博碩士論文 93326009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.219.8.25
姓名 周貝倫(Pei-Lun Chou)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 純化程序對奈米碳管表面特性影響之研究
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著奈米科技的發展,奈米材料的結構特性與應用,成為目前科技發展研究的重點之ㄧ。奈米碳管的發現對於奈米材料的發展具重大的影響,由於奈米碳管優異的物理與化學特性,因此具有相當大的應用潛力。
合成後的奈米碳管,會含有大量的金屬觸媒顆粒以及碳不純物,影響後續奈米碳管的應用,所以必須先經過純化程序以提高奈米碳管的純度,然而純化程序會對奈米碳管的物理與化學特性造成改變。本研究藉由不同氧化劑與氧化劑濃度對奈米碳管進行純化,探討純化前後對於奈米碳管表面特性的影響。研究結果顯示,純化程序改變奈米碳管表面物理與化學性質,不同氧化劑純化後奈米碳管的純度,以硝酸為最高,鹽酸次之,其次為過氧化氫,由於硝酸純化後奈米碳管的金屬含量明顯降低,純度因而提升。由氮孔隙吸附分析發現,不同氧化劑純化後奈米碳管表面積與微孔體積皆有增加的趨勢,僅9M 硝酸純化後奈米碳管為例外,氧化劑濃度越高,對奈米碳管表面結構破壞也越大。經傅立葉紅外光譜分析發現,未經處理之奈米碳管表面並無官能基存在,純化後奈米碳管表面化學性質改變,並在缺陷處產生羧基、酚基、羰基三種官能基,不同官能基的含量未必隨著氧化劑濃度增加而增加。實驗結果顯示,純化程序對奈米碳管表面特性造成改變,不同氧化劑純化奈米碳管的影響也不同。
摘要(英) The objective of this work is to study the influences of the oxidant and their concentration on the physical and the chemical properties of the purified CNTs. The properties of the raw and the purified CNTs were examined by thermal gravimetric analysis (TGA), Raman spectroscopy, nitrogen adsorption, field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), and Boehm’s titration. The TGA results showed that HNO3 can effectively remove amorphous carbon and metal particles while HCl and H2O2 have limited removal efficiency. Raman spectra showed that the G/D ratio of the CNTs increased when the CNTs were purified by HNO3, and that decreased when the CNTs were purified by both HCl and H2O2. Generally speaking, HNO3 is the most effective oxidant, followed by HCl, and H2O2 is the least. It was also found that the total surface area and the micropore volume were increased in all oxidation conditions used in this work, except 9 M HNO3. This was because the CNTs were severely damaged by 9M HNO3 and bundled together. Purifications also introduce functional groups on the CNTs, such as carboxylic, lactone, and phenolic groups. However, the amount of introduced functional groups showed no correlation to the concentration of the oxidation agents.
關鍵字(中) ★ 拉曼光譜
★ 熱重量分析
★ 純化
★ 奈米碳管
★ 氮孔隙吸附
★ 傅立葉
關鍵字(英) ★ Boehm’s titration
★ FTIR
★ field emission scanning electron microscopy
★ TGA
★ Raman spectroscopy
★ purification
★ CNTs
論文目次 圖目錄………………………………………………………………………Ⅳ
表目錄………………………………………………………………………Ⅵ
第一章 前言 1
1-1研究緣起 1
1-2研究目的 2
1-3 研究流程 3
第二章 文獻回顧 4
2-1 奈米碳管基本特性 4
2-2 奈米碳管之製備 8
2-3 奈米碳管的應用 12
2-4 奈米碳管的純化 15
2-5 奈米碳管的吸附現象 20
2-6 Boehm’s titration 22
第三章 實驗方法 23
3-1實驗設備與材料 23
3-1-1實驗設備 23
3-1-2實驗材料與藥品 25
3-2實驗方法 26
3-2-1奈米碳管之純化程序 26
3-2-2奈米碳管定性分析(分析方法) 28
3-2-3 Boehm’s titration 29
第四章 結果與討論 31
4-1熱重量分析 31
4-1-1硝酸純化後奈米碳管純度變化 32
4-1-2鹽酸純化後奈米碳管純度變化 34
4-1-3過氧化氫水溶液純化後奈米碳管純度變化 36
4-2場發射電子顯微鏡觀察 40
4-2-1硝酸純化後奈米碳管表面型態 40
4-2-2鹽酸酸純化後奈米碳管表面型態 42
4-2-3過氧化氫水溶液純化後奈米碳管表面型態 44
4-3拉曼光譜分析 46
4-3-1硝酸純化後之拉曼光譜 47
4-3-2鹽酸純化後之拉曼光譜 48
4-3-3過氧化氫水溶液純化後之拉曼光譜 49
4-4表面積與孔隙分析 51
4-4-1硝酸純化後表面積與孔隙變化 51
4-4-2鹽酸純化後表面積與孔隙變化 54
4-4-3過氧化氫水溶液純化後奈米碳管變化 56
4-5表面官能基鑑定 59
4-5-1硝酸純化後官能基鑑定 60
4-5-2鹽酸純化後官能基鑑定 61
4-5-3過氧化氫水溶液純化後官能基鑑定 63
第五章 結論與建議 65
5-1結論 65
5-2建議 66
參考文獻 67
參考文獻 [1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354,
pp.56
(1991).
[2] 李元堯,「21 世紀的尖端材料-奈米碳管」,化工技術,第11 卷第2 期,
第140-159 頁,2003。
[3] 洪昭南、徐逸明、王宏達,「奈米碳管結構及特性簡介」,化工,第49
卷第1 期,第23-30 頁,2002。
[4] 王裕祥,「利用高分子材料及電弧放電法製造奈米碳管」,碩士論文,
中正大學化學工程研究所,嘉義,2002。
[5] 化工產業技術知.網: http://www.chemtech.com.tw
[6] 黃建良、黃淑娟,「奈米碳纖與奈米碳管合成技術簡介」,化工,第50
卷第2 期,第18 至25 頁,2003。
[7] M. Yudasaka, ”Mechanism of the effect of NiCo Ni and Co catalysts
on the yield of single-wall carbon nanotubes forced by pulsed Nd:YAG
laser ablation ,” Journal of Physical Chemistry B, 103, pp.11-17
(1999).
[8] F Kokai, ”Synthesis of single-wall carbon nanotubes by millisecond-
pulsed CO2 laser vaporization at room temperature,”Chemical Physics
Letters, 316, pp.11-17 (2000).
[9] Z.W.Pan, S.S. Xie, B.H. Chang, L.F. Sun, and W.Y. Wang, ”Direct
growth of aligned open cabon nanotubes by chemical vapor deposition”
Chemical Physics Letters, 299, pp 97-102 (1999).
[10] J. Kong, M. Cassell and H.G. Dai, “Chemical vapor deposition of methane for single-walled carbon nanotubes” Chemical Physics
Letters, 292, pp 567-574 (1998).
[11] A. C. Dillon, K. M. Jones, and T. A. Bekkedahl, “Storage of
hydrorgen in single-walled carbon nanotubes.” Nature, 386, pp.377-
379 (1997).
[12] Sander J. Tans, Alwin R. M. Verschueren, and Cees Dekker,
“Room-temperature transistor based on a single carbon nanotube,”
Nture, 393, pp.49-51 (1998).
[13] Dengsong Zhang, Liyi Shi, Jianhui Fang, and Kai Dai, “NaCl
adsorption from saltwater solution using carbon nanotubes/activated
carbon composite electrode,” Materials Letters, 60, pp.360-363
(2006).
[14] Kai Dai, Liyi Shi, Dengsong Zhang, and Jianhui Fang, “NaCl
adsorption in multi-walled carbon nanotubes/activated carbon
combination electrode,” Chemical Engineering Science, 61, pp.428-433
(2006).
[15] Fu-Hsiang Ko, Chung-Yang Lee, Chu-Jung Ko, and Tieh-Chi Chu,
“Purification of multi-walled nanotubes through microwave heating of
nitric acid in a closed vessel,” Carbon, 43, pp.727-733 (2005).
[16] Avetik R. Harutyunyan, Bhabendra K. Pradhan, Jiping Chang, Gugang
Chen, and Peter C. Eklund, ”Purification of single-walled carbon
nanotubes by selective microwave heating of catalyst particles,”
Carbon,106, pp.8671-8675 (2002).
[17] Konstantin B. Shelimov, Rinat O. Esenaliev, Andrew G. Rinzler, and
Chad B. Huffman, “Purification of single-walled carbon nanotubes by
ultrasonically assisted filtration,” Chemical Physics Letters, 282,
pp.429-434 (1998).
[18] L. S. K. Pang, J. D. Saxby, and S. P. Chatfield, “Thermogravimetric
analysis of carbon nanotubes and nanoparticles,“ Journal of Physical
Chemistry, 27, pp.6941-6942 (1993).
[19] S. C. Tsang, P. J. Harris, and M. L. Green, “Thinning and opening of
carbon nanotubes by oxidation using carbon dioxide,” Nature, 362, 520
(1993).
[20] G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, and S. Roth,
“Seperation of carbon nanotubes by size exclusion chromatograpgy,”
Chemical Communications, 3, pp. 435-436 (1998).
[21] Yan-hui Li, Shuguang Wang, Zhaokun Luan, Jun Ding, and Cailu Xu,
“Adsorption of cadmium(Ⅱ) from aqueous solution by surface oxidized
carbon nanotubes,” Carbon, 41, pp.1057-1062 (2003).
[22] K. Hernadi, A. Siska, L. Thien-Nga, L. Forro, and I. Kiricsi,
“Reactivity of different kinds of carbon during oxidative
purification of catalytically prepared carbon nanotubes,” Solid
State Ionics, 141-142, pp.203-209 (2001).
[23] Hui Hu, Bin Zhao, Mikhail E. Itkis, and Robert C. Haddon, “Nitric
acid purification of single-walled carbon nanotubes,” Journal of
Physical Chemistry B, 107, pp.13838-13842 (2003).
[24] Erik Dujardin, Thomas W. Ebbesen, Ajit Krishnan, and Michael M. J.
Treacy, “Purification of single-shell nanotubes,” Advanced
Materials, 10(8), pp.611-613 (1998).
[25] Dengsong Zhang, Liyi Shi, Jianhui Fang, Xuanke Li, and Kai Dai,
“Preparation and modification of carbon nanotubes,” Materials
Letters, 59, pp.4044-4047 (2005).
[26] X.H. Chen, C.S. Chen, Q. Chen, F.Q. Cheng, G.Zhang, and Z.Z. Chen,
“Non-destructive purification of multi-walled carbon nanotubes
produced by catalyzed CVD,” Materials Letters, 57, pp.734-738 (2002).
[27] Y. Zhang, Z. Shi, Z. Gu, and S.Iijima, “Structure modification of
single-wall carbon nanotubes,” Carbon, 38, pp.2055-2059 (2000).
[28] Jeong-Mi Moon, Kay Hyeok An, and Young Hee Lee, “High-yield
purification process of singlewalled carbon nanotubes,” Journal of
Physical Chemistry B, 105, pp.5677-5681 (2001).
[29] Iosif Daniel Rosca, Fumio Watari, Motohiro Uo, and Tsukasa Akasaka,
“Oxidation of multiwalled carbon nanotubes by nitric acid,” Carbon,
43(15), pp.3124-3131 (2005).
[30] Richard Q. Long, and Ralph T. Yang, “Carbon nanotube as superior
sorbent for dioxin removal,” Journal of the American Chemical
Society,123, pp.2058-2059 (2001).
[31] 劉旭娟、詹舒斐、鄧宗禹、金光祖、黃志彬,「改良式固相萃取技術應用於
超純水中鄰苯二甲酸酯類之微量分析」,第二屆環境保護與奈米科技學術研討
會,清華大學,2005
[32] Yan-hui Li, Shuguang Wang, Anyuan Cao, Dan Zhao, Xianfeng Zhang,
Cailu Xu, Zhaokun Luan, Dianbo Ruan, Ji Liang, Dehai Wu, and Bingqing
Wei, “Adsorption of fluoride from water by amorphous alumina
supported on carbon nanotubes, ”Chemical Physics Letters, 350, pp.412-416 (2001).
[33] 許世杰、李孟珊、盧重興,「奈米碳管吸附異丙醇廢氣之研究」,第二 屆環境保護與奈米科技學術研討會,清華大學,2005
[34] 石立節,「奈米碳管酸純化前後表面特性之變化」,碩士論文,中央大 境工程研究所中壢,2005
[35] Yan-hui Li, Shuguang Wang, Jinquan Wei, Xianfeng Zhang, Cailu Xu,
haokun Luan, Dehai Wu, and Bingqing Wei, “Lead adsorption on
carbon nanotubes,” Chemical Physics Letters, 357, pp.263-266 (2002).
[36] Yan-hui Li, Shuguang Wang, Zhaokun Luan, Jun Ding,and Cailu Xu,
“Adsorption of cadmium(Ⅱ) from aqueous solution by surface
oxidized carbon nanotubes,” Carbon, 41, pp.1057-1062 (2003).
[37] Yan-hui Li, Jun Ding, Zhaokun Luan, Zechao Di, Yuefeng Zhu, Cailu Xu, ehai Wu, and Bingqing Wei, “Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes,” Carbon, 41, pp.2787-2792 (2003).
[38] 洪肇嘉、蔡正國、黃國軒、謝淑惠,「複合奈米碳管吸附水溶重金屬之反應與
再生之探討」,第三十屆廢水處理技術研討會,中壢市,2005
[39] Xiangke Wang, Changlun Chen, Wenping Hu, Aiping Ding, Di Xu, and
Xiang Zhou, “Sorption of 243Am(Ⅲ) to multiwall cabon nanotubes,”
Environmental Science Technology, 39, pp.2856-2860 (2005).
[40] J. Barkauskas and F.S. Cannon, “Potentimetric titrations :
characterize functional groups and adsorbed species on activated
carbon.,” http:// www.chf.vu.lt/CWN/C03_PT.pdf
[41] Yehya EI-Sayed and Teresa J. Bandosz, “Effect of increased basicity
of activated carbon surface on valeric acid adsorption from aqueous
solution activated carbon,” Chemical Physics Letters, 5, pp.4892-
4898 (2003).
[42] H. L. Chiang, C. P. Huang, and P. C. Chiang, “The surface
characteristics of activated carbon as affected by ozone and alkaline
treatment,” Chemosphere, 47, pp.257-265 (2002).
[43] Karla L. Strong, David P. Anderson, Khalid Lafdi, and John N.Kuhn,
“Purification process for single-wall carbon naontubes,” Carbon, 41,
pp.1477-1488 (2002)
[44] Cheonl-Ming Yang, Katsumi Kaneko, Masako Yudasaka, and Sumio Iijima,
“Effect of purification on pore structure of HiPco single-walled
carbon nanotube aggregates,” Nano Letters, 2(4), pp.385-388 (2002).
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2006-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明