博碩士論文 84341008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.137.180.173
姓名 許秀菱(Hsiu-Ling Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 雙參數個別離子活性係數模式應用於雙電解質水溶液蒸汽壓之估算
相關論文
★ 高速旋轉填充床應用於分離異丙醇-水共沸混合物之研究★ 水-醋酸-對位二甲苯-乙酸甲酯-乙酸異丁酯之汽液平衡
★ 進料不純物作為系統內自體共沸劑模擬回收醋酸之醋酸脫水程序及其效益分析★ 單電解水溶液離子活性係數與溫度之關係
★ 在超臨界CO2之溶解度量測及Poynting factor之探討★ 矽酸乙酯與乙醇在不同壓力之相平衡
★ 水-酚-對甲酚-鄰甲酚四成份系統之液液相平衡研究★ 單電解質水溶液離子活性係數之探討
★ 高速旋轉填充床於分離共沸混合物之研究★ 乙烯在甲苯、冰片烯及COC混合溶液之溶解度量測與關聯
★ 間氯酚與對氯酚之固液相平衡研究★ 高速旋轉填充床於分離乙醇-水共沸混合物之研究
★ 二價單電解質水溶液之個別離子活性係數 量測與關聯★ β-胡蘿蔔素-二丁基羥基甲苯於超臨界二氧化碳之溶解度量測與關聯
★ 共溶劑對β-胡蘿蔔素於超臨界二氧化碳溶解度影響之研究★ 氫氣在甲苯、冰片烯及COC混合溶液 之溶解度量測與關聯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究量測雙成分強電解質NaCl + KBr及NaBr + KCl 水溶液的蒸汽壓數據,量測溫度範圍從303.15K到333.15K。電解質溶液之濃度為1m、2m、3m、4m。從實驗數據得到此二鹽類水溶液之蒸汽壓隨著溫度升高而增加,以及隨著鹽類濃度的增加而有線性降低的情形。對於此二種鹽類混合物既然有相同的鹽類離子,在相同溫度與相同濃度的條件下,應該可觀察到其有相同的蒸汽壓,實驗中也得到一致性的觀察。
由於強電解質水溶液之強解離效應,粒子在水溶液中之作用力應有相同效應,此說明強多電解質在水溶液中為完全解離,因此對水的蒸汽壓影響完全相同。
本研究利用Lin and Lee (2003)雙離子參數之個別活性係數模式推估雙成分電解質水溶液蒸汽壓值比較,結果NaCl + KBr水溶液之平均絕對偏差 (AAD) 與平均絕對相對偏差 (AARD) 分別為0.05kPa 與 0.41%,對於NaBr + KCl為0.05kPa 與0.40% 。
摘要(英) In this study, the vapor pressures of the aqueous solutions of NaCl + KBr and NaBr + KCl were measured in the temperature range from 303.15 K to 333.15 K and concentrations of 1m, 2m, 3m, and 4m. The experimental data showed that the vapor pressures of these aqueous solutions increase with increasing temperature and linearly decrease with increasing concentration. It is reasonable to consider that these two aqueous solutions should exhibit identical vapor pressure at the same temperature and concentration since they content the same ions in solutions. This was observed consistently with the experimental data.
In this study, the two-parameter ionic activity coefficient model of Lin and Lee (2003) was employed to predict the vapor pressures of these two aqueous solutions. The average absolute deviations (AAD) and the average absolute relative deviations (AARD) are 0.05 kPa and 0.41% for NaCl + KBr aqueous solution and 0.05 kPa and 0.40% for NaBr + KCl aqueous solution, respectively.
關鍵字(中) ★ 蒸汽壓
★ 電解質水溶液
★ 雙參數
★ 模式
關鍵字(英)
論文目次 目 錄
致謝
摘要 I
ABSTRACT II
目錄 III
表目錄 V
圖目錄 VI
符號說明 VII
第一章 緒論 1
第二章 文獻回顧 5
2.1 電解質溶液蒸汽壓模式 5
2.2改良型Antoine equation 5
2.3.平均活性係數模式 9
2.4圖解法 18
2.5統計熱力學法 21
第三章 Lin and Lee電解質蒸汽壓模式估算原理 23
3-1電解質水溶液蒸汽壓與滲透壓係數 23
3-2雙參數模式演導 26
3-3雙參數模式估算多電解質水溶液滲透壓係數與蒸汽壓 34
第四章 電解質蒸汽壓實驗 38
4.1儀器裝置 38
4.2 實驗設備 40
4-3藥品 41
4-4實驗步驟 41
4.4.1本實驗裝置可靠度測試 41
4.4.2 實驗前處理 42
4.4.3 實驗步驟 43
第五章 實驗結果與討論 45
5.1計算結果 45
第六章 結 論 55
第七章 參考文獻 56
許秀菱 (Hsiu-ling Hsu) 的相關著作 63
表 目 錄
表4-1. 氯化鋰電解質水溶液於303.15K之蒸汽壓實驗值 ( )
與文獻值( )比較 43
表5-1. NaCl+KBr電解質水溶液之蒸汽壓實驗值 (Pexp) 與Lin
and Lee 模式計算值 (Pcal ) 比較數據 47
表5-2. NaBr+KCl電解質水溶液之蒸汽壓實驗值 (Pexp) 與Lin
and Lee 模式計算值 (Pcal ) 比較數據 48
表5-3. NaCl+KBr電解質水溶液在298.15K之Na+、K+、Cl-、
Br-個別離子活性係數 49
表5-4. NaBr+KCl電解質水溶液在298.15K之Na+、K+、Cl-、
Br-個別離子活性係數 49
表5-5 . 四種電解 (NaCl、KBr、NaBr、KCl)之Lin and Lee
模式個別離子趨近參數bi與溶媒參數Si 50
圖 目 錄
圖4-1 電解質蒸汽壓裝置圖 44
圖4-2 恆溫水浴槽 44
圖5.1 NaCl+KBr 電解質水溶液蒸汽壓與溫度關係。 51
圖5.2 NaBr+KCl 電解質水溶液蒸汽壓與溫度關係。 52
圖5.3 NaCl+KBr 電解質水溶液不同溫度蒸汽壓與濃度
關係。 53
圖5.4 NaBr+KCl 電解質水溶液不同溫度蒸汽壓與濃度
關係。 5
參考文獻 1. Apelblat, A., ”Activity and Osmotic Coefficients in Electrolyte Solutions at Elevated Temperatures,” AICHE, J. 39, 5, 918-923 (1993).
2. Archer, D, G. and Wang, P., “The Dielectric Constant of Water and Debye-Huchel Limiting Law Slopes,“ J. Phys. Chem. Ref. Data, 19, 2, 371-385 (1990).
3. Azizov N. D. and T. S. Akhundov, “Vapor Pressure over Aqueous Solutions of Magnesium and Barium Chlorides,” Russian Journal of Physical Chemistry, 72, 6,930-934(1998). Translated from Zhurnal Fizicheskoi Khimii, 72, 6, 1044-1048 (1998).
4. Ball, F. X., W. Fürst, and H. Renon, “An NRTL for Representation and Prediction of Deviation from Ideality in Electrolyte Solutions Compared to the Models of Chen(1982) and Pitzer(1973),” AIChE J, 31 ,3, 392-399 (1985).
5. Ball, F. X., H. Planche, W. Fürst, and H. Renon,” Representation of Deviation from Ideality in Concentrated Aqueous Solutions of Electrolytes Using a Mean Spherical Approximation Molecular Method,” AICHE J.,31,8,1233-1240 (1985).
6. Bixon, E., R. Guerry, and D. Tassios, “Salt effect on Vapor pressure of pure solvent: methanol with seven salts at 24.9℃,” J. Chem. Eng. Data., 24, 1, 9-11 (1979).
7. Bokis, C. P., M. D. Donohue, and C. K. Hall, “Local Composition Model for Square-Well Chains Using the Generalized Flory Dimer Theory,” J. Phys. Chem., 96, 11004-11009 (1992).
8. Bromely, L. A., “Approximate Individual Value of β(or B) in Extended Debye-Huckel Theory for Uni-uniSolvent Aqueous Solutions at 298.15K,” J. Chem. Thermodynamics, 4, 669-673 (1972).
9. Bromely, L. A., “Thermodynamic Properties of Strong Electrolytes in Aqueous Solutions,” AIChE J., 19, 2, 313-320 (1973).
10. Brown, A. S., and D. A. Macinnes, “The Determination of Activity Coefficients from the Potentials of Concentration Cells with Transference. I. Sodium Chloride at 25o,” J. Am. Chem. Soc. 57, 1356-1362 (1935).
11. Boryta, D. A., A. J. Maas, and C. B. Grant, ”Vapor Pressure-Temperature- Concentration Relationship for System Lithium Bromide and Water(40-70﹪Lithium Bromide),” Journal of Chemical and Engineering Data, 20, 3, 316-319 (1975).
12. Chen, C. C., and L. B. Evans, “A Local Composition Model for the Excess Gibbs Energy of Aqueous Electrolyte Systems,” AIChE. J., 32, 3, 444-454 (1986).
13. Chen, C. C., H. I. Britt, J. F. Boston and L. B. Evans, “Extension and Application of the Pitzer Equation for Vapor-Liquid Equilibrium of Aqueous Electrolyte Systems with Molecular Solutes,” AIChE., 25, 5, 820-831 (1979).
14. Chen, C. C., H I. Britt, J. F. Boston, and L. B. Evans, “Local Composition Model for Excess Gibbs Energy of Electrolyte Systems,” AIChE J., 28, 4, 588-596 (1982).
15. Chen T. M.; M.S. Thesis, National Central University, Chung-li, Taiwan, (2000).
16. Chou, T. J., and A. Tanioka, “A Vapor Pressure Model for Aqueous and Non-aqueous Solutions of Single and Mixed Electrolyte Systems,” Fluid Phase Equilibria, 137, 17-32 (1997).
17. Christensen, C., B. Sander, A. A. Fredenslund, and P. Rasmussen, “Towards the Extension of UNIFAC to Mixtures with Electrolytes,” Fluid Phase Equilibria, 13, 297-309 (1983).
18. Cisternas, L. A., and E. J. Lam, “An Analytical Correlation of Vapor Pressure of Aqueous and Non-aqueous Solutions of Single and mixed electrolytes.” Fluid Phase Equilibra, 53, 243-249 (1989).
19. Cisternas, L. A., and E. J. Lam, “An Analytic Correlation for the Vapour Pressure of Aqueous and Non-Aqueous Solutions of Single and Mixed Electrolytes. Part II. Application and Extension,” Fluid Phase Equilibria, 62, 11-27 (1991).
20. Clarke, E. C. W., and D. N. Glew, ”Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154℃,” J. Phys. Chem. Ref. Data, 12, 2, 489-610 (1985).
21. Covington, A. K., T. H. Lilley and R. A. Robinson,” Excess Free Energies of Aqueous Mixtures of Some Alkali Metal Halide Salt Pairs. J. Phys. Chem., 72, 8, 2759-2763 (1968).
22. Cruz, J. L. and H. Renon, “A New Thermodynamic Representation of Binary Electrolyte Solutions Non-ideality in the Whole Range of Concentrations,” AIChE J., 24, 5, 817-829 (1978).
23. Debye, P., and E. Huckel, “Zur Theories der Elektrolyte,” Phys. Zeitschrift, 24, 185-206 (1923).
24. Edwards, T. J., J. Newman, and J. M. Prausnitz, “Thermodynamics of Aqueous Solutions Containing Volatile Weak Electrolytes,” AIChE., 21, 2, 248 (1975).
25. Fowler, R. H., and E. A. Guggenheim, “Statistical Thermodynamic” Cambridge University Press, Oxford, Chapter 9 (1949).
26. Furter, W. F., “Salt Effect in Distillation : A Literature Review II.” Can. J. Chem. Eng., 55, 229-239 (1977).
27. Glugla, P, G., and S. M. Sax, “Vapor Liquid Equilibrium for Sait-Containing Systems : A Correlation of Vapor pressure Depression and a Prediction of Multicomponent System” AIChE., 31, 11, 1911-1914 (1985).
28. Ghosh, S., and V. S. Patwardhan, “Aqueous Solutions of Single Electrolytes : A Correlation Based on Ionic Hydration,” Chem. Eng. Sci., 45, 79-87 (1990).
29. Guggenheim, E. A.; Stokes, R. H. Equilibrium properties of Aqueous Solutions of Single Strong Electrolytes. Pergamon Press, Oxford, (1969).
30. Hála, E. “Vapor-Liquid Equilibra of Strong Electrolytes in Systems Containing Mixed Solvent,” Fluid Phase Equilibria., 13, 311-319 (1983).
31. Hamer, W. J., and Y. C. Wu, “Osmotic Coefficients and Mean Activity Coefficients of Uni-univalent Electrolytes in Water at 25oC,” J. Phys. Chem. Ref. Data, 1, 4,1047-1054 (1972).
32. Hribar, B., V. Vlachy, and O. Pizio, “Structural and Thermodynamic Properties of Electrolyte Solutions in Hard-Sphere Confinement : Predictions of the Replica Integral Equation Theory,” J. Phys. Chem. B, 104, 4479-4488 (2000).
33. Hubert, N., Yamina Gabes, J-B Bourdet, and L. Schuffenecker, ” Vapor Pressure Measurements with a Nonisothermal Static Method between 293.15 and 363.15 K for Electrolyte Solutions. Application to the H2O + NaCl System,” J. Chem. Eng. Data, 40, 891-894 (1995).
34. Iyoki, S., and T. Uemura, “Physical and Thermal Properties of the Water - Lithium Bromide - Zinc Chloride - Calcium Bromide System,” Int. J. Refrig., 12, 272-277 (1989).
35. Iyoki, S., S. Iwasaki, and T. Uemura, “Vapor Pressures of the Water - Lithium Bromide-Lithium Iodide System,” J. Chem. Eng. Data, 35, 429-433 (1990).
36. Iyoki, S., and T. Uemura, ”Physical and Thermal Properties of the Water - Lithium Bromide - Zinc Bromide - Lithium Chloride System,” ASHRAE. Trans., 96 (part2), 323-328 (1990).
37. Iyoki, S., Y. Kuriyama, and H. Tanaka, ”Vapor Pressure Measurements on (Water + Lithium Chloride + Lithium Nitrate) at Temperatures from 274.15K to 463.15K,” J. Chem. Thermodynamics, 25, 569–577 (1993).
38. Iyoki, S., H., Gouda, S-I Ootsuka, and T. Uemura, “Vapor Pressures of the Ethylamine + Water + Lithium Bromide System and Ethyamine + Water + Lithium Nitrate System,” J. Chem. Eng. Data, 43, 662 – 664 (1998).
39. Janz, G. J., and A. R. Gordon, “The Thermodynamics of Aqueous Solutions of Sodium Chloride at Temperatures from 15o-45o from e. m. f. Measurements on Cells with Transference, ” J. Am. Chem. Soc., 65, 218-221 (1943).
40. Jaretun, A., and G. Aly, “New Local Composition Model for Electrolyte Solutions : Single Solvent, Single Electrolyte Systems,” Fluid Phase Equilibria, 163, 175-193 (1999).
41. Kawaguchi,Y., H. Kanai, H. Kajiwara, and Y. Arai,“Correlation for Activities of Water in Aqueous Electrolyte Solutions Using ASOG Model,“ J. Chem. Eng. Jpn. 14, 243-246 (1981).
42. Khoshkbarchi, M. K. and J. H. Vera, ”Measurement and Correlation of Ion Activity in Aqueous Single Electrolyte Solutions,” AIChE J., 42, 1, 249-258 (1996).
43. Kondo, K., and C. A. Eckert, ”Nonideality of Single and Mixed Electrolyte Solutions Up to Moderately High Concentrations;Theory Based on Debye - Huckel Radial Distribution Function,” Ind. Eng. Chem. Fundam., 22, 283-292 (1983).
44. Kumar, A., and V. S. Patwardhan, “Prediction of Vapor Pressure of Aqueous Solutions of Single and Mixed Electrolyte,” Can. J. Chem. Eng., 64, 831-838 (1986).
45. Kumar, A. “Salt Effect on Vapor-Liquid Equilibria : A Review of Correlations and Predictive Models,” Separation Science and Technology., 28 (10), 1799-1818 (1993).
46. Kumar, A.,” Surface Tension, Viscosity, Vapor Pressure, Density, and Sound Velocity for a System Miscible Continuously from a Pure Fused Electrolyte to a Nonaqueous Liquid with a Low Dielectric Constant: Anisole with Tetra-n-butylammonium Picrate,” J. Am. Chem. Soc., 115, 9243-9248 (1993).
47. Kusik, C. L., and H. P. Meissner, “Vapor Pressures of Water Over Aqueous Solution of Strong Electrolytes,” Ind. Eng. Chem. Proc. Des. Dev., 12, 1, 112-115 (1973).
48. Kusik, C. L. and H. P. Meissner, “Electrolyte Activity Coefficients in Inorganic Processing,” AIChE J., Symposium Series 173, 74, 14-20 (1978).
49. Lee, L. S., and C. C. Lee, “Vapor Pressures and Enthalpies of Vaporization of Aqueous Solutions of Benzyltrimethylammonium Chloride, Benzyltrienthylammonium Chloride, and Benzltributyl- ammonium Chloride,” J. Chem. Eng. Data, 43, 1, 17-20 (1998).
50. Lee, L. S., and C. C. Lee, ”Vapor Pressures and Enthalpies of Vaporization of Aqueous Solutions of Triethylammonium Chloride, 2-Hydroxzethylammonium Chloride, and Tris(hydroxymethyl)amino- methane Hydrochloride,” J. Chem. Eng. Data, 43, 3, 469-472 (1998).
51. Lin, C. L., L. S. Lee, and H. C. Tseng, “Thermodynamic Behavior of Electrolyte Solutions Part I. Activity Coefficients and Osmotic Coefficients of Binary System,” Fluid Phase Equilibria, 90, 57-79 (1993).
52. Lin, C. L., H. C. Tseng, and L. S. Lee, “A Three-Characteristic- Parameter Correlation Model for Strong Electrolyte Solutions,” Fluid Phase Equilibria, 152, 169-185 (1998).
53. Lin, C. L., and L. S. Lee, “A Two-Ionic-Parameter Approach for Ion Activity Coefficients of Aqueous Electrolyte Solutions,” Fluid Phase Equilibria, 205, 69-88 (2003).
54. Mato, F., and M. J. Cocero, “Measurement of Vapor Pressures of Electrolyte Solutions by Vapor Pressure Osmometry” J. Chem. Eng. Data, 33, 38-39 (1988).
55. Maurer, G., “Electrolyte Solution,” Fluid Phase Equilibria, 13, 269-296 (1983).
56. Meissner, H. P., and J. W. Tester, “Activity Coefficients of Strong Electrolytes in Aqueous Solutions,” Ind. Eng. Chem. Des. Dev., 11, 128 (1972).
57. Meissner, H. P., C. L. Kusik, “Activity Coefficients of Strong Electrolytes in Multicomponent Aqueous Solutions,” AIChE J. 18, 294 (1972).
58. Meissner, H. P., C. L. Kusik, “Aqueous Solutions of Two or More Strong Electrolytes – Vapor Pressures and Solubilities,” Ind. Eng. Chem. Process Des. Develop., 12, 2, 205-208 (1973).
59. O’Connell J. P., Y. Hu, K. A. Marshall, “Aqueous Strong Electrolyte Solution Activity Coefficients and Densities from Fluctuation Solution Theory,” Fluid Phase Equilibria, 158-160, 583-593 (1999).
60. Pan., C-F., ”Activity and Osmotic Coefficients in Dilute Aqueous Solutions of Uni-Univalent Electrolytes at 25℃,” J. Chem. Eng. Data, 26,183 (1981).
61. Partanen, J. I., and P. O. Minkkinen, ”Thermodynamic Activity Quantities in Aqueous Sodium and Potassium Chloride Solutions at 298.15 K up to a Molality of 2.0 mol kg-1,“ Acta Chemica Scandinavica, 47, 768-776 (1993).
62. Patil, K. R., A. D. Tripathi, G. Pathak, and S. S. Katti, “Thermodynamic Properties of Aqueous Electrolyte Solutions. 1.Vapor Pressure of Aqueous Solutions of LiCl, LiBr, and LiI,” J. Chem. Eng. Data, 35, 166-168 (1990).
63. Patil, K. R., A. D. Tripathi, G. Pathak, and S. S. Katti, “Thermodynamic Properties of Aqueous Electrolyte Solutions. 2.Vapor Pressure of Aqueous Soultions of NaBr, NaI, KCl, KBr, KI, RbCl, CsCl, CsI, MgCl2, CaCl2, CaBr2, CaI2, SrCl2, SrBr2, SrI2, BaCl2, and BaBr2,” J. Chem. Eng. Data, 36, 225-230 (1991).
64. Patil, K. R., S. K. Chaudharl, and S. S. Kattl, “Thermodynamic Properties of Aqueous Electrolyte Solutions. 3.Vapor Pressure of Aqueous Solutions of LiNO3, LiCl + LiNO3, and LiBr + LiNO3,” J. Chem. Eng Data, 37, 136-138 (1992).
65. Patwardhan, V. S. and A. Kumar,” An Unified Approach for Prediction of Thermodynamic Properties of Aqueous Mixed-Electrolyte Solutions. Part I: Vapor Pressure and Heat of Vaporization,” AIChE J., 32, 9, 1419-1428 (1986).
66. Patwardhan, V. S. and A. Kumar,” An Unified Approach for Prediction of Thermodynamic Properties of Aqueous Mixed-Electrolyte Solutions. Part II: Volume, Thermal, and Other Properties,” AIChE J., 32, 9, 1429-1438 (1986).
67. Pepela, C. N., P. J. Dunlop, ”A Re-examination of the Vapor Pressures of Aqueous Sodium Chloride Solutions at 25℃,”J. Chem. Thermodynamic, 4, 255-258 (1972).
68. Pitzer, K. S., “Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations,” J. Phys. Chem., 77, 2, 268-277 (1973).
69. Pitzer, K. S. and G. Mayorga, “Thermodynamics of Electrolytes. II. Activity and Osmotic Coefficients for Strong Electrolytes with One or Both Ions Univalent,” J. Phys. Chem., 77, 19, 2300-2307 (1973).
70. Pitzer, K. S. and G. Mayouga, “Thermodynamics of Electrolytes. III. Activity and Osmotic Coefficients for 2-2 Electrolytes,” J. Sol. Chem., 3, 7, 539-546 (1974).
71. Pitzer, K. S. and J. J. Kim, “Thermodynamics of Electrolytes. IV: Activity and Osmotic Coefficients for Mixed Electrolytes,” J. Am. Chem. Soc., 96, 5701-5707 (1974).
72. Pitzer, K. S. and L. F. Silvester, “Thermodynamics of Electrolytes. 11. Properties of 3:2, 4:2 and Other High-Valence Types,” J. Phys. Chem., 82, 11, 1239-1242 (1978).
73. Pitzer, K. S. ”Electrolytes. From Dilute Solutions to Fused Salts,” J. Am. Chem. Soc., 102, 9, 2902-2906 (1980).
74. Phutela, R. C., and K. S. Pitzer, “Thermodynamics of Aqueous Calcium Chloride,” J. Sol. Chem., 12, 3, 201-207 (1983).
75. Pitzer, K. S. And J. M. Simonson, “Ion Pairing in a System Continuously Miscible from the Fused Salt to Dilute Solution,“ J. Am. Chem. Soc., 106, 1973-1977 (1984).
76. Planche, H. and H. Renon, “Mean Spherical Approximation Applied to a Simple But Nonprimitive Model of Interaction for Electrolyte Solutions and Polar Substances,” J. Phys. Chem., 85, 3924-3929 (1981).
77. Rasaiah, J. C., and H. L. Friedman, “Integral Equation Methods in the Computation of Equilibrium Properties of Ionic Solutions,” J. Chem. Phys., 48, 6, 2742-2756 (1968).
78. Robinson, R. A., and R. H. Stokes, “Electorlyte Solution,” 2nd ed, Academic Press., New York (1959).
79. Sacchetto, G. A., G. G. Bombi, and C. Macca, “Vapor Pressure of Very Concentrated Electrolyte Solutions. I. Measurements on {(1-x)H2O + xLiNO3} and {(1-x)H2O + xNH4NO3} by a Dew-Point Apparatus,” J. Chem. Thermodynamics, 13, 31-40 (1981).
80. Sako. T., T. Hakuta, and H. Yoshltome, “Vapor Pressures of Binary (H2O-HCl, -MgCl2, and -CaCl2) and Ternary (H2O-MgCl2-CaCl2) Aqueous Solutions,” J. Chem. Eng. Data, 30,224-228 (1985).
81. Shiah, I. M. and H. C. Tseng, “A Vapor Pressure Model for Aqueous Electrolyte Solutions Based on Mean Spherical Approximation,” Fluid phase equilibria, 90, 75-85 (1994).
82. Shiah, I. M. and H. C. Tseng, “Experimental and Theoretical Determination of Vapor Pressures of NaC1-KC1, NaBr-KBr and NaC1-CaC12 Aqueous Solutions at Temperatures from 298 to 343 K,” Fluid Phase Equilibria, 124, 235-249 (1996).
83. Simonin, J. P., O. Bernard, and L. Blum, “Ionic Solutions in the Binding Mean Spherical Approximation : Thermodynamic Properties of Mixtures of Associating Electrolytes,” J. Phys. Chem. B, 103, 699-704 (1999).
84. Tomasula, P., G. J. Czerwienski, and D. T. Tassios, “Vapor Pressures and Osmotic Coefficients : Electrolyte Solutions of Methanol,” Fluid Phase Equilibria, 38, 129-153 (1987).
85. Teruya,K., S. Hōsako, T. Nakano, and I. Nakamori,” Estimation of Water Activities in Multicomponent Electrolyte Solutions,” J. Chem. Eng. Jpn., 9, 1, 1-5 (1976).
86. Triolo, R., J. R. Grigera, and L. Blum, ”Simple Electrolytes in the Mean Spherical Approximation,” J. Phys. Chem., 80, 17, 1858–1861 (1976).
87. Viola, J. T., A. A. Fannin, Jr., L. A. King., and D. W. Seegmiller, ”Vapor Pressure of Alumiunm Chloride Systems. 2. Pressure of Unsaturated Aluminum Chloride Gas,“ J. Chem. Eng. Data, 23, 2,118-121 (1978).
88. Viola, J. T., L. A. King., A. A. Fannin, Jr., and D. W. Seegmiller, “ Vapor Pressure of Aluminum Chloride Systems. 3. Vapor Pressure of Alumiunm Chloride-Sodium Chloride Melts,” J. Chem. Eng. Data, 23, 2, 122-124 (1978).
89. Wang, D.H.;Weng,H.S,“Solvent and Salt Effects on the Formation of Third Liquid Phase and the Reaction Mechanisms in the Phase Transfer Catalysis System- Reaction between n-Butyl Bromide and Sodium Phenolate, “ Chem. Eng. Sci., 50, 3477-3486 (1995).
90. Wisniak, J. and A. Polishuk, “Analysis of Residuals–A Useful Tool for Phase Equilibrium Data Analysis,” Fluid Phase Equilibria, 164, 61-82 (1999).
許秀菱 (Hsiu-ling Hsu) 的相關著作
1. Hsiu-ling Hsu, and Liang-sun Lee, ”Vapor liquid Equilibrium Measurement and Data Treatment of n-Propanol and Isobutanol Mixture at Atmospheric pressure,” Chem. Eng. Comm., 164, 205-224 (1998).
2. Liang-sun Lee, Min-yi Huang, and Hsiu-ling Hsu, ”Vapor Pressure of Ethanol+ Benzyltributylammonium Chloride Solution and Vapor- Liquid Equilibrium of Ethanol + water + Benzyltributylammonium Chloride Mixture at Atmospheric Pressure, ” J. Chem. Eng. Data, 44, 3, 528-531(1999).
3. Liang-sun Lee, Jiun-hau Fu, and Hsiu-ling Hsu, ” Solubility of Solid 1,4-Dimethoxybenzene in Supercritical Carbon Dioxide, ”J. Chem. Eng. Data, 45, 2, 358-361 (2000).
4. Hsiu-ling Hsu, Yi-chou Wu, and Liang-sun Lee, ” Vapor Pressures of Aqueous Solutions with Mixed Salts of NaCl+KBr and NaBr + KCl,” J. Chem. Eng. Data, 48, 514-518 (2003).
指導教授 李亮三(Liang-Sun Lee) 審核日期 2003-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明