博碩士論文 93326008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.216.115.198
姓名 薛人豪(jen-hao hsueh)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 磁性顆粒在磁場與流場交互作用下之凝絮情形
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討磁性顆粒受磁場及流場交互作用下的凝絮情形,利用影像擷取系統及分析軟體,在不同磁場方向設定下分別探討磁場及流場對凝絮的影響,最後利用無因次參數,做出凝絮速率的迴歸模式。結果發現,在粒徑長成方面,磁場強度的增強對凝絮的速率及粒徑成長皆有提升的作用;在不同流速下,則會因Cm-s值的不同而有相異的凝絮情形:Cm-s值在大於1的情況下,若流速增加則會使得凝絮速率增加,在Cm-s值小於1的情況下,流速上升反而使得凝絮物成長到達一定時間即停止。在碎形維度方面,磁場強度若升高,碎形維度會有上升的情形,而流速的變化對碎形維度並沒有明顯的影響。最後,利用凝絮速率V與無因次參數Cm-s所得到的迴歸模式為:V=-0.096318+0.326564×√Cm-s,做出來的迴歸式可利用計算出的Cm-s值,來預測其凝絮速率。
摘要(英) In this study, aggregation of magnetic particles is affected by the interaction of external magnetic field and flow rate. We analyze the result of aggregation with different direction of external magnetic field, respectively. The circumstances of aggregation are investigated via microscopic visualization system and digital image analysis. Finally, the regression of aggregation is made by dimensionless parameter. In the result, the rate of aggregation are increasing by enhancing the external magnetic field in all cases. But in different flow rate, the circumstances of aggregation are changed by the value of dimensionless parameter ,Cm-s. When Cm-s is greater than 1, the rate of aggregation are increasing by increasing the flow rate. On the contrary, the aggregations are broken by the shear force when Cm-s smaller than 1. In the result of fractal dimension, enhancing the external magnetic field will obtain larger fractal dimension. The flow rate cause no effect to fractal dimension. The regression analysis is made by rate of aggregation, V and dimensionless parameter, Cm-s. The result of regression is V=-0.096318+0.326564×√Cm-s We can use this model to predict the rate of aggregation.
關鍵字(中) ★ 碎形維度
★ 凝絮速率
★ 磁性顆粒
關鍵字(英) ★ fractal dimension
★ rate of aggregation
★ magnetic particle
論文目次 摘要.............................................................................................................................I
文目錄.......................................................................................................................III
圖目錄........................................................................................................................V
表目錄......................................................................................................................VII
第一章、前言.............................................................................................................1
1.1 研究緣起......................................................................................................1
1.2 研究目的......................................................................................................2
第二章、文獻回顧.....................................................................................................3
2.1 DLVO理論....................................................................................................3
2.1.1 凡得瓦爾力(van der waals forces)....................................................3
2.1.2 靜電力(electrostatic forces)...............................................................4
2.1.3 DLVO總位能與距離關係..................................................................7
2.2 碎形理論......................................................................................................10
2.2.1 碎形的特性.......................................................................................11
2.2.2 碎形維度...........................................................................................14
2.2.3 碎形維度的計算...............................................................................15
2.3 膠體顆粒凝絮機制模式..............................................................................17
2.3.1 擴散限制凝絮模式(DLA,diffusion-limited aggregation).................17
2.3.2 反應限制凝絮模式(RLA,reaction-limited aggregation)...................20
2.3.3 凝絮物-凝絮物凝絮模式(CCA,cluster-cluster aggregation)............21
2.4 影響顆粒凝絮系統的變數...........................................................................23
2.4.1 溶液的離子強度................................................................................23
2.4.2 溫度....................................................................................................23
2.4.3 大尺度的力(long-range forces).........................................................24
2.4.4 小尺度的力(short-range forces)........................................................25
2.4.5 重組現象(restructuring).....................................................................25
2.5 磁場與流場交互作用對凝絮的影響...........................................................27
2.5.1 磁性物質的種類................................................................................27
2.5.2 磁性顆粒的排列及外加磁場的影響................................................28
2.5.3 磁場及流場的交互作用對凝絮的影響............................................31
2.5.4 顆粒的軌跡方程式............................................................................33
第三章 實驗方法........................................................................................................36
3.1 實驗設備.......................................................................................................36
3.1.1 影像擷取系統............................................................................................36
3.1.2 其他實驗器材..........................................................................................37
3.1.3 分析軟體....................................................................................................39
3.1.4 實驗材料............................................................................................40
3.2 實驗方法.......................................................................................................41
3.3.1 前處理................................................................................................41
3.3.2 錄製顆粒凝絮情形............................................................................41
3.3.3 數據分析............................................................................................44
第四章、結果與討論..................................................................................................49
4.1 磁場與流場垂直狀況下,磁場對凝絮的影響..........................................49
4.1.1 磁場強度變化對粒徑成長的影響....................................................49
4.1.2 磁場強度變化對碎形維度的影響....................................................56
4.2 磁場與流場垂直狀況下,流速對凝絮的影響..........................................59
4.2.1 流速變化對粒徑成長的影響............................................................59
4.2.2 流速變化對碎形維度的影響............................................................66
4.3 磁場與流場平行狀況下,磁場強度對凝絮的影響..................................71
4.4 磁場與流場平行狀況下,流速對凝絮的影響..........................................76
4.5 迴歸分析......................................................................................................81
第五章、結論與建議..................................................................................................86
5.1 結論..............................................................................................................86
5.2 建議..............................................................................................................87
參考文獻......................................................................................................................88
附錄 符號說明............................................................................................................92
參考文獻 1. Hiemenz, P. C., “Principles of colloid surface chemistry”, Marcel Dekker, New York(1997).
2. 林耿慧,在液體裏跳布朗舞步的膠體粒子,http://www.phys.sinica.edu.tw/~khlin/bimonthly.htm
3. 楊萬發,水及廢水處理化學,茂昌出版社,第六章(2002)。
4. Hamaker, H. C., “London-van der waals attraction between sphericalparticles”, Physica, 4, 1058-1072(1937)
5. 張有義、郭蘭生譯(2001)膠體及介面化學入門,高立圖書有限公司,第七章。
6. 石濤(2001)環境化學,鼎茂出版社,第八章。
7. Stern, O., “Zur theorie der’elektrolytischem doppelschicht”, Annals Electrochemical, 30, 508-526(1924)
8. Tsouris, C. and T. C. Scott, “Flocculation of paramagnetic particles in a magnetic field”, Journal of Colloid and Interface Science, 171, 319-330(1995)
9. Bell, G. M., S. Levins, and L. N. McCartney, “Approximate methods of determining the double-layer free energy of interaction between two charged colloidal spheres”, Journal of Colloid and Interface Science, 33,335-359(1970)
10. Hogg, R., T. W. Healy, and D. W. Fuerstenau, “Mutual coagulation of Colloidal dispersions”, Transactions of Faraday Society, 18, 1638-1651(1966)
11. Zeichner, G. R. and W. R. Schowalter, “Effects of hydrodynamic and colloid forces on the coagulation of dispersions”, Journal of Colloid and Interface Science, 71, 237-253(1979)
12. Mandelbrot, B. B., “The fractal geometry of nature”, New York W. H. Freeman(1983)
13. 吳文成,碎形 Fractal,http://alumni.nctu.edu.tw/~sinner/complex/fractals/
14. 林伯航,應用碎形分析河川棲地分佈之時空特性,國立中央大學土木工程研究所碩士論文(1994)
15. Meakin, P., “Fractals, scaling and growth far from equilibrium”, UK Cambridge University Press, Chapter 3(1998)
16. Amal, R., J. A. Paper, and T. D. Waite, “Fractal structure of hematite aggregate”, Journal of Colloid and Interface Science, 140, 1 ,158-168(1990)
17. Witten, T. A. Jr. and L. M. Sander, “Diffusion-limited aggregation, a Kinetic Critical Phenomenon”, Physical Review letter, 47, 19, 1400-1403(1981)
18. Trohidou, K. N. and J. A. Blackman, “Aggregation and segregation in a mixture of magnetic and nonmagnetic particles”, Physical Review B, 51, 521-526(1995)
19. 張添智, “Scanning tunneling microscopy study of Ge epitaxial growth on monolayer of Pb covered Si(111) substrate”, 國立臺灣大學電機工程學研究所博士論文(2000)
20. Morimoto, H. and T. Maekawa, “Cluster structures and cluster-cluster aggregations in a two-dimensional ferromagnetic colloidal system”, Journal of Physics A:Mathematical and General, 33, 247-258(2000)
21. Chin, C. J., S. C. Lu, S. Yiacoumi, and C. Tsouris, “Fractal dimension of particle aggregates in magnetic fields”, Separation Science and Technology, 39, 12, 2839-2862(2004)
22. Kim, A.Y. and J. C. Berg, “Fractal heteroaggregation of oppositely charged colloids”, Journal of Colloid and Interface Science, 229, 607-614(2000)
23. Vincze, A., L. Demko, M. Voros, M. Zrinyi, M. N. Esmail, and Z. Horvolgyi, “Two-dimensional aggregation of rod-like particle:A model investigation”, Journal of Physical Chemistry:B, 106, 2404-2414(2002)
24. 謝芳生譯,工程電磁學,東華書局,第九章(1997)。
25. Chikazumi, S., “Physics of magnetism”, John Wiley and Sons:New York(1986)
26. Pshenichnikov, A. F. and A. A. Fedorenko, “Chain-like aggregate in magnetic fluids”, Journal of Magnetism and Magnetic Materials, 292, 332-344(2005)
27. Fermigier, M. and A. P. Gast, “Structure evolution in a paramagnetic latex suspension”, Journal of Colloid and Interface Science, 154, 522-539(1992)
28. Fermigier, M., H. E. Joanne, and A. P. Gast, “Aggregation kinetics of paramagnetic colloidal particles”, Journal of Chemical Physics, 102, 5492-5498(1994)
29. Brunet, E., G. Degre, F. Okkles, and P. Tabeling, “Aggregation of paramagnetic particle in presence of a hydrodynamic shear”, Journal of Colloid and Interface Science, 282, 58-68(2005)
30. Tsouris, C., S. Yiacoumi, and D. A. Rountree, “Mechanism of particle flocculation by magnetic seeding”, Journal of Colloid and Interface Science, 184, 1-12(1996)
31. Van der ven, T. G. M. and S. G. Mason, “The microrheology of colloidal dispersions:orthokinetic doublet formation of spheres”, Colloid and Polymer Science, 255, 468-479(1977)
32. Chin, C. J., S. Yiacoumi, and C. Tsouris, “Probing DLVO forces using interparticle magnetic forces:Transition from secondary-minimum to primary-minimum aggregation”, Langmuir, 17, 6065-6071(2001)
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2007-3-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明