………………31
第三章 實驗材料及研究方法………………………………………35
3.1 實驗材料……………………………………………………….35
3.2 實驗藥品……………………………………………………….39
3.3 實驗儀器與設備……………………………………………….40
3.4 實驗項目與步驟……………………………………………….42
3.5 分析項目及方法……………………………………………….45
第四章 結果與討論…………………………………………………52
4.1 廢水水質調查分析…………………………………………….52
4.1.1 廢水水質特性……………………………………......52
4.1.2 廢水回收再用評析規劃………………………………..58
4.2 薄膜特性……………………………………………………….63
4.3 UF 薄膜程序處理工業廢水之探討……………………………69
4.3.1 飼水水質對於 UF 滲透液通量之影響…………………69
4.3.2 由模式模擬探討飼水水質對滲透液通量之影響….….71
4.3.3 飼水水質對於 UF 滲透液水質之影響…………………93
4.3.4 清水回收率對於 UF 滲透液水質之影響………………...97
4.4 RO 薄膜程序處理工業廢水之探討……………….………….101
4.4.1 飼水水質對 RO 滲透液通量之影響…………………..….101
4.4.2 飼水水質對 RO 滲透液水質之影響…………...........106
4.4.3清水回收率對於 RO 滲透液水質之影響………………....115
4.5 UF與RO薄膜程序過濾廢水機制與滲透液水質之關係…….…118
4.6 UF/RO 薄膜程序回收工業廢水之整體評估………….......121
第五章 結論與建議…………………………………………………129
5.1 結論…………………………………………………………….129
5.2 建議…………………………………………………………….131
參考文獻…………………………………………………………….133
附錄一 Hermia 模式模擬UF過濾結果….…….…………………附01
附錄二 UF薄膜SEM觀測結果……….……….…………….…….附05
附錄三 美國半導體工業用水標準………………..…………...附09
參考文獻 1. Abdessemed, D. and G. Nezzal, “Treatment of primary effluent by coagulation-adsorption-ultrafiltration for reuse,” Desalination, Vol. 152, pp. 367-373(2002).
2. Afonso, M. D., A. M. B. Alves and M. Mohsen, “Crossflow microfiltration of marble processing wastewaters,” Desalination, Vol. 149, pp. 153-162(2002).
3. Akbari, A. S. Desclaux, J. C. Remigy and P. Aptel, “Treatment of textile dye effluents using a new photografted nanofiltration membrane,” Desalination, Vol. 149, pp. 101-107(2002).
4. Balannec, B., G. Gésan-Guiziou, B. Chaufer, M. Rabiller-Baudry and G. Daufin, “Treatment of dairy process waters by membrane operations for water reuse and milk constituents concentration,” Desalination, Vol. 147, pp. 89-94(2002).
5. Bellona, C., J. E. Drewes, P. Xu and G. Amy, “Factors affecting the rejection of organic solutes during NF/RO treatment─a literature review,” Water Research, Vol. 38, pp. 2795-2809(2004).
6. Bick, A. and G. Oron, “Assessing the linkage between feed water quality and reverse osmosis membrane performance,” Desalination, Vol. 137, pp. 141-148(2001).
7. Blöcher, C., J. Dorda, V. Mavrov, H. Chemiel, N.K. Lazaridis and K.A. Matis, “Hybrid flotation-membrane filtration process for the removal of heavy metal ions from wastewater,” Water Research, Vol. 37, pp. 4018-4026(2003).
8. Blöcher, C., M. Noronha, L. Fünfrocken, J. Dorda, V. Mavrov, H. D. Janke and H. Chmiel, “Recycling of spent process water in the food industry by an integrated process of biological treatment and membrane separation,” Desalination, Vol. 144, pp. 143-150(2002).
9. Bruggen, B. V., H. K. Jeong, A. D. Francis, G. Jerogen and V. Carlo, “Influence of MF pretreatment on NF performance for aqueous solutions containing particles and an organic foulant,” Separation and Purification Technology, Vol. 36, pp. 203-213(2004).
10. Cassano, A., J. Adzet, R. Molinari, M.G. Buonomenna, J. Roig and E. Drioli, “Membrane treatment by nanofiltration of exhausted vegetable tannin liquors from the leather industry,” Water Research, Vol.37, No. 10, pp. 2426-2434(2003).
11. Cassano, A., R. Molinari and E. Drioli, “Saving of water and chemical in tanning industry by membrane process,” Wat. Sci. Tech., Vol. 40, pp. 443-450(1999).
12. Chang, J. S., L. J. Tsai and S. Vigneswaran, “Experimental investigation of the effect of particle size distribution of suspended particles on microfiltration,” Water Science and Technology, Vol. 34, pp. 133-140(1996).
13. Chang, S., T. A. Waite, A. I. Schäfer and A. G. Fane, “Adsorption of trace steroid estrogens to hydrophobic hollow fiber membranes,” Desalination, Vol. 146, pp. 381-386(2002).
14. Chmiel, H., M. Kaschek, C. Blöcher, M. Noronha and V. Mavrov, “Concepts for the treatment of spent process water in the food and beverage industries,” Desalination, Vol. 152, pp. 307-314(2002).
15. Dagmar, Š., M. Petr, J. W. Richard and V. Pavlína, “Influence of ionic strength and pH of dispersed systems on microfiltration,” Desalination, Vol.163, pp.323-332(2004).
16. Durham, B., M. M. Bourbigot and T. Pankratz, “Membranes as pretreatment to desalination in wastewater reuse: operating experience in the municipal and industrial sectors,” Desalination, vol. 138, pp. 83-90(2001).
17. Elimelech, M., X. Zhu, A. Childress and S. Hing, “Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes,” Journal of Membrane Science, Vol. 127, pp. 101-109(1997).
18. Hermia, J., “Constant pressure blocking filtration laws ─ application to power-law non-newtonian fluids,” Institution of Chemical Engineers, Vol. 60, pp. 183-187(1982).
19. Hilal, N., H. Al-Zoubi, N. A. Darwish, A. W. Mohammad and M. Abu Arabi, “A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy,” Desalination, Vol. 170, pp. 281-308(2004).
20. How, Y. N. and E. Menachem, “Influence of colloidal on rejection of trace organic contaminants by reverse osmosis,” Journal of Membrane Science, Vol. 244, pp. 215-226(2004).
21. Kaiya, Y., Y. Itoh, K. Fujita and S. Takizawa, “Study on materials in the membrane treatment process for potable water,” Desalination, Vol. 106, pp. 71-77(1996).
22. Kang, S. K. and K. H. Choo, “Use of MF and UF membranes for reclamation of glass industry wastewater containing colloidal clay and glass particles,” Journal of Membrane Science, Vol. 223, pp. 89-103(2003).
23. Karabelas, A. J., S. G. Yiantsios, Z. Metaxiotou, N. Andritsos, A. Akiskalos, G. Vlachopoulos and S. Stavroulias, “Water and materials recovery from fertilizer industry acidic effluents by membrane processes,” Desalination, Vol. 138, pp. 93-102(2001).
24. Karakulski, K. and A. W. Morawski, “Purification of copper wire drawing emulsion by application of UF and RO,” Desalination, Vol. 131, pp. 87-95(2000).
25. Karakulski, K. and A. W. Morawski, “Treatment of spent emulsion from a cable factory by an integrated UF/NF membrane system,” Desalination, Vol. 149, pp. 163-167(2002).
26. Kim, S. L., J. P. Chen and Y. P. Ting, “Study on feed pretreatment for membrane filtration of secondary efflunet,” Separation and Purification Technology, Vol. 29, pp. 171-179(2002).
27. Konieczny, K., “Modelling of membrane filtration of natural water for potable purposes,” Desalination, Vol. 143, pp. 123-139(2002).
28. Koyuncu, I., D. Topacik and E. Yuksel, “Reuse of reactive dyehouse wastewater by nanofiltration: process water quality and economical implications,” Separation and Purification Technology, Vol. 36, pp. 77-85(2004).
29. Lee, N., G. Amy, J. P. Croué and H. Buisson, “Identification and understanding of fouling in low-pressure membrane(MF/UF) filtration by natural organic matter(NOM),” Water Research, Vol. 38, pp. 4511-4523(2004).
30. Lee, Y. and M. M. Clark, “Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions,” Journal of Membrane Science, Vol. 149, pp. 181-202(1998).
31. Li, X., W. Li, S. Lu, A. Wang, Q. Zhu and Y. Ling, “Treating dyeing waste water by ceramic membrane in crossflow microfiltration,” Desalination, Vol. 149, pp. 199-203(2002).
32. Li, X. Z. and Y. G. Zhao, “Advanced treatment of dyeing wastewater for reuse,” Wat. Sci. Tech., Vol. 39, pp. 249-255(1999).
33. Lin, S. H. and M. L. Chen, “Treatment of textile wastewater by chemical methods for reuse,” Water Research, Vol.31, pp.868-876(1997).
34. López-Ramírez, J. A., D. S. Márquez and J. M. Q. Alonso, “Comparison studies of feedwater pre-treatment in a reverse osmosis pilot plant,” Desalination, Vol. 144, pp. 347-352(2002).
35. Marcucci, M., G. Ciardelli, A. Matteucci, L. Ranieri and M. Russo, “Experimental campaigns on textile wastewater for reuse by means of different membrane processes,” Desalination, Vol. 149, pp. 137-143(2002).
36. Marcucci, M., G. Nosenzo, G. Capannelli, I. Ciabatti, D. Corrieri and G. Ciardelli, “Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies,” Desalination, Vol. 138, pp. 75-82(2001).
37. Miyaki, H., S. Adachi, K. Suda and Y. Kojima, “Water recycling by floating media and nanofiltration at a soft drink factory,” Desalination, Vol. 131, pp. 47-53(2000).
38. Mohammadi, T., M. Kazemimoghadam and M. Saadabadi, “Modeling of membrane fouling and flux decline in reverse osmosis during separation of oil water emulsions,” Desalination, Vol. 157, pp. 369-375(2003).
39. Mozia, S., M. Tomaszewska and A. W. Morawski, “Studies on the effect of humic acids and phenol on adsorption ─ ultrafiltration process performance,” Water Research, Vol. 39, pp. 501-509(2005).
40. Mujeriego, R. and T. Asano, “The role of advanced treatment in wastewater reclamation and reuse,” Water Science and Technology, Vol. 40, pp. 1-9(1999).
41. Munir, C., “Ultrafiltration and microfiltration handbook,” Technomic, Lancaster(1998).
42. Nicolaisen, B., “Developments in membrane technology for water treatment,” Desalination, Vol. 153, pp. 355-360(2002).
43. Noronha, M., T. Britz, V. Mavrov, H. D. Janke and H. Chmiel, “Treatment of spent process water from a fruit juice company for purposes of reuse: hybrid process concept and on-site test operation of a pilot plant,” Desalination, Vol. 143, pp. 183-196(2002).
44. Nyström, M., A. Pihlajamäki, R. Liikanen and M. Mänttäri, “Influence of process conditions and membrane/particle interation in NF of Wastewaters,” Desalination, Vol. 156, pp. 379-387(2003).
45. Paul, D. R., “Reformulation of the solution-diffusion theory of reverse osmosis,” Journal of Membrane Science, Vol. 241, pp. 371-386(2004).
46. Peng, W., I. C. Escobar and D. B. White, “Effects of water chemistries and properties of membrane on the performance and fouling ─ a model development study,” Journal of Membrane Science, Vol. 238, pp. 33-46(2004).
47. Qin, J. J., M. H. Oo, M. N. Wai, C. M. Ang, F. S. Wong and H. Lee, “A dual membrane UF/RO process for reclamation of spent rinses from a nickel-plating operation―a case study,” Water Research, Vol. 37, pp. 3269-3278(2003).
48. Renbi, B. and H. F. Leow, “Microfiltration of activated sludge wastewater─the effect of system operation parameters,” Separation and Purification Technology , Vol. 29, pp. 189-198(2002).
49. “Reverse Osmosis and Nanofiltration,” American Water Works Association, Denver(1999).
50. Richard, W. B., “Membrane technology and applications,” John Wiley & Sons, New York(2004).
51. Ridel, K., B. Girard and R. W. Lencki, “Influence of membrane structure on fouling layer morphology during apple juice clarification,” Journal of Membrane Science, Vol. 139, pp. 155-166(1998).
52. Rozzi, A., M. Antonelli and M. Arcari, “Membrane treatment of secondary textile effluents for direct reuse,” Water Science and Technology, Vol. 40, pp. 409-416(1999).
53. Shon, H. K., S. Vigneswaran, I. S. Kim, J. Cho and H. H. Ngo, “Effect of pretreatment on the fouling of membranes: application in biologically treated sewage effluent,” Journal of Membrane Science, Vol. 234, pp. 111-120(2004).
54. Smith, A. J., J. Khow, B. Londge and G. Bavister, “Desalination of poor quality brackish groundwater for non-potable use,” Desalination, Vol. 139, pp. 207-215(2001).
55. Song, L., “Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling,” Journal of Membrane Science, Vol. 139, pp. 182-200(1998).
56. Suthanthararajan, R., E. Ravindranath, K. Chitra, B. Umamaheswari, T. Ramesh and S. Rajamani, “Membrane application for recovery and reuse of water from treated tannery wastewater,” Desalination, Vol. 164, pp. 151-156(2004).
57. Tansel, B., W. Y. Bao and I. N. Tansel, “Characterization of fouling kinetics in ultrafiltration systems by resistances in series model,” Desalination, Vol. 129, pp. 7-14(2000).
58. Viero, A. F., A. C. R. Mazzarollo, K. Wada and I. C. Tessaro, “Removal of hardness and COD from retanning treated effluent by membrane process,” Desalination, Vol. 149, pp. 145-149(2002).
59. Vrijenhoek, E. M., S. Hong and M. Elimelech, “Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes,” Journal of Membrane Science, Vol. 188, pp. 115-128(2001).
60. Weber, J. W. J. and LeBoeuf E. J., “Processes for advanced treatment of water,” Water Science and Technology, Vol. 40, pp. 11-19(1999).
61. Wong, F. S., J. J. Qin, M. N. Wai, A. L. Lim and M. Adiga, “A pilot study on a membrane process for the treatment and recycling of spent final rinse water from electroless plating,” Separation and Purification Technology, Vol. 29, pp. 41-51(2002).
62. Yalcin, F., I. Koyuncu, I. Oztürk and D. Topacik, “Pilot scale UF and RO studies on water reuse in corrugated board industry,” Water Science and Technology, Vol. 40, pp. 303-310(1999).
63. Yeom, C. K., S. H. Lee and J. M. Lee, “Effect of the ionic characteristics of anionic solutes in reverse osmosis,” Journal of Membrane Science, Vol. 169, pp. 237-247(2000).
64. Yiantsios, S. G. and A. J. Karabelas, “An assessment of the silt density index based on RO membrane colloidal fouling experiments with iron oxide particles,” Desalination, Vol. 151, pp. 229-238(2002).
65. Yoon, Y., G. Amy, J. Cho and N. Her, “Effects of retained natural organic matter(NOM) on NOM rejection and membrane flux decline with nanofiltration and ultrafiltration,” Desalination, Vol. 173, pp. 209-221(2005).
66. Zhu, A., W. Zhu, Z. Wu and Y. Jing, “Revovery of clindamycin from fermentation wastewater with nanofiltration membranes,” Water Research, Vol. 37, pp. 3718-3732(2003).
67. 「工業廢水逆滲透處理」,經濟部工業局(1994)。
68. 王潔瑩,「以氨氣及乙炔/氨氣電漿改質法提昇聚四氟乙烯膜面親水性之研究」,中原大學化學工程研究所碩士論文(2004)。
69. 「台灣地區廢污水再利用潛勢整體評估」,經濟部水利署水利規劃試驗所(2003)。
70. 李佩玲,「極微薄膜技術處理染料水溶液之研究」,國立台灣科技大學化學工程研究所碩士論文(2003)。
71. 周珊珊,「淤泥指數(SDI)的測定方法及在淨水處理上的應用」,自來水會刊,第二十卷,第三期,第16-21頁(2001)。
72. 徐毓蘭,「工業廢水回收再利用策略探討」,國立台北大學資源管理研究所碩士論文(2004)。
73. 「紡織染整業工業用水效率提升及回收再利用技術手冊」,經濟部工業局(2003)。
74. 許惠如,「以電滲透及流線電位決定薄膜之界達電位」,中原大學化學工程研究所碩士論文(2001)。
75. 陳彥旻,「半導體化學機械研磨廢水回收處理再利用技術研究」,國立成功大學環境工程研究所碩士論文(2003)。
76. 曾國祐,「以超過濾處理半導體廠化學機械研磨廢水之研究」,國立台灣科技大學化學工程研究所碩士論文(2002)。
77. 黃明樟,「薄膜程序處理染整業放流水回收再利用之研究」,淡江大學水資源及環境工程研究所碩士論文(2001)。
78. 「塑膠製品業工業用水效率提升及回收再利用技術手冊」,經濟部工業局(2003)。
79. 「新竹工業區廢水回收再利用規劃」,經濟部水利署水利規劃試驗所(2003)。
80. 楊叢印,「結合電過濾/電透析技術處理CMP廢水並同步產製電解水之研究」,國立中山大學環境工程研究所博士論文(2003)。
81. 溫子文、陳仁仲、李東峰,「台灣地區工業用水再生利用技術現況及發展趨勢」,永續產業發展,第一卷,第47-56頁(2002)。
82. 「廢水薄膜處理技術應用與推廣手冊」,經濟部工業局(2000)。
83. 鄭華安,「工業區廢水二級處理放流水回收再利用技術研究」,國立成功大學環境工程研究所碩士論文(2001)。
84. 環境生物技術廢水處理小組,「生物技術在廢水處理之應用」,第十三卷,第二期,第398-407頁(2002)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2005-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明