博碩士論文 93326012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:13.59.82.167
姓名 吳岳澤(Yue-Ze Wu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 污泥灰渣全資源化水泥砂漿之研究
(Study of Cement Mortar Totally Composed by Recycled Materials Derived from Sludge and Ash)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 污泥灰渣做為卜作嵐材料或骨材應用於水泥砂漿,不但解決廢棄物處理問題,也能減少水泥天然原料和砂石等資源的消耗。為進一步提升污泥灰渣使用量,本研究以全資源化為目標進行研究,並且希望藉由多重取代型式,配合使用目前已資源化之爐石和飛灰等卜作嵐反應性佳的材料,使原本單一取代時並不理想的污泥灰渣材料,如下水污泥灰渣,能有更佳的工程性質,增加污泥灰渣資源化的出路。
本研究使用下水污泥灰渣、燃煤飛灰、水淬爐石粉做為卜作嵐材料取代水泥以及利用垃圾焚化底渣取代骨材,擬以雙材料取代水泥、三材料取代水泥和再生材料同時取代水泥和骨材之形式進行試驗。
研究結果顯示,爐石由於具有高卜作嵐活性和較高含量之(CaO+MgO),可提升其他低卜作嵐活性之混合卜作嵐材料(如飛灰和下水污泥灰渣)的卜作嵐反應,因此雙取代和三取代,可較過去研究之下水污泥灰渣或飛灰單一取代時,有較佳之工程性能。當水泥取代量50 %時,28天抗壓強度可達一般水泥砂漿控制組之88.9~93.1 %,而應用添加氯化鈣和添加石灰於下水污泥混燒之改良方法,可改良凝結時間過長之限制因子,進一步提升水泥取代率為70 %,仍具有一定之工程性能,28天抗壓強度皆符合結構混凝土之強度範圍。在耐久性部分,除控制組之配比,由於卜作嵐有效的消耗氫氧化鈣,且產生的C-S-H膠體可使結構更緻密,因此可有效抵抗硫酸鹽侵蝕,經120天抗壓強度仍持續增長。
摘要(英) Sludge and ash recycled as pozzolanic material and fine aggregate applying to cement mortar would not only solve treatment problem of waste, but also reduce the consumption of sandstone and natural materials which used in cement manufacturing. To increase the amounts of using sludge and ash, the objective of this study was to make cement and aggregate in mortar totally be composed by these recycled materials. This study expected to improve the poor engineering properties of using single recycled material (e.g. sewage sludge ash) as cement by additionally adding high pozzolanic activity of slag and/or fly ash simultaneously in multiple cement-replaced formed. Therefore, the potential of using recycled sludge and ash could be enhanced.
This study used sewage sludge ash(SSA), coal fly ash(FA), granulated blast furnace slag(S) as pozzolanic material and municipal solid waste incineration bottom ash(BA) as fine aggregate in cement mortar. In one hand, the cement in cement mortar was replaced by two types. In dual-replaced type, cement was replaced by SSA and S or FA. In triple-replaced type, SSA,FA, and S were all used to replace cement. On the other hand , in addition to cement, fine aggregate in mortar were also replaced by BA.
According to the experimental results, slag which have high pozzolanic activity and high content of CaO and MgO can increase pozzolanic activity in mortar, even other recycled materials with low pozzolanic activity such as FA and SSA were used. Therefore, dual or triple-replaced type for cement in mortar have better engineering properties than single-replaced one indicated by previously researches which only used FA or SSA for cement replacement. When the cement replacement rate of SSA with FA and/or S reached 50%, the percentage of compressive strength in mortar at the age of 28 days reached to 88.9~93.1% compared to controlled mortar. The modifications by adding calcium chloride and lime mixed with SSA could improve the limiting factor of longer setting time. Further more, the modifications had potential to increase cement replacement rate to 70%, and owned good engineering property of compressive strength at the age of 28 days, (i.e. meeting the standard of structural concrete). In durability tests, expect for the mixes of control mortar, because the consumption of calcium hydroxide by pozzolanic reaction and the filling porosity by C-S-H gel, the mortar structure was more dense and sulfate attack could be avoided. The compressive strength was thus increased with age during 120 days.
關鍵字(中) ★ 下水污泥灰渣
★ 燃煤飛灰
★ 水淬爐石粉
★ 垃圾焚化底渣
★ 卜作嵐活性
★ 抗壓強度
關鍵字(英) ★ municipal solid waste incineration bottom ash
★ granulated blast furnace slag
★ coal fly ash
★ sewage sludge ash
★ compressive strength
★ pozzolanic activity
論文目次 第一章 前言1
1-1研究緣起1
1-2研究目的與內容2
第二章 文獻回顧3
2-1水泥水化及硬固原理3
2-1-1水泥水化原理3
2-1-2水泥硬固原理8
2-2卜作嵐原理10
2-2-1卜作嵐物質10
2-2-2卜作嵐反應及機制10
2-3污泥灰渣物化特性及對混凝土之影響13
2-3-1下水污泥灰渣13
1.下水污泥灰渣之性質13
2.下水污泥灰渣化學特性13
3.下水污泥灰渣物理特性16
4.下水污泥灰渣卜作嵐特性18
2-3-2.垃圾焚化底渣19
1.垃圾焚化底渣性質19
2.垃圾焚化底渣之化學特性20
3.垃圾焚化底渣物理特性25
2-3-3 燃煤飛灰26
1.燃煤飛灰性質26
2.燃煤飛灰化學特性27
3.燃煤飛灰物理特性27
4.燃煤飛灰卜作嵐特性27
2-3-4 水淬爐石粉28
1.爐石粉性質28
2.爐石化學特性29
3.爐石卜作嵐特性29
2-4污泥灰渣單一取代應用於混凝土之成效30
2-4-1.下水污泥灰渣取代成效30
2-4-2.垃圾焚化底渣取代成效35
2-4-3 燃煤飛灰取代成效36
2-4-4 水淬爐石粉取代成效38
2-5 污泥灰渣多重取代應用於混凝土之成效41
第三章 研究方法42
3-1 研究材料42
3-2 試驗與分析方法43
3-2-1 材料製備及分析方法43
3-2-2 灰渣卜作嵐性質分析方法49
3-2-3 砂漿製備及分析方法50
3-2-4 精密儀器分析方法54
3-3 實驗計畫59
3-3-1 實驗流程59
3-3-2 全資源化水泥砂漿配比試拌60
1.雙材料取代水泥砂漿配比試拌60
2.三材料取代水泥砂漿配比試拌62
3.同時取代水泥和骨材之水泥砂漿配比試拌63
3-3-3經改良並提升取代率之全資源化水泥砂漿配比試拌64
1.雙材料取代水泥砂漿配比試拌65
2.同時取代水泥和骨材之水泥砂漿配比試拌67
第四章 結果與討論69
4-1 污泥灰渣物化特性分析69
4-1-1 污泥灰渣物理性質69
4-1-2 污泥灰渣化學性質75
4-1-3 污泥灰渣卜作嵐性質79
4-2 全資源化水泥砂漿新拌性質82
4-2-1未改良之全資源化水泥砂漿新拌性質82
1.雙材料取代水泥砂漿試拌82
2.三材料取代水泥砂漿試拌90
3.同時取代水泥和骨材之水泥砂漿試拌92
4-2-2 經改良並提升取代率之全資源化水泥砂漿新拌性質95
1.雙材料取代水泥砂漿試拌95
2.同時取代水泥和骨材之水泥砂漿試拌98
4-3 全資源化水泥砂漿硬固性質102
4-3-1 未改良之全資源化水泥砂漿硬固性質102
1.抗壓強度發展103
2.微觀分析結果105
4-3-2 經改良並提升取代率之全資源化水泥砂漿硬固性質128
1.抗壓強度發展129
2.微觀分析結果131
4-4 全資源化水泥砂漿耐久性、經濟性和可行性評估145
第五章 結論與建議150
5-1 結論150
5-2 建議152
參考文獻 1.Akhter, H., F.K. Cartledge, A. Roy and M.E. Tittlebaum, “A Study of The Effects of Nickel Chloride and Calcium Chloride on Hydration of Portland Cement,” Cement Concrete Research, Vol.23, pp.833-842 (1993).
2.Al Sayed, M.H., I.M. Madany, and A.R.M. Buali, “Use of Sewage Sludge Ash in Asphaltic Paving Mixes in Hot Regions,” Construction Building Materials, Vol.9, pp.19-23 (1995).
3.Anderson, M., Skerratt, R.G., Thomas, J., and Clay, S.D., “Case Study Involving Using Fluidised Bed Incinerator Sludge Ash as a Partial Clay Substitute in Brick Manufacture,” Water Science Technology, Vol.34, pp.507-515 (1996).
4.Appendino, P., M. Ferraris, I. Matekovit, M. Salvo, “Production of Glass-Ceramic Bodies from the Bottom Ashes of Municipal Solid Waste Incinerators,” Journal of the European Ceramic Society, Vol. 24, pp.803-810(2004).
5.Barbieri, L., A. Corradi, I. Lancellotti, T. Manfredini, “Use of Municipal Incinerator Bottom Ash as Sintering Promoter in Industrial Ceramics,” Waste Management, Vol. 22, pp.859-863(2002).
6.Bagchi, A. and D. Sopcich, “Characterization of MSW Incinerator Ash,” Journal of Environmental Engineering, Vol.115, pp.447-452.(1989).
7.Bernd, W., and F.S. Carl, “Utilization of Sewage Sludge Ash in the Brick and Tile Industry,” Water Science and Technology, Vol. 36, pp.251-258(1997).
8.Bhatty, J.I., and K.J. Reid, “Compressive Strength of Municipal Sludge Ash mortars,” ACI Materials J., Vol.86, pp.394-400 (1989).
9.Biernacki, J.J., P.J. Williams, and P.E. Stutzman, “Kinetics of Reaction of Calcium Hydroxide and Fly Ash,” ACI Materials J., Vol.98, pp.340-349 (2001).
10.Chatterji, S., “Pozzolanic Property of Natural and Synthetic Pozzolans: A Compartive Study,” ACI SP-79, pp.221~226. (1983)
11.Chatterji, S., Discussion of “Mercury Porosimetry an Inappropriate Method for The Measurement of Pore Size Distributions in Cement-Based Materials” by S.Diamond, Cement Concrete Research, Vol.31, pp.1657-1658 (2001).
12.Cheeseman, C.R., S. Monteiro da Rocha, C. Sollars, S. Bethanis, A.R. Boccaccini, “Ceramic Processing of Incinerator Bottom Ash,” Waste Management, Vol. 23, pp. 907-916(2003).
13.Cook, R.A., and K.C. Hover, “Mercury Porosimetry of Cement-Based Materials and Associated Correction Factors,” ACI Materials J., Vol.90, pp.152-161 (1993).
14.Diamond, S., “Mercury Porosimetry an Inappropriate Method for The Measurement of Pore Size Distributions in Cement-Based Materials,” Cement Concrete Research, Vol.30, pp.1517-1525 (2000).
15.El-Didamony, H., A.M. Sharara, I.M. Helmy and S. Adb El-Aleem, “Hydration Characteristics of b-C2S in The Presence of Some Accelerators,” Cement Concrete Research, Vol.26, pp.1117-1187 (1996).
16.Fraay , A.L.A, J.M. Bijen, Y.M. De haan, “The Reaction of Fly Ash in Concrete,” Cement and Concrete Research, Vol.19, pp235-246(1989)
17.Fu, X., W. Hou, C. Yang, D. Li and X. Wu ,“Studies on High-Strength Slag and Fly Ash Compound Cement” Cement and Concrete Research, Vol.30, pp1239-1243(2000).
18.Galle, C., “Effect of Drying on Cement-Based Materials Pore Structure as Identified by Mercury Intrusion Porosimetry a Comparative Study between Oven-, Vacuum-, and Free-Drying,” Cement Concrete Research, Vol.31, pp.1467-1525 (2001).
19.Giampaolo, C., S. Lo Mastro, A. Polettini, R. Pomi, P. Sirini, “Acid Neutralisation Capacity and Hydration Behavior of Incineration Bottom Ash-Portland Cement Mixtures,” Cement and Concrete Research, Vol.32, pp. 769-775(2002).
20.Hjelmar, O. “Disposal Strategies for Municipal Solid Waste Incineration Residues,” Journal of Hazardous Materials, Vol.47, pp. 345-368 (1996).
21.Hsuan, Y., “Thermogravimetric Analyzer for Geosynthetic Materials,” Geotechnical Fabrics Report, pp.18-21 (1991).
22.James, R. and G. Chairman, “Erosion of Concrete in Hydraulic structure,” Reported by ACI Committee 210, ACI manual Practice, part 1(1998).
23.Jenkins, R., and R.L. Snyder, “Introduction to X-ray Powder Diffractometry,” John Wiley & Sons, Inc., New York (1996).
24.Katz, A., “Microscopic Study of Alkali-Activated Fly Ash,” Cement Concrete Research, Vol.28, pp.197-208 (1998).
25.Khanbilvardi, R., and S. Afahari, “Sludge Ash as Fine Aggregate for Concrete mix,” J. Environmental Engineering, ASCE, Vol.121, pp.633-638(1994).
26.Kida, A., Y. Noma, and T. Imada, “Chemical Speciation and Leaching Properties of Elements in Municipal Incinerator Ashes,” Waste Management, Vol.16., pp527-536(1996).
27.Kirby, C.S. and J.D. Rimstidt, “Interaction of Municipal Solid Waste Ash with Water,” Environmental Science and Technology, Vol. 28, pp. 443-451(1994).
28.Kosmatka, S. H. and W. C. Panarase, “Design and Control of Concrete Mixtures,” 13th ed., Portland Cement Assocuation(1988).
29.Li, D., Z. Xu , Z. Luo , Z. Pan and C. Lin, “The Activation and Hydration of Glassy Cementitious Materials,” Cement and Concrete Research, Vol.32, pp1145-1152(2002).
30.Li, G. and X. Zhao, “Properties of Concrete Incorporating Fly Ash and Ground Granulated Blast-Furnace Slag,” Cement Concrete Composites, Vol.25, pp293-299(2002).
31.Malhotra, V. M. and P. K. Mehta, “Pozzolanic and Cementitious Materials,” Advances in Concrete Technology, Vol.1, Gordon and Breach Publishers(1996).
32.Mangialardi, T., L. Piga, G. Schena, and P. Sirini, “Characteristics of MSW Incinerator Ash for Use in Concrete,” Environmental Engineering Science, Vol. 15, pp. 291-297(1998).
33.Masaki, T., T. Nobuo, and M. Satoshi, “The Behavior of Heavy Metals and Phosphorus in an Ash Melting Process,” Water Science and Technology, Vol. 36, pp. 275-282(1997).
34.Maria, I., V. Enric, Q. Xavier, B. Marilda, L. Angel, and P. Felicia,“Use of Bottom Ash from Municipal Solid Waste Incineration as Road Material,”fly ash library home:http://www.flyash.info/.
35.Metha, P.K., “Concrete-Structure, Material, and Properties,” Prentice Hall (1986).
36.Mindess, S., and Young, J.F.,“Concrete,” Prentice-Hall, Inc, New Jersey(1981).
37.Monzo, J., J. Paya, M.V. Borrachero, and A. Corcoles, “Use of Sewage Sludge Ash(SSA) - Cement Admixtures in Mortars,” Cement Concrete Research, Vol.26, pp.1389-1398 (1996).
38.Monzo, J., J. Paya, M.V. Borrachero, and E. Peris-Mora, “Mechanical Behavior of Mortars Containing Sewage Sludge Ash (SSA) and Portland Cements with Different Tricalcium Aluminate Content,” Cement Concrete Research, Vol.29, pp.87-94 (1999).
39.Nisnevich, M., G. Sirotin, L. Dvoskin, and Y. Eshel, “Effect of Moisture Content of Highly Porous Bottom Ash on Properties of Concrete Mixture and Hardened Concrete,” Magazine of Concrete Research, Vol. 53, pp. 283-288(2001).
40.Paya, J., J. Monzo, M.V. Borrachero, E. Peris, and F. Amahjour, “Thermogravimetric Methods for Determining Carbon Content in Fly Ashes,” Cement Concrete Research, Vol.28, pp.675-686 (1998).
41.Paya, J., J. Monzo, M.V. Borrachero, A. Mellado, and L.M. Ordonez, “Determination of Amorphous Silica in Rice Husk Ash by a Rapid Analytical Method,” Cement Concrete Research, Vol.31, pp.227-231 (2001).
42.Pera, J., L. Coutaz, J. Ambroise, M. Chababbet, “Use of Incinerator Bottom Ash in Concrete,” Cement and Concrete Research, Vol. 27, pp. 1-5(1997).
43.Shi, C. and R.L. Day, “Acceleration of The Reactivity of Fly Ash by Chemical Activation,” Cement Concrete Research, Vol.25, pp.15-21 (1995).
44.Shi, C., “Pozzolanic Reaction and Microstructure of Chemical Activated Lime-Fly Ash Pastes,” ACI Materials J., Vol. 95, pp.537-545 (1998).
45.Shi, C. and R.L . Day, “Pozzolanic Reaction in The Presence of Chemical Activators, Part I. Reaction kinetics,” Cement Concrete Research, Vol.30, pp.51-58 (2000).
46.Shih, P.H., J.E. Chang, and L.C. Chiang, “Replacement of Raw Mix in Cement Production by Municipal Solid Waste Incineration Ash,” Cement and Concrete Research, Vol. 33, pp. 1831-1836(2003).
47.Shim, Y. S., Y.K. Kim, S.H. Kong, S.W. Rhee, and W.K. Lee, “The Adsorption Characteristics of Heavy Metals by Various Particle Sizes of MSWI Bottom Ash,” Waste Management, Vol. 23, pp. 851-857(2003).
48.Stumm, W., and J.J. Morgan, “Aquatic Chemistry,” 2nd Ed., John Wiley & Sons, New York (1981).
49.Tan K. and X. Pu, “Strengthening Effects of Finely Ground Fly Ash, Granulated Blast Furnace Slag, and Their Combination,” Cement and Concrete Research, Vol.28, pp1819-1825(1998).
50.Tay, J.H., “Sludge Ash as Filler for Portland Cement Concrete,” J. Environmental Engineering, ASCE, Vol.113, pp.345-351 (1987).
51.Tay, J.H., and W.K. Yip, “Sludge Ash as Lightweight Concrete Material,” J. Environmental Engineering, ASCE, Vol.115, pp.56-64 (1989).
52.Tay, J.H., and K.Y. Show, “Reuse of Wastewater Sludge in Manufacturingnon-Conventional Construction Materials - an Innovative Approach Toultimate Sludge Disposal,” Water Science and Technology, Vol.26, pp.1165-1174 (1992).
53.Tay, J.H., and K.Y. Show, “Municipal Wastewater Sludge as Cementitious and Blended Cement Materials,” Cement Concrete Composites, Vol.16, pp.39-48(1994).
54.Valls, S, A. Yague, E. Vazquez, and C. Mariscal, “Physical and Mechanical Propreties of Concrete with Added Dry Sludge from a Sewage Treatment Plant,” Cement and Concrete Research, Vol. 34, pp. 2203-2208(2004).
55.Wainwright PJ, and N. Rey “The Influence of Ground Granulated Blast Furnace Slag(GGBS) Additions and Time Delay on The Bleeding of Concrete,”Cement Concrete Composites Vol.22, pp253-257(2000).
56.Wang, S-D and L.S. Karen, “Hydration Products of Alkali Actibated Slag Cement,” Cement and Concrete Research, Vol.25, pp561-571(1995).
57.Wild, S., and J.M. Khatib, “Portlandite Consumption in Metakaolin Cement Pastes and Mortars,” Cement Concrete Research, Vol.27, pp.137-146(1997).
58.Wild, S., Discussion of “Mercury porosimetry an Inappropriate Method for the Measurement of Pore Size Distributions in Cement-Based materials” by S.Diamond, Cement Concrete Research, Vol.31, pp.1653-1654 (2001).
59.Wiles, C.C., “Municipal Solid Waste Combustion Ash: State-of-the-knowledge,” Journal of Hazardous Materials, Vol. 47, pp325-344 (1996).
60.Yan, J., C. Bäverman, L. Moreno, I. Neretnieks, “Evaluatoin of the Time -Dependent Nneutralising Behaviours of MSWI Bottom Ash and Steel Slag,” The Science of the Total Environment, Vol. 216, pp. 41-54(1998).
61.Young, J.F., S. Mindess, R.J. Gray, and A. Bentur, “The Science and Technology of Civil Engineering Materials,” Prentice Hall (1999).
62.王弟文,「下水污泥焚化灰製造發泡輕質混凝土之研究」,碩士論文,國立中央大學環境工程研究所(2001)。
63.沈永年,「高性能混凝土水化作用機理之研究」,博士論文,國立台灣工業技術學院營建工程技術研究所 (1997)。
64.李釗、江少鋒、郭文田,「垃圾焚化灰渣作為混凝土細骨材之可行性研究」,中國環境工程學刊,第七卷,第三期,第289-296頁(1997)。
65.吳志堂、張芳志、林志棟,「不同細度之飛灰及爐石配比對混凝土強度影響之研究」,台灣公路工程,第二十八卷,第五期,第19~39頁(2001)。
66.吳崇豪,「爐石混凝土之抗衝擊磨耗性質研究」,碩士論文,國立中興大學土木工程研究所 (2004)。
67.林正芳、韋文誠、吳忠信,「無機污泥材料化技術研究」,行政院環保署(2002)。
68.林炳炎,「飛灰、矽灰、高爐爐石用在混凝土中」(1993)。
69.林草英、黃兆龍、郭淑德等,「飛灰取代部分混凝土細骨材之可行性研究」,台灣電力綜合研究所專題研究報告(1986)。
70.邱承美,「儀器分析原理」,科文出版社,台北(1981)。
71.高思懷、王鯤生,「垃圾焚化底渣利用之研發建置及推廣計畫」,行政院環保署專題計畫(2000)。
72.張大鵬,「高強度/高性能混凝土之應用與考量(上)」,營建知訊,180期,第32-41頁(1998)。
73.陳忠元,「強塑劑對水泥添加波蜀蘭材料之早期行為影響」,碩士論文,國立中央大學土木工程研究所 (1998)。
74.陳迪華,「利用水泥以不同模擬工法固化垃圾焚化飛灰成效之研究」,碩士論文,國立中央大學土木工程研究所 (1997)。
75.黃兆龍,「混凝土性質與行為」,詹氏書局,第206頁,台北 (1997)。
76.黃奕叡,「廢棄物焚化灰渣熱熔之研究」,碩士論文,國立成功大學環境工學系 (2002)。
77.黃尊謙,「都市垃圾焚化飛灰鎔融處理取代部分水泥之研究」,碩士論文,國立中央大學環境工程研究所 (1999)。
78.曾迪華、李釗,「焚化底渣特性及資源化再利用之研究」,黎明興技術顧問股份有限公司委託研究報告(2003)。
79.傅國柱,「還原渣取代部分水泥之研究」,碩士論文,國立中央大學土木工程研究所 (2002)。
80.葛文斌,「施工法」,九樺出版社,第153-154頁,台北(1995)。
81.詹穎雯,「公共工程飛灰混凝土手冊-適用範圍、材料與配比」,公共工程使用飛灰混凝土研討會論文集, 第137-164頁(2000)。
82.廖明村、張豐藤,「垃圾焚化灰渣處理處置及資源化技術探討」,中興工程,第六十期,第125-136 頁(1998)。
83.靳鴻楷,「放射性廢料深層處置場填封用薄漿之流變性與耐久性研究」,碩士論文,國立中央大學土木工程研究所 (2001)。
84.潘時正,「下水污泥灰渣特性及應用於水泥砂漿之研究」,博士論文,國立中央大學環境工程研究所(2002)。
85.歐陽嶠暉,許鎮龍,藍文忠,「都市污水處理廠污泥處理與資源化再利用之研究」,第八屆下水道技術研討會論文集,第19-33頁(1998)。
86.蘇南,「公共工程飛灰混凝土使用手冊」,台北 (1999)
87.「高爐水泥混凝土之應用」,中華民國混凝土技術研討會, 第307-426頁(1993)。
88.「電弧爐爐渣利用推廣手冊」,經濟部工業局。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2006-10-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明