博碩士論文 92326019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:174 、訪客IP:3.137.170.183
姓名 邱信菖(Shin-Chang Chiou)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 攪拌系統中膠體顆粒凝絮機制與穩態分析
(Aggregation of colloidal aggregation in an agitated system)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以軌跡分析模擬顆粒在擾流狀態之剪力流場中的運動行為,在忽略布朗運動及重力作用的情形下,探討離子強度、顆粒間凡德瓦爾吸引力、靜電斥力與流場中剪應力,對兩顆粒間碰撞效率的影響,結果發現,在高離子強度(0.01~0.1 M)中,碰撞效率是隨著Hamaker constant的上昇而增加,而不隨界達電位改變,另外在低離子強度(0.0005~0.001 M)、高粒徑比(0.9~1.0)、高轉速(300rpm)且低Hamaker constant (A=8E-20 J)時,此時若界達電位越大,越容易發生碰撞效率越低或等於零的情形。當轉速與粒徑漸增時,碰撞效率都是呈現逐漸下降的趨勢。利用統計分析,建立碰撞效率迴歸式後發現,在I=0.0005~0.1 M,粒徑比0.2~0.8之間,碰撞效率是與Ca0.1呈現正比關係;接著在I=0.0005~0.1 M,粒徑比為0.9 與 I=0.01~0.1 M,粒徑比為1.0中,碰撞效率是與Ca0.2呈現正比關係;最後,在I=0.001 M與0.0005 M,粒徑比為1.0中,碰撞效率與Ca0.3呈現正比關係。最後是繪製NR -NF及κ (ri+rj)-NF穩定機制圖,主要將混凝區域分為三大部分:一級混凝區、二級混凝區與穩態區,穩定機制圖的目的是爲了避免繁雜的計算,來求得顆粒是位於何種混凝區,所以利用假設的參數條件,經過簡易的計算
κ (ri+rj)、NF與NR,就可判定是何種混凝區。
摘要(英) Aggregations of colloidal particles in stirred tanks were modeled by trajectory analysis in this study. The influences of Hamaker constant, ionic strength (I), zeta potential, and agitation speed on the collision efficiency between two unequal-sized particles were investigated. The simulation results showed that at high ionic strength, the collision efficiency increased with increasing Hamaker constant and were not affected by zeta potentials. When ionic strength is low and particle size ratio is close to 1, the collision efficiency dropped to zero at high zeta potentials. A semi- empirical collision efficiency equation was formulated using STATISTICA by analyzing trajectory analysis results. It was found that the collision efficiency is a function of Ca to the power of 0.1, 0.2, and 0.3 at I = 0.0005 ~ 0.1 M and ??(particle size ratio) = 0.2 ~ 0.8, I = 0.0005~0.1 M and ? = 0.9, as well as I = 0.01 ~ 0.1 M and ? = 1, respectively. Stability diagram of particle aggregations in stirred tanks was also established. Influences of various parameters on the boundaries in the stability diagram were also discussed.
關鍵字(中) ★ 軌跡分析
★ 凝絮效率
★ 擾流狀態之剪力流
★ 穩態分析
關鍵字(英) ★ stability diagram
★ turbulent shear
★ Aggregation efficiency
★ trajectory analysis
論文目次 第一章 前言 1
1.1研究緣起 1
1.2 研究目的 2
1.3 研究流程 2
第二章 文獻回顧 3
2.1 DLVO理論 3
2.1.1 靜電力(Electrostatic Forces) 4
2.1.2 凡得瓦爾力(Van der Waals Forces) 8
2.2 膠體顆粒在流場中的機制 10
2.2.1流場抗阻函數 11
2.2.2 擾流狀態之剪力流場下的機制 12
2.3 膠體顆粒的軌跡分析 13
2.3.1 軌跡分析的演進 14
2.3.2 影響顆粒運動的作用力 14
2.3.3 顆粒運動的軌跡方程式 15
2.4 膠體顆粒的碰撞效率 17
2.4.1 流場中的凝絮行為 17
2.4.2 流場中的碰撞效率 18
第三章 研究方法 21
3.1 模式架構 21
3.2 參數條件 24
3.3 數據分析 26
3.3.1碰撞效率的計算 26
3.3.2 碰撞效率的迴歸模式 26
3.3.3 混凝的穩定機制圖 29
第四章 結果與討論 35
4.1 影響兩顆粒碰撞效率的主要因素 35
4.1.1 離子強度對碰撞效率的影響 35
4.1.2 界達電位對碰撞效率的影響 37
4.1.3 Hamaker constant對碰撞效率的影響 39
4.1.4 轉速對碰撞效率的影響 42
4.2 碰撞效率迴歸式之建立 43
4.3 混凝機制圖 51
第五章 結論與建議 58
5.1 結論 58
5.2 建議 59
參考文獻 60
附錄一 符號說明 64
附錄二 67
附錄三 69
附錄四 71
附錄五 74
參考文獻 1. Derjaguin, B. V. and L. D. Landau, “Theory of stability of strongly charged
lyophobic sols and of the adhesion of strongly charged particles in solutions of
electrolytes”, Acta Physicochimca URSS, 14, 733-762 (1941).
2. Verwey, E. J. W. and J. Th. G. Overbeek, “Theory of the stability of lyophobic
colloids”, Elsevier, Amsterdam (1948).
3. Fair, G. M., J. C. Geyer, and D. A. Okum, “Water purification and waste water
treatment and disposal”, John Wiley and Sons:New York (1968).
4. 石濤,環境化學,鼎茂出版社,第八章,第四頁 (2001)。
5. Stern, O., “Zur theorie der’elektrolytischem doppelschicht”, Annals
Electrochemical, 30, 508-526 (1924).
6. 楊萬發,水及廢水處理化學,茂昌出版社,第六章(2002)。
7. Tsouris, C. and T. C. Scott, “Flocculation of paramagnetic particles in a magnetic field”, Journal of Colloid and Interface Science, 171,319-330 (1995).
8. Bell, G. M., S. Levins, and L. N. McCartney, “Approximate methods of determining the double-layer free energy of interaction between two charged colloidal spheres”, Journal of Colloid and Interface Science, 33, 335-359 (1970).
9. Hogg, R., T. W. Healy, and D. W. Fuerstenau, “Mutual coagulation of colloidal
dispersions”, Transactions Faraday Society, 18, 1638-1651 (1966).
10. London, L. D. and E. M. Liftshitz, “Statistical physicals”, Pergamon, Oxford
(1969).
11. Hamaker, H. C., “London-van der waals attraction between spherical particles”,
Physica, 4, 1058-1072 (1937).
12. Zeichner, G. R. and W. R. Schowalter, “Effects of hydrodynamic and colloid
forces on the coagulation of dispersions”, Journal of Colloid and Interface
Science, 71, 237-253 (1979).
13. Ho, N. F. H. and W. I. Higuchi, “Pregerential aggregation and coalescence in
heterodispersed systems”, Journal of Pharmaceutical Sciences, 57, 436-442
(1968).
14. Haber, S., and G. Hetsroni, “Low Reynolds number motion of two drops submerged in an unbounded arbitrary velocity field”, International Journal of Multiphase Flow, 4, 1-17 (1978).
15. Zinchenko, A. Z., “The slow asymmetrical motion of two drops in a viscous medium”, Journal of Applicandae Mathematicae, 44, 30-35 (1980).
16. Zhang, X. and R. H. Davis, “Collision efficiencies of small drops”, Journal of Fluid Mechanics, 230, 479-489 (1991).
17. Lin, C. J., K. J. Lee, and N. F. Sather, “Slow motion of two spheres in a shear flow”, Journal of Fluid Mechanics, 43, 35-47 (1970).
18. Adler, P. M., “Interaction of unequal spheres : I. Hydrodynamic interaction:
colloidal forces ”, Journal of Colloid and Interface Science, 84, 461-474 (1981).
19. Brenner. H., and M. E. O’Neill, “On the Stokes resistance of multiparticle systems in a shear flow field”, Journal of Chemical Engineering Science, 27, 1421-1439(1972).
20. Kim, S., and R. T. Mifflin,” The resistance. and mobility functions of two equalspheres in low-Reynolds-number flow”, Journal of Physics of Fluids, 28, 2033-2045 (1985).
21. Yoon, B. J., and S. Kim,” A boundary collocation method for the motion of two spheroids in stokes flow: hydrodynamic and colloidal interactions”, Journal of Multiphase Flow, 16, 639-649 (1990).
22. Bachelor, G. K., “Sedimentation in a dilute polydisperse system of interacting spheres”, Journal of Fluid Mechanics, 119, 379 (1982).
23. Bachelor, G. K., and J. T. Green, “The hydrodynamic interaction of two small free-moving spheres in a linear floe field”, Journal of Fluid Mechanics, 56, 375-400 (1972).
24. Saffman, P. G., and J. S. Turner, “On the collision of drops in turbulent clouds”, Journal of Fluid Mechanics, 1, 16-30 (1956).
25. Pneuli, D., C. Gutfinger, and M. Fichman, “A turbulent-brownian model for aerosol coagulation”, Aerosol Science and Technology, 14, 201-209 (1991).
26. Van der ven, T. G. M. and S. G. Mason, “The microrheology of colloidaldispersions:orthokinetic doublet formation of spheres”, Colloid
Polymer Science, 255, 468-479 (1977).
27. Smoluchowski, M., “Drei vorträge über diffusion brownsche bewegung und koagulation von kolloidteilchen,” Physik Z, 17, 557-589 (1916)
28. Zhang, X. and R. H. Davis, “Polarized optical microscopy of anisotropic media imaging theory and simulation”, Journal of Fluid Mechanics, 230, 479-500 (1991).
29. Sutheland, K. L., “Physical chemistry of flotation XI. kinetics of the flotation process”, Journal of Physical and Chemistry, 52,394-425 (1948).
30. Phan, C. M., A. V. Nguyen, J. D. Miller, G. M. Evans, G. J. Jameson, “ Investigations of bubble–particle interactions”, International Journal of Mineral Process, 72, 239-254 (2003).
31. Elimelech, M. ,J. Gregory, X. Jia, and R. A. Williams, “Particle deposition &
aggregation:measurement,modeling and simulation”, BUTTER-WORTH
HEINEMANN, 138-142 (1998).
32. Chin, C. J., S. Yiacoumi, and C. Tsouris, “Shear-induced flocculation of colloidal particles in stirred tanks”, Journal of Colloid and Interface Science, 206, 532-545 (1998).
33. Camp, T. R., and P. C. Stien, “Velocity gradients and internal work in fluid motion”, Journal of the Boston Society of Civil Engineers Section, American Society of Civil Engineers, 30, 219-238 (1943).
34. Melik, D. H., and H. S. Fogler, “Gravity-induce flocculation”, Journal of Colloid and Interface Science, 101, 72-83(1998).
35. 彭騰輝,“以理論分析靜態溶液中具布朗運動膠體凝絮沉降的現象”,東海大學化學工程研究所碩士論文(2005)。
36. Tsouris, C., S. Yiacoumi, and D. A., Rountree, “Mechanism of particle flocculation by magnetic seeding” , Journal of Colloid and Interface Science, 184, 1-12 (1996).
37. Han, M. Y., and D. F. Lawler, “The insignificance of G in flocculation”, Journal
of AWWA, 84, 79-91 (1992).
38. Kobayashi, M., and Y. Adachi, “Kinetic of coagulationof model colloidal particles in a turbulent flow”, Transactions in JSIDRE, 191, 111-115 (1997).
39. Finch, J. A., and G. S. Dobby, “Column flotation”, Pergamon Oxford,180 pp (1990).
40. 劉義賢,“駐波場中次微米微粒聚結之研究”,國立臺灣大學應用力學研究所
碩士論文(2003).
41. Curtis, A. S. G., L. M. Hocking, “ Collision efficiency of equal spherical particles in a shear flow: the influence of London-Van der Waals forces ”, Journal of Transaction Faraday Society, 66, 1381-1390 (1970).
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2005-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明