博碩士論文 86341005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.119.255.94
姓名 陳岡宏(Kang-Hung Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 蒙脫土/環氧樹脂、蒙脫土/聚苯胺和聚苯胺管奈米材料之研究
(The study of montmorillonite/epoxy, montmorillonite/polyaniline and polyaniline tubes in nano-materials)
相關論文
★ 機車觸媒轉化器處理效能提升之研究★ SAPO-34之微波合成與CoAPO﹑CuO/CeO2﹑La1-xSrxCo1-yMnyO3之X光吸收光譜分析
★ 聚苯胺及三氧化鎢互補式電變色元件電變色性質研究★ NO在Perovskite oxide上的分解反應之研究
★ 電化學法合成聚苯胺及其複合材料電變色性質的研究★ 經摻雜之二氧化鈦觸媒膜光分解性質之研究
★ 在Perovskite氧化物上進行CO-NO反應之研究★ 聚苯胺與聚苯乙烯殼核複合材料之研究
★ 導電高分子與聚胺基甲酸酯複合材料之研究★ 在孔道均一的模板內合成聚苯胺奈米管
★ 梳狀聚苯乙烯磺酸與聚苯胺複合材料之合 成與分析★ 在二氧化鈦上進行Salicylic acid可見光 光催化反應的研究
★ 於陶瓷纖維紙上合成ZSM-5沸石與聚乙烯觸媒裂解之研究★ 二氧化鈦的合成與光催化性質的研究
★ 苯在Au/CeO2與Au/V2O5/CeO2上進行完全氧化反應之研究★ 聚苯胺金屬奈米複合管的合成及鑑定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的研究內容分為兩個方向,一方面將黏土分散至環氧樹脂中形成奈米複合材料,另一方面以黏土或氧化鋁膜為模板合成聚苯胺導電性高分子。
第一部份主要以有機胺類嵌入蒙脫土層間而改質蒙脫土以利黏土層之分散,並合成蒙脫土/環氧樹脂奈米複合材料。由實驗結果可以觀察到蒙脫土層間距的大小受到嵌入有機胺分子鏈長度和電荷密度影響,有機胺分子鏈越長、電荷密度越小會得到大的層間距。在以CH3(CH2)17NH3+改質蒙脫土和環氧樹脂聚合成的複合材料中可以看出,複合材料中的蒙脫土層間距可擴大到~50 Å, Tg可以從108.4℃提昇到117.4℃,此外,對於阻水性也有相當的提昇。也以各式團聯共聚物嵌入蒙脫土層間,探討不同電荷密度、不同電性、不同鏈長和不同結構,對於蒙脫土層間距的影響,結果顯示決定層間距的首要因子為層間靜電作用力。而蒙脫土能在環氧樹脂基材中分散,這要歸因於共聚物將黏土表面疏水化,使層間容納更多環氧樹脂並擴大層間距,TEM影像可以看到層間距>200 Å,顯示黏土層分散在基材中。測試其性質時也發現添加少量修飾過的蒙脫土於環氧樹脂基材中可提昇Tg,而其阻水性較未修飾蒙脫土的複合材料佳,也有較佳之透光度。
論文中第二部份以有機胺改質蒙脫土使蒙脫土提高吸附苯胺單體的含量,而在層間合成的聚苯胺量增多。本研究以含有羧基(-COOH)的HOOC(CH2)11NH3+幫助蒙脫土吸附最多苯胺單體,因而合成最多的聚苯胺於層間,ESR的結果說明層間聚苯胺的訊號確有比較狹窄的線寬,顯示聚苯胺/蒙脫土複合材料中聚苯胺的自由基陽離子非定域化的程度提高。另外,也研究以蒙脫土修飾電極,並以電化學法聚合苯胺,以獲得更高的反應電流。先將鉑原子嵌入黏土層間再合成聚苯胺,循環伏安圖譜顯示可將反應電流提高了315%,可相當的提昇電極的靈敏度,使得導電性高分子在感測器上的應用,具有更佳的靈敏度。
最後以商業化氧化鋁濾膜為模板,以化學方法和電化學方法合成聚苯胺管,SEM的影像顯示電化學方式和化學方式皆成功合成出聚苯胺管。
摘要(英) Two main topics are studied in this thesis, one topic is dispersion of the clay layers in epoxy matrix to form nanocomposites, another topic is using clay or anodic aluminum oxide membrane as templates to synthesize conducting polyaniline.
In the first part, onium ions are intercalated into the clay layers in order to modify the clay layers for dispersion in polymer matrix. Montmorillonite/epoxy nanocomposites are formed. The d-spacing between the clay layers was affect by chain length and charge density of the onium ions. The longer chain length and lower charge density onium ions modified clay show larger d-spacing. An epoxy/montmorillonite nanocomposite is synthesized by heating a mixture of [H3N(CH2)17CH3]+modified montmorillonite with epoxy monomer and curing agent. TEM photographs show that the spacing between the clay layers was further enlarged to about 50 Å. Glass transition temperature (Tg) of the nanocomposite containing 5 phr of [H3N(CH2)17CH3]+modified montmorillonite change from 108.4℃ of epoxy resin to 117.4℃. The nanocomposite possesses higher water resistance than the epoxy and unmodified montmorillonite composite. Nanocomposite also shows higher light transmittance. The improvements of the above properties can be evidenced for the formation of nano-scale composite. Acrylic block copolymers are also intercalated into the layers of montmorillonite in order to study the effects of charge density, chin length and structure. The results indicate that primary factor to affect the d-spacing of clay is electrostatic intercalation. Nanocomposites of epoxy and clay modified with block copolymers were synthesized. When modified clay contents are below 2 phr, Tg higher than 131.7 oC can be obtained. Water resistance and light transmittance of the nanocomposite is also improved.
In the second parts, nanocomposites of polyaniline/montmorillonite were synthesized with onium ion modified montmorillonite. More aniline was absorbed between the clay layers of modified montmorillonite. After polymerization of aniline, TEM photographs of the composites show distances of 60-140 Å between the clay layers. TG results show more polyaniline are formed between the modified clay layers, especially for HOOC(CH2)11NH3+ modified clay. ESR results show narrow linewidth of polyaniline intercalated between the clay layers. We also synthesize polyaniline electrochemically in platinum containing montmorillonite to enhance the response current of the electrode. The cyclic voltammogram (CV) shows that improvement of the response current by 315 % was observed for polyaniline in Pt containing montmorillonite.
Synthesis of polyaniline tubes in anodic aluminum oxide membranes by chemical and electrochemical methods were also studied. SEM images show that uniform polyaniline tubes with diameter about 200 nm were synthesized successfully.
關鍵字(中) ★ 氧化鋁膜
★ 黏土
★ 蒙脫土
★ 聚苯胺
★ 奈米複合材料
關鍵字(英) ★  anodic alumina membranes
★ TEM
★ ESR
★ polyaniline
★ nanocomposites
★ diferential scanning calorimetry (DSC)
★ clay
★ thermogravimetric analysis (TGA)
論文目次 摘要…….………………………………………………………………………………I
Abstract…………………………………………………………..…………………..IV
目錄…………..……………………………………………………………………….V
表目錄…………………………………………………………………….……….IX
圖目錄……..……………………………………………………………….……….X
第一章 緒論…………………………………………………………………………..1
1.1 何謂奈米?……………….………………………………………..………1
1.2 奈米複合材料 …………………………………………………………4
1.3 黏土材料在奈米領域的應用…………………………………………….5
1.4 本論文研究方向………………………………………………………….6
第二章 以有機胺修飾之蒙脫土/環氧樹脂複合材料的合成……………………...10
一、 前言…………………………………………………………………………10
1.1 緒論……………………………………………………………………10
1.2 簡介…………………………………………………………………...…14
1.2.1 黏土(層狀矽酸鹽)……………..…………….……………………14
1.2.2 有機胺嵌入 ………………………..……………………………..16
1.2.3 合成奈米複合材料 ………………………………………………18
1.2.4 奈米複合材料性質……………………..…………………………20
二、 實驗…………………………………………………………………….24
2.1 實驗藥品…………………………………………………………….…24
2.2.1 黏土層改質…………………………………………………….….25
2.2.2 蒙脫土/環氧樹脂奈米複合材料的合成………………………….26
2.3 實驗分析………………………………………………………………...27
2.3.1 X光繞射分析………………………………………………………27
2.3.2 示差掃描熱卡計分析……………………………………………28
2.3.3 感應耦合電漿原子發射光譜分析……………………………..…28
2.3.4 穿透式電子顯微鏡………………………………………………..29
2.3.5 熱重分析…………………………………………………………..29
2.3.6 阻水性測定……………………………………………………..…29
三、 結果討論………………………………………………………………..…30
3.1 蒙脫土層間嵌入有機胺離子…………………………………………30
3.1.1 嵌入方法的影響………………………………………………….31
3.1.2 蒙脫土陽離子交換容量之影響…………………………………32
3.1.3 有機胺離子對於嵌入的影響……………………………………..33
3.2 環氧樹脂/蒙脫土複合材料的合成……………………………………..40
3.3 複合材料的性質………………………………………………………..43
四、結論………………………………………………………………………..…48
五、參考文獻…………………………………………………………………….49
第三章 以團聯共聚物修飾之蒙脫土/環氧樹脂複合材料的合成………………51
一、 前言…………………………………………………………………………51
1.1 緒論...……………………………………………………………………51
1.2 簡介…………………………………………………………………...…53
二、 實驗………………………………………………………………………....55
2.1 實驗藥品…………………………………………………………….…..55
2.2 實驗方法 …………………………………………………………….…56
2.3 實驗分析………………………………………………………………...56
2.3.1 親疏水性測量……………………………………………………56
2.3.2界面電位測定……………………………………………………56
三、 結果討論………………………………………………………………..…57
3.1團聯共聚物嵌入蒙脫土層間……………………………………………57
3.1.1 各式不同團聯共聚物對於蒙脫土嵌入的影響…………………57
3.1.2團聯共聚物對於不同蒙脫土嵌入的影響………………………59
3.2合成環氧樹脂/修飾蒙脫土奈米複合材料………………….…………..64
3.3 複合材料性質測試….…………………………………………………..66
四、結論………………………………………………………………………..…70
五、參考文獻………………………….………………………………………….71
第四章 化學合成蒙脫土/聚苯胺複合材料………………………………………...73
一、前言………………………………………………………………………..…73
1.1 緒論...……………………………………………………………………73
1.2 簡介…………………………………………………………………...…75
1.2.1 導電性高分子………..……..……………………………………..75
1.2.2 導電性高分子的種類應用…….….………………………………76
1.2.3 聚苯胺…………………………….………………………………78
1.2.4 嵌入聚合………………………………..………………………....86
二、實驗………………………………………………………………………....87
2.1 實驗藥品…………………………………………………………….…..87
2.2 實驗方法 …………………………………………………………….…88
2.2.1 苯胺單體的還原……………………………..……………………88
2.2.1 有機胺離子嵌入黏土層間……………………………………...88
2.2.3 化學合成聚苯胺/蒙脫土複合材料…………...…..………………88
2.3 實驗分析……………………………………………………………...…89
2.3.1 電子順磁共振光譜…………………………..……………………89
2.3.2傅立葉轉換紅外光譜……………………………………...89
三、結果討論…………………………………………………………………..…90
3.1蒙脫土的改質……………………………………………………………90
3.2聚苯胺/蒙脫土奈米複合材料的合成……………………….…………..93
3.3聚苯胺/蒙脫土奈米複合材料特性分析….………….………………….99
四、結論……………………………………………………………………..…103
五、參考文獻………………………….……………………………………….104
第五章 電化學合成蒙脫土/聚苯胺複合材料…………………………………….108
一、前言………………………………………………………………………..108
1.1 緒論...…………………………………………………………………108
1.2 簡介…………………………………………………………..………...109
二、實驗………………………………………………………………………....112
2.1 實驗藥品…………………………………………………………….…112
2.2 實驗方法 ……………………………………………………………113
2.2.1 含鉑金屬蒙脫土的製備……..………………………..…………113
2.2.2 苯胺陽離子嵌入蒙脫土及含鉑蒙脫土層中…………………..113
2.2.3 電化學合成聚苯胺/蒙脫土複合材料………...…………….…113
2.3 實驗分析……………………………………………………………...114
2.3.1 電化學石英晶體微天平分析儀.………………..………………114
2.3.2 循環伏安法圖譜…………….....………………………………...115
2.3.3 化學分析電子光譜儀分析…………….....……………………...115
三、結果討論……………………………………………………………………116
3.1 聚苯胺/蒙脫土複合材料的電化學合成…………………………….116
3.2 層間含鉑之蒙脫土的製備…………………….…………………….119
3.3 聚苯胺/蒙脫土複合材料的合成….……….………………………..125
四、結論…………………………………………..…………………………..…127
五、參考文獻………………..………….……………………………………….128
第六章 以孔道均一氧化鋁膜為膜板合成聚苯胺管……………………………..130
一、前言………………………………………………………………………..130
1.1 緒論...…………………………………………………………………130
1.2 簡介……..……………………………………………………………...132
1.2.1 氧化鋁模板………..………………………..……………….…132
1.2.2 導電高分子奈米管………..………...………..……………….…134
二、實驗………………………………………………………………………....136
2.1 實驗藥品…………………………………………………………….…136
2.2 實驗方法 ……………………………………………………………137
2.2.1 化學合成……..………………………..…………………………137
2.2.2 電化學合成…………………………………………………….137
2.3 實驗分析……………………………………………………………...138
2.3.1 場發式掃瞄式電子顯微鏡………..……………..………………138
三、結果討論……………………………………………………………………139
3.1 商業化氧化鋁濾膜……...……………………………….…………….139
3.2 合成聚苯胺管…………………….…………………………………....144
四、結論…………………………………………..…………………………..…155
五、參考文獻………………..………….……………………………………….156
第七章 總結與展望………………………………………………………………..158
7.1 總結…………………………………………………………………….158
7.2 展望…………….………………………………………………………159
附註 ……………………...……………………………………………………….161
個人著作……... …………..…………………………………………………..……164
參考文獻 1. Barthlott, W.; Neinhuis, C. Planta 1997, 202, 1.
2. Neinhuis, C; Barthlott, W. New Phytologist 1998, 138, 91.
3. Romeas, V.; Pichat, P.; Guillard, C.; Chopin, T.; Lehaut, C. New J Chem 1999, 23, 365.
4. Romeas, V.; Pichat, P.; Guillard, C.; Chopin, T.; Lehaut, C. Ind Eng Chem Res 1999, 38, 3878.
5. Kim, J. M.; Chio, W. B.; Lee, N. S.; Jung, J. E. Diamond Relat. Mater 2000, 9, 1184.
6. Dabrowski, F.; Lebras, M.; Cartier, L.; Bourbigot, S. J Fire Sci 2001, 19, 219.
7. Nano Composite Laboratory ,Chemical Engineering Department, NTHU, Taiwan.
8. Josefowicz, J. Y.; Avlyanov, J. K.; Macdiarmid, A. G. Thin Solid Films 2001, 393, 186.
9. Yuan, W. L.; Orear, E. A.; Cho, G.; Funkhouser, G. P.; Glatzhofer, D. T. Thin Solid Films 2001, 385, 96.
10. Goward, G. R.; Leroux, F.; Nazar, L. F. Electrochim Acta 1998, 43, 1307.
11. Chao, K. J.; Wu, C. N.; Chang, H,; Lee, L. J.; Hu, S. F. J Phys Chem B 1997, 101, 6341.
12. Lewis, L. H.; Gallagher, K.; Hoerman, B.; Panchanathan, V. J Alloys Compd 1998, 270, 265.
1. Usuki, A.; Kawasumi, M.; Kojima, Y.; Fujushima, A.; Okada, A.; Kamigaito, O. J Mater Res 1993, 8, 1174.
2. Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fujushima, A.; Kurauchi, T.; Kamigaito, O. J Mater Res 1993, 8, 1179.
3. Porter, T. L.; Hagerman, M. E.; Reynolds, B. P.; Eastman, M. P.; Parnell, R. A. J Polym Sci B, Polym Phys 1998, 36, 673.
4. Kato, C.; Kuroda, K.; Takahara, H. Clays Clay Miner 1981, 29, 294.
5. Lan, T.; Kaviratna, D.; Pinnavaia, T. J. J phys Chem Solids 1996, 57, 1005.
6. Pinnavaia, T. J.; Lan, T.; Kaviratna, P. D. ACS Symposium Series 662; American Chemical Society: Washington, DC, 1996; P 250.
7 . Burnside, S. D.; Wang, H. C.; Giannelis, E. P. Chem Mater 1999, 11, 1055.
8. Wang, Z.; Pinnavaia, T. J. Chem Mater 1998, 10, 3769.
9. Kojima, Y.; Fukumori, K.; Usuki, A.; Okada, A.; Kurauchi, T. J Mater Sci Lett 1993, 12, 889.
10. Akelah, A. El-Deen, N. S.; Hiltner, A.; Baer, E.; Moet, A. Mater Lett 1995, 22, 97.
11. Ogata, N.; Kawakage, S.; Ogihara, T. Polymer 1997, 38, 5115.
12. Ogata, N.; Jimenez, G.; Ogihara, T. J Poly Sci B, Poly Phys 1997, 35, 389.
13. Jimenez, G.; Ogata, N.; Kawai, H.; Ogihara, T. J App Polym Sci 1997, 64, 2211.
14. Vaia, R.; Jandt, K.; Kramer, E.; Giannelis, E. Chem Mater 1996, 8, 2628.
15. Vaia, R.; Jandt, K.; Kramer, E.; Giannelis, E. Macromolecules 1995, 28, 8080.
16. Faguy, P. W.; Ma, W. L.; Lowe, J. A.; Pan, W. P.; Brown, T. J Mater Chem 1994, 4, 771.
17. Okada, A.; Kamigaito, O.; Kawasumi, M.; Kurauchi, T. Abstr Pap Am Chem Soc 1987, 194, 10.
18. Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Kurauchi, T. Abstr Pap Am Chem Soc 1990, 200, 218.
19. Moet, A. S.; Akelah, A. Mater Lett 1993, 18, 797.
20. Wang, M. S.; Pinnavaia, T. J. Chem Mater 1994, 6, 468.
21. Lan, T.; Pinnavaia, T. J. Chem Mater 1994, 6, 2216.
22. Lan, T.; Kaviratna, P. D.; Pinnavaia, T. J. Chem Mater 1995, 7, 2144.
23. Wu, J. H.; Lerner, M. M. Chem Mater 1993, 5, 835.
24. Lemmon, J. P.; Lerner, M. M. Solid State Commun 1995, 94, 533.
25. Lemmon, J. P.; Wu, J. H.; Oriakhe, C.; Lerner, M. M. Electrochim Acta 1995, 40, 2245.
26. Yano, K.; Usuki, A.; Okada, A. J Polym Sci Part A Polym Chem 1997, 35, 2289.
27. Messersmith, P. B.; Giannelis, E. P. Chem Mater 1993, 5, 1064.
28. Wang, Z.; Lan, T.; Pinnavaia, T. J. Chem Mater 1996, 8, 2200.
29. Wang, Z.; Pinnavaia, T. J. Chem Mater 1998, 10, 1820.
30. Vaia, R. A.; Teukolsky, R. K.; Giannelis, E. P. Chem Mater 1994, 6, 1017.
31. Chen, X. B.; Wu, X. S. Polymer 1992, 33, 3639.
32. Lee, D. C.; Jang, L. W. J Appl polym Sci 1998, 68, 1997.
33. Lee, A.; Lichtenhan, J. D. J Appl Polym Sci 1999, 73, 1993.
34. Grim, R. E.; Clay Mineralogy, McGraw-Hill, New York, 1968.
35. Lagaly, G. Solid State Ionics 1986, 22, 43.
36. Lagaly, G. Clays Clay Miner, 1982, 30, 215.
37. Kakurai, T.; Noguchi, T. J Soc Org Chem Japan, 1960, 18, 485.
38. Shechter, L.; Wynstra, J.; Kurkjy, R. P. I & E C, 1956, 48, 94.
39. Shi, H. Z.; Lan, T.; Pinnavaia, T. J. Chem Mater 1996,
1. Southward, R. E.; Thompson, D. S.; Thornton, T. A.; Thompson, D. W.; Stclair, A. K. Chem Mater 1998, 10, 486.
2. Kim, B. H.; Jung, J. H.; Joo, J.; Kim, J. W.; Choi, H. J. J Korean Phys Soc 2000, 36, 366.
3. Wu, Q.; Xue, Z. Qi, Z.; Wang, F. Polymer, 2000, 41, 2029.
4. Dondi, M.; Marsigli, M.; Venturi, I. Brit Ceram T 1999, 98, 12.
5. Hasegawa, N.; Okamoto, H.; Kawasumi, M.; Usuki, A. J Appl Polym Sci 1999, 74, 3359.
6. Hasegawa, N.; Kawasumi, M.; Kato, M.; Usuki, A.; Okada, A. J Appl Polym Sci 1998, 67, 87.
7. Usuki, A.; Koiwai, A.; Kojima, Y.; Kawasumi, .; Okada, A.; Kurauchi, T.; Kamigaito, O. J Appl Polym Sci 1995, 55, 119.
8. Seckin, T.; Gultek, A.; Onal, Y.; Yakinci, E.; Aksoy, I. J Mater Chem 1997, 7, 265.
9. Huang, J. C.; Zhu, Z. K.; Yin, J.; Qian, X. F.; Sun, Y. Y. Polymer 2001, 42, 873.
10. Vaia, R. A.; Ishii, H.; Giannelis, E. P. Chem Mater 1993, 5, 1694.
11. Messersmith, P. B.; Giannelis, E. P. Chem Mater 1994, 6, 1719.
12. Lan, T.; Pinnavaia, T. J. Chem Mater 1994, 6, 2216.
13. Lan, T.; Kaviratna, D.; Pinnavaia, T. J. J Phys Chem Solids 1996, 57, 1005.
14. Capkova, P.; Driessen, R. A. J.; Numan, M.; Schenk, H.; Weiss, Z.; Klika, Z. Chem Pap-Chem Zvesti 1998, 52, 1.
15. Laus, M.; Francescangeli, O.; Sandrolini, F. J Mater Res 1997, 12, 3134.
16. Park, J. S.; Lee, S. M.; Lee, K. Y.; Kim, E. Y.; Lee, H. S. Abs Pap Am Chem Soc 2000, 220, 78-Poly.
17. Ren, J. X.; Silva, A. S.; Krishnamoorti, R. Macromolecules 2000, 33, 3739.
18. Groenewold, J.; Fredrickson, G. H. Eur Phys J E 2001, 5, 171.
19. Maugh, T. H. Science 1983, 222, 39.
20. Wang, M. S.; Pinnavaia, T. J. Chem Mater 1994, 6, 468.
21. Lim, M. S.; Chen, R. P.; Chen, H. Chemistry 1999, 57, 295.
22. Diamond, A. D.; Hsu, J. T. AIChe J 1990, 36, 1017.
23. Chen, W. Y.; Chen, K. H.; Chen, H.; Ruaan, R. C. J Chin Inst Chem Eng 2002, 33, 599.
24. Patrickios, C. S. PhD thesis. Massachusetts institute of technology 1994, 37.
25. Chen, K. H.; Yang, S. M. J Appl Polym Sci 2002, 86, 414.
26. Yen, J. M.; Liou, S. J.; Lai C. Y.; Wu, P. C. Chem Mater 2001, 13, 1131.
1. Southward, R. E.; Thompson, D. S.; Thornton, T. A.; Thompson, D. W.; Stclair, A. K. Chem. Mater. 1998, 10, 486.
2. Kim, B. H.; Jung, J. H.; Joo, J.; Kim, J. W.; Choi, H. J. J. Korean Phys. Soc. 2000, 36, 366.
3. Wu, Q.; Xue, Z. Qi, Z.; Wang, F. Polymer 2000, 41, 2029.
4. Dondi, M.; Marsigli, M.; Venturi, I. Br. Ceram. Trans. 1999, 98, 12.
5. Hasegawa, N.; Okamoto, H.; Kawasumi, M.; Usuki, A. J. Appl. Polym. Sci. 1999, 74, 3359.
6. Hasegawa, N.; Kawasumi, M.; Kato, M.; Usuki, A.; Okada, A. J. Appl. Polym. Sci. 1998, 67, 87.
7. Usuki, A.; Koiwai, A.; Kojima, Y.; Kawasumi, .; Okada, A.; Kurauchi, T.; Kamigaito, O. J. Appl. Polym. Sci. 1995, 55, 119.
8. Seckin, T.; Gultek, A.; Onal, Y.; Yakinci, E.; Aksoy, I. J. Mater. Chem. 1997, 7, 265.
9. Huang, J. C.; Zhu, Z. K.; Yin, J.; Qian, X. F.; Sun, Y. Y. Polymer 2001, 42, 873.
10. Vaia, R. A.; Ishii, H.; Giannelis, E. P. Chem. Mater. 1993, 5, 1694.
11. Messersmith, P. B.; Giannelis, E. P. Chem. Mater. 1994, 6, 1719.
12. Liu, X.; Wu, Q. Berglund, L. A.; Fan, J.; Qi, Z. Polymer 2001, 42, 8235.
13. Chang, J. H.; Park, K. M.; Cho, D. H.; Yang, H. S.; Ihn, K. J. Polym. Eng. Sci. 2001, 41, 1514.
14. Gilman, J. W.; Jackson, C. L.; Morgan, A. B.; Hayyis, R., Jr.; Manias, E.; Giannelis, E. P.; Wuthenow, M.; Hilton, D.; Phillips, S. H. Chem Mater 2000, 12, 1866.
15 Faguy P. W., Ma W. L., Lowe J. A., Pan W. P., and Brown T. Faguy, P. W.; Ma, W. L.; Lowe, J. A.; Pan, W. P.; Brown, T. J. Mater. Chem. 1994, 4, 771.
16. Wu, C. G.; Degroot, D. C.; Marcy, H. O.; Schindler, J. L.; Kannewurf, C. R.; Liu, Y. J.; Hirpo, W.; Kanatzidis, M. G. Chem. Mater. 1996, 8, 1992.
17. Uma, S.; Gopalakrishnan, J. Mater. Sci. Eng., B 1995, 34, 175.
18. Liu, Y. J.; Kanatzidis, M. G. Chem. Mater. 1995, 7, 1525.
19. Kerr, T. A.; Wu, H.; Nazar, L. F. Chem. Mater. 1996, 8, 2005.
20. Mccann, G. F.; Millar, G. J.; Bowmaker, G. A.; Cooney, R. P. J. Chem. Soc., Faraday Trans. 1995, 91, 4321.
21. Inanas O. and Cundstrum I., Synth. Met. 1987, 108, 13.
22. Skothein T. A., Handbook conducting polymer, Marcel Dekker, Inc., New York, 1981, 1.
23. Kobayashi, N.; Yamada, K.; Hirohashi, R. Electrochim. Acta. 1992, 37, 2101.
24. Morita, M. J. Polym. Sci., B: Polym. Phys. 1994, 32, 231.
25. Bernard, M. C.; Goff, A. H. L.; Zeng, W. Synth. Met. 1997, 85, 1347.
26. Bernard, M. C.; Goff, A. H. L.; Bich, V. T.; Zeng, W. Synth. Met. 1996, 81, 215.
27. Joo, J.; Epstein, A. J. Appl. Phys. Lett. 1994, 65, 2278.
28. The 2000 Nobel Prize in Chemistry JUNGL. VETENSKAPSAKADEMIEN THE ROYAL SWEDISH ACADEMY OF SCIENCES October 10, 2000.
http://www.nobel.se/chemistry/laureates/2000/public.html
29. Vivier, V.; Cachetvivier, C.; Cha, C. S.; Nedelec, J. Y.; Yu, L. T. Electrochem Commun 2000, 2, 180.
30. Osaka, T.; Naoi, K.; Hirabayashi, T. J Electrochem Soc 1990, 134, 2645.
31. Armelao, L.; Bertoncello, R.; Granozzi, G. Depaoli, G.; Tondello, E.; Battaglin, G. J Mater Chem 1994, 4, 407.
32. Jelle, B. P.; Hagen, G.; Sunde, S.; Odegard, R. Synth Met 1993, 54, 315.
33.Gangopadhyay, R.; De, A. Chem Mater 2000, 12, 608.
34. Sukeerthi, S.; Contractor, A. Q. Anal Chem 1999, 71, 2231.
35. Seymour, R. B. New York: Plenum press, Conductive polymer 1981, 23-28.
36. Seymour, R. B. New York: Plenum press, Conductive polymer 1981, 77-84.
37. Surville, R. D.; Jozefowicz, M. Electrochim Acta 1968, 13, 1451.
38. Abthagir, P. S.; Saraswathi, R. J Appl Polym Sci 2001, 81, 2127.
39. 廖建勛,有機半導體材料與元件 2000.
40. 陳壽安,電子月刊,第七卷,第四期 2000.
41. Araujo, w. S.; Margarit, I. C. P.; Ferreira, M.; Mattos, O. R.; Neto, P. L. 2001, 46, 1307.
42. Epstein, A. J.; Yue, J. US Patent no. 5137991, 1992.
43. Joo, J.; Epstein, A. J. Appl Phys Lett 1994, 65, 2278.
44. Makela, T.; Pienimaa, S.; Taka, T.; Jussila, S.; Isotalo, H. Synth Met 1997, 85, 1335.
45. Racicot, R.; Brown, R.; Yang, S. C. Synth Met 1997, 85, 1263.
46. Kin, P. J.; Silverman, D. C.; Jeffreys, C. R. Synth Met 1997, 85, 1327.
47. Bernard, M. C.; Goff, H. L.; Joiret, S.; Dinh, N. N.; Toan, N. N. Electrochem Soc 1999, 146, 995.
48. Wessling, B.; Posdorfer, J. Electrochim Acta 1999, 44, 2139.
49. Malik, M. A.; Galkowski, M. T.; Bala, H.; Grzybowska, B.; Kulesza, P. J. Electrochim Acta 1999, 44, 2157.
50. Li, C.; Wang, Y.; Wan, M.; Li, S. Synth Met 1991, 39, 90.
51. Ozaki, M.; Peebles, D. L.; Weinberger, B. R.; Hegger A. J.; MacDiarmid, A. G. J Appl Phys 1980, 51, 4252.
52. Kuo, C. T.; Chiou, W. H. Synth Met 1997, 88, 23.
53. Wang, H. L.; MacDiarmid, A. G.; Wang, Y. Z.; Gebler, D. D.; Epstein, A. J. Synth Met 1996, 78, 33.
54. Wang, Y. Z.; Gebler, D. D.; Lin, L. B.; Blatchford, J. W.; Jessen, S. W.; Wang, H. L.; Epstein, A. J. Appl Phys Lett 1996, 68, 894.
55. Chen, S. A.; Chuang, K. R.; Chao, C. I.; Lee, H. T. Synth Met 1996, 82, 207.
56. Gaponik, N. P.; Talapin, D. V.; Dmitri, V.; Rogach, A. L. Phys Chem Chem Phys 1999, 1, 1787.
57. Kobayashi, N.; Yamada, K.; Hirohashi, R. Electrochim Acta 1992, 37, 2101.
58. Morita, M.; J Poly Sci, Part B: Polymer Phys 1994, 32, 231.
59. Bernard, M. C.; Goff, H. L.; Wen, Z. Synth Met 1997, 85, 1347.
60. Bernard, M. C.; Goff, H. L.; Bich, V. T.; Wen, A. Z. Synth Met 1996, 81, 215.
61. Barbero, C.; Miras, M. C.; Koetz, R.; Haas, O. Synth Met 1993, 55, 1539.
62. Tsutsumi, H.; Yamashita, S.; Oishi, T. Synth Met 1997, 85, 1361.
63. Kumar, G.; Sivashanmugam, A.; Muniyandi, N.; Dhawan, S. K. Synth Met 1996, 80, 279.
64. Cui, G.; Lee, J. S.; Kim, S. J.; Nam, H.; Cha, G. S.; Kim, H. D. Analyst 1998, 123, 1855.
65. Takeda, S. Thin Solid Film 1999, 343, 310.
66. Su, T. M.; Ball, I. J.; Conklin, J. A.; Huang, S. C.; Larson, R. K.; Nguyen, S. L. Synth Met 1997, 84, 801.
67. Nishio, K.; Fujimoto, M. J Power Sources 1995, 56, 189).
68. Lai, E. K. W.; Beattie, P. D.; Holdcroft, S. Synth met 1997, 84, 87.
69.Wang, B.; Tang, J. Synth met 1986, 13, 329.
70. Koziel, K.; Lapkowski, M.; Lefrant, S. Synth met 1995, 69, 217.
71. Rannou, P.; Nechtschein, M. Synth met 1997, 84, 755.
72. Bernard, M. C.; Bich, V. T. Synth met 1999, 101, 811.
73. Langer, J. J; Krzyminiewski, R.; Kruczynski, Z.; Gibinski, T.; Czajkowski, I.; Framski, G. Synth Met 2001, 122, 359.
74. Cao, Y.; Li, S.; Xue, Z,; Guo, D. Synth Met 1986, 16, 305.
75. Stejskal, J.; Kratochvil, P. Synth Met 1993, 61, 225.
76. Glarum, S. H.; Marshall, J. H. J. Electrochem. Soc. 1987, 134, 2160.
77. Glarum, S. H.; Marshall, J. H. J Phys. Chem. 1988, 92, 4210.
[1] Inanas, O.; Cundstrum, I. Synth Met 1987, 108, 13.
[2] Skothein, T. A. Handbook conducting polymer, Marcel Dekker, Inc., New York, 1981, 1.
[3] Kobayashi, N.; Yamada, K.; Hirohashi, R. Electrochim Acta 1992, 37, 2101.
[4] Morita, M. J Polym Sci, B: Polym Phys 1994, 32, 231.
[5] Bernard, M. C.; Goff, A. H. L; Zeng, W. Synth Met 1997, 85, 1347.
[6] Bernard, M. C.; Goff, A. H. L.; Bich, V. T.; Zeng, W. Synth Met 1996, 81, 215.
[7] Joo, J.; Epstein, A. J. Appl Phys Lett 1994, 65, 2278.
[8] Southward, R. E.; Thompson, D. S.; Thornton, T. A.; Thompson, D. W.; Stclair, A. K. Chem Mater 1998, 10, 486.
[9] Kim, B. H.; Jung, J. H.; Joo, J.; Kim, J. W.; Choi, H. J. J Korean Phys Soc 2000, 36, 366.
[10] Wu, Q.; Xue, Z.; Qi, Z.; Wang, F. Polymer 2000, 41, 2029.
[11] Dondi, M.; Marsigli, M.; Venturi, I. Br Ceram Trans 1999, 98, 12.
[12] Hasegawa, N.; Okamoto, H.; Kawasumi, M.; Usuki, A. J Appl Polym Sci 1999, 74, 3359.
[13] Hasegawa, N.; Kawasumi, M.; Kato, M.; Usuki, A.; Okada, A. J Appl Polym Sci 1998, 67, 87.
[14] Usuki, A.; Koiwai, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O. J Appl Polym Sci 1995, 55, 119.
[15] Seckin, T.; Gultek, A.; Onal, Y.; Yakinci, E.; Aksoy, I. J Mater Chem 1997, 7, 265.
[16] Huang, J. C.; Zhu, Z. K.; Yin, J.; Qian, X. F.; Sun, Y. Y. Polymer 2001, 42, 873.
[17] Vaia, R. A.; Ishii, H.; Giannelis, E. P. Chem Mater 1993, 5, 1694.
[18] Messersmith, P. B.; Giannelis, E. P. Chem Mater 1994, 6, 1719.
[19] Liu, X.; Wu, Q.; Berglund, L. A.; Fan, J.; Qi, Z. Polymer 2001, 42, 8235.
[20] Chang, J. H.; Park, K. M.; Cho, D. H.; Yang, H. S.; Ihn, K. J. Polym Eng Sci 2001, 41, 1514.
[21] Wu, Q.; Xue, Z.; Qi, Z.; Wang, F. Polymer 2000, 41, 2029.
[22] Faguy, P. W.; Ma, W. L.; Lowe, J. A.; Pan, W. P.; Brown. T. J Mater Chem 1994, 4, 771.
[23] Wu, C. G.; Degroot, D. C.; Marcy, H. O.; Schindler, J. L.; Kannewurf, C. R.; Liu, Y. J.; Hirpo, W.; Kanatzidis, M. G. Chem Mater 1996, 8, 1992.
[24] Uma, S.; Gopalakrishnan, J. Mater Sci Eng, B 1995, 34, 175.
[25] Liu, Y. J.; Kanatzidis, M. G. Chem Mater 1995, 7, 1525.
[26] Kerr, T. A.; Wu, H.; Nazar, L. F. Chem Mater 1996, 8, 2005.
[27] Mccann, G. F.; Millar, G. J.; Bowmaker, G. A.; Cooney, R. P. J Chem Soc, Faraday Trans 1995, 91, 4321.
[28] 吳宗正,壓電晶體生物感測器之研究與其應用,台灣大學農業化學研究所碩士論文。
[29]Sauerbrey, G. Z. Phys 1959, 155, 205.
[30] Nomura, T.; Nagamune, T.; Izutsu, K.; West, T. S. Bunseki Kagaku 1981, 30, 494.
[31] Fujiwara, N.; Asaka, K.; Nishimura, Y.; Oguro, K.; Torikai, E. Chem Mater 2000, 12, 1750.
[32] User’s Manual of Model 403 Electrochemical Quartz Crystal Microbalance, CH Instruments.
[33] Ballarin, B.; Seeber, R.; Tonelli, D.; Zanardi, C. Electroanalysis 2000, 12, 434.
1. Iijima, S. Nature 1991, 354, 56.
2. Deheer, W. A.; Chatelain, A.; Ugarte, D. Science 1995, 270, 1179.
3. Dai, H.; Hafiner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E. Nature 1996, 384, 147.
4. Ebbesen, T. W. Phys Today 1996, June, 26.
5. Treay, M. M. J.; Ebbesen, T. W.; Gibson, J. M. 1996, 381, 678.
6. Tabony, J.; Tob, D. Natue 1990, 346, 448.
7. Fan, J. H.; Wan, M. X.; Zhu, D. B.; Chang, B. H.; Pan, Z. W.; Xe, S. S. J Appl Polym Sci 1999, 74, 2605.
8. Fan, J. H.; Wan, M. X.; Zhu, D. B.; Chang, B. H.; Pan, Z. W.; Xe, S. S. Synth Met 1999, 102, 1266.
9. Downs, C.; Nugent, J.; Aiayan, P. M.; Duguette, D. J.; Santhanam, S. V. Adv Mater 1999, 11, 1028.
10. Cao, H. Q.; Tie, C. Y.; Xu, Z.; Hong, J. M.; Sang, H. Appl Phys Lett 2001, 78, 1592.
11. Qiu, H. J.; Wan, M. X.; Matthews, B.; Dai, L. M. Macromolecules 2001, 34, 675.
12. Ozin, G. A. Adv Mater 1992, 4, 612.
13. Kanatzidis, M. G.; Tonge, L. M.; Marks, T. J.; Marcy, H. O.; Kannewurf, C. R. J Am Chem Soc 1987, 109, 3797.
14. Kanatzidis, M. G.; Wu, C. G.; Marcy, H. O.; Kannewurf, C. R. J Am Chem Soc 1989, 111, 4139.
15. Bein, T.; Enzel, P.; Beuneu, F.; Zuppiroli, L. Adv Chem Ser 1990, 226, 433.
16. Martin, C. R. Acc Chem Res 1995, 259, 957.
17. Jerome, C.; Demoustier-Champagne, S.; Legras, R.; Jerome, R. Chem Eur J 2000, 6, 3089.
18. Wu, C. G.; Bein, T. Science 1994, 264, 1757.
19. Wu, C. G.; Bein, T. Science 1994, 266, 1013.
20. Parthasarathy, R. V.; Martin, C. R. Chem Mater 1994, 6, 1627.
21. Wu, C. N.; Chao, K. J.; Tsai, T. G.; Chiou, Y. H.; Shih, H. C. Adv Mater 1996, 8, 1008.
22. Pradhan, B. K.; Toba, T.; Kyotani, T.; Tomita, A. Chem Mater 1998, 10, 2510.
23. Kyotani, T.; Tsai, L. F.; Tomita, A. Chem Mater 1996, 8, 2109.
24. Li, J.; Moskovits, M.; Haslett, T. L. Chem Mater 1998, 10, 1963.
25. Wu, Q.; Xue, Z. Qi, Z.; Wang, F. Polymer 2000, 41, 2029.
26. Inanas O. and Cundstrum I., Synth. Met. 1987, 108, 13.
指導教授 楊思明(Sze-Ming Yang) 審核日期 2003-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明