博碩士論文 93326014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:18.119.125.240
姓名 陳美君(Mei-Jun Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 大氣氣膠含水量受氣膠化學成分的影響及水可溶有機碳分析方法的建立
(The effects of aerosol chemical property on aerosol water content and the build-up of analysis method of aerosol water-soluble organic carbon)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氣膠吸濕特性為大氣氣膠的基本特性之一,因為大氣氣膠吸水導致含水量的改變將影響到氣膠沉降特性、粒徑分布、光學特性及化學反應。本文使用一套能量測收集在濾紙上氣膠的含水量量測系統(Chang and Lee, 2002 ; Lee and Chang, 2002),量測在鄉村(台北縣石門鄉)、都市(新莊微粒超級測站)、高山(鹿林山)三個地點採集的PM2.5細氣膠含水量,提供在高濕度環境(相對濕度90%)的大氣氣膠含水量。三個地點採樣期間為2006年3月份,鄉村與都市測站採樣期間有受到沙塵影響,高山測站則受到生質燃燒影響。
對於氣膠含水量因子的探討,本文分析氣膠水溶性離子、二元酸(dicarboxylic acid)、有機碳、元素碳,並開發出氣膠水可溶有機碳(water-soluble organic carbon, WSOC)分析方法。本文藉由ISORROPIA模式(Nenes et al., 1998)模擬出無機氣膠含水量,比較實測氣膠含水量,並以分析出的氣膠有機成分,探討氣膠化學成分對大氣氣膠含水量的影響。
實場觀測結果顯示鄉村大氣氣膠中水可溶有機碳平均濃度為2.52 μgC m-3,水可溶有機碳佔PM2.5質量約7.3±1.8%;高山生質燃燒氣膠中水可溶有機碳平均濃度為4.38 μgC m-3,水可溶有機碳佔PM2.5質量約24.0±5.7 %;都會區大氣氣膠中水可溶有機碳平均濃度為2.75 μgC m-3,水可溶有機碳佔PM2.5質量約9.1± 2.8%。石門/鹿林山/新莊三個地點氣膠WSOC/ (Sulfate+Nitrate)含量百分比,在石門平均為14 %;鹿林山約為120 %;新莊約為30 %。三個測站氣膠低分子量二元酸的物種分布,以oxalic acid為最多,其次為malonic acid與succinic acid,而glutaric acid含量最少。
在探討高氣膠含水量釋放行為(effluorescence)以及氣膠含水量,當WSOC/ (Sulfate+Nitrate)混合氣膠中的水可溶有機碳含量越多則氣膠遲滯現象會越不明顯,鹿林山具有高比例的有機碳使得鹿林山生質燃燒氣膠的遲滯現象不明顯。本文控制環境溫度於25℃、相對溼度於30%,發現氣膠仍含有水量,氣膠AMC範圍為1.00~1.41。因此,採樣後濾紙秤重時,須將整個環境絕對濕度控制得更低,否則氣膠含水量會造成質量濃度的高估。石門/鹿林山/新莊大氣有機/無機混合氣膠含水量與ISORROPIA推估無機水溶性氣膠含水量平均值相差皆在4 μg m-3內,表示大氣氣膠主要是以無機水溶性氣膠去吸附水量,無機水溶性氣膠組成以硫酸鹽與銨鹽含量最高,ISORROPIA模擬顯示氣膠硫酸銨含量高則氣膠含水量就越高。大氣氣膠若含有高比例的WSOC會在低相對濕度下幫助氣膠吸水,並造成氣膠在相對濕度20%時,仍無法完全脫附水分成為乾氣膠。
摘要(英) Aerosol hygroscopicity is one of the most fundamental properties of atmospheric aerosols. The variations of aerosol mass change (AMC) due to water uptake will affect aerosol deposition characteristics, size distribution, optical property, and heterogeneous chemical reactions. In this study, PM2.5 at rural (Shi-Men in Taipei County), urban (Hsin-Chuang Aerosol Supersite), and mountain (Lu-Lin Mountain) sites are collected for measuring aerosol water content at high humid (90% RH) by using an aerosol water mass measuring system (Chang and Lee, 2002 ; Lee and Chang, 2002). The rural and urban samples were affected by Yellow dust transported from Asian Continent, while mountain samples was influenced by transported biomass burning from Southeast Asia during the field trip conducted in March 2006.
To investigate aerosol properties in affecting AMC, this study analyzes water-soluble inorganic ions, dicarboxylic acids, organic and elemental carbons, and water-soluble organic carbon (WSOC) in the collected aerosols. The ISORROPIA model (Nenes et al., 1998) is then utilized to simulate AMC of water-soluble inorganic ions for the comparison with the measured AMC. This will enable the study on AMC from the influence of aerosol organic components.
The averages of WSOC and its fractions in in PM2.5 in the field observation are 2.52 μgC m-3 and 7.3±1.8% for the rural site, 4.38 μgC m-3 and 24.0±5.7% for the mountain site, 2.75 μgC m-3 and 9.1±2.8% for the urban site, respectively. For the investigation of the influence of aerosol organic components on AMC, the ratios of WSOC/(Sulfate+Nitrate) are calculated to result in 14% at rural site, 120% at mountain site, and 30% at urban site, respectively. The analyzed concentrations of low-molecular dicarboxylic acids in abundance are in the descending order of oxalic acid, malonic acid, succinic acid, and glutaric acid.
In the study of aerosol behavior in the efflorescence mode and AWC, the highest mixing ratio of WSOC/(Sulfate +Nitrate) at the mountain site shows an inhibition of aerosol hysteresis in the efflorescence mode. For an environment controlled at 25℃ and 30% RH, AMC is found ranging from 1.00-1.41 in this study. It suggests that filter-based aerosol mass determined from weighing may be overestimated unless the absolute humidity of the weighing room is tightly controlled. As the differences of measured and modeled AWC using ISORROPIA for all three sites are within ±4 μg m-3, it indicates inorganic species are mainly responsible for AMC. Among aerosol inorganic water-soluble ions, sulfate and ammonium ions are the highest anion and cation, respectively. The modeled AMC from ISORROPIA shows that concentrations of sulfate and ammonium ions are positively related to AMC. High fraction of WSOC in aerosol tends to help increase aerosol water uptake under low RH envieonment in the deliquescence mode. This high fraction of WSOC in aerosol also inhibits complete water release even in the 20% RH envieonment in the efflorescence mode.
關鍵字(中) ★ 氣膠含水量
★ 吸濕性氣膠
★ 氣膠無機成分含水量
★ 氣膠碳成分
★ 水可溶有機碳
★ 氣膠二元酸
關鍵字(英) ★ Aerosol carbon content
★ Water content of inorganic aerosol
★ Hygroscopic aerosol
★ Aerosol water content
★ Water-soluble organic carbon (WSOC)
★ Dicarboxylic acids
論文目次 1.1研究緣起 1
1.2研究內容與目的 3
第二章 文獻回顧 5
2.1大氣氣膠組成 5
2.1.1. 氣膠中常見的無機與有機的種類與含量 5
2.1.2氣膠中常見二元酸物種與含量 8
2.1.3 大氣氣膠中低分子量二元酸的來源與特性 10
2.2氣膠含水特性 17
2.2.1 無機鹽類與有機酸的含水特性 18
2.2.2 有機無機混合氣膠含水特性 24
2.3氣膠含水量量測方法 26
2.3.1 秤重法 26
2.3.2 TDMA (tandem differential mobility analyzer)法 27
2.3.3 EDB(electrodynamic balance)法 28
2.3.4 RSMS (rapid single-particle mass spectrometry)法 29
2.3.5 FTIR (fourier transform infrared spectroscopy)法 29
2.3.6 Karl Fischer 法 30
2.3.7 EA-TCD 法 30
2.3.8 其他量測方法 30
2.4氣膠含水特性對環境的衝擊 31
2.4.1 氣膠質量濃度量測 31
2.4.2 酸性沉降 31
2.4.3 氣膠光學性質 32
2.4.4 氣候變遷 33
2.4.5 人體健康 33
第三章 研究方法 35
3.1 研究架構 35
3.2大氣氣膠的採樣規劃與分析 37
3.2.1 採樣地點介紹 37
3.2.2 大氣氣膠採樣設備 39
3.2.3 採樣濾紙的處理與保存 42
3.2.4 質量濃度分析方法 42
3.2.5 碳成分分析方法 43
3.2.6 水溶性離子分析方法 48
3.2.7 二元酸分析方法 49
3.3 水可溶有機碳分析方法 50
3.3.1 化學藥品與實驗器材 51
3.3.2 水可溶有機碳樣本前處理方法 52
3.3.3 水可溶有機碳分析定量方法 55
3.4 GC-TCD氣膠含水量量測系統 55
3.4.1 GC-TCD量測原理 56
3.4.2 GC-TCD量測系統單元 57
3.4.3 萃取時間與調理時間 60
3.5 實驗流程 61
3.6 ISORROPIA模式 63
第四章 結果與討論 65
4.1 大氣氣膠水可溶有機碳的分析方法 65
4.1.1 量測WSOC樣本的DRI碳分析儀分析矯正方式的選定 65
4.1.2 溫度測試 70
4.1.3 詳細的水可溶有機碳前處理步驟與說明 72
4.1.4 樣本中WSOC含量回收率測試 73
4.2 大氣氣膠中水可溶有機碳含量分析結果 74
4.2.1 PM2.5細微粒大氣氣膠水可溶有機碳含量 74
4.2.2 石門/鹿林山/新莊大氣氣膠WSOC含量差異 80
4.2.3 大氣氣膠二元酸含量 85
4.2.4 TOT與TOR矯正方式碳分析儀量測結果比較 90
4.3 大氣氣膠含水量特性探討 91
4.3.1 石門/鹿林山/新莊氣膠成長因子比較 91
4.3.2 大氣氣膠在不同溼度下的含水量趨勢 98
4.3.3 氣膠含水量對質量濃度的影響 111
4.3.4 ISORROPIA 模式推估氣膠含水量 116
4.3.5 ISORROPIA 模式推估氣膠含水量趨勢 119
4.4 影響氣膠含水量的因子探討 127
4.4.1. 氣膠含水量與質量濃度的相關性 127
4.4.2. 水可溶有機碳與硫酸鹽對於氣膠含水量的影響 131
4.4.3. PM2.5細微粒氣膠中主要成分對氣膠AMC值的影響 135
4.4.4. PM2.5細微粒氣膠中二元酸對氣膠含水量的影響 138
第五章 結論與建議 141
5.1 結論 141
5.2 建議 143
第六章 參考文獻 144
參考文獻 Allen, G. A., 1998. Invited comments on: “real time liquid water mass measurement for airborne particulates”. Aerosol Science and Technology 29, 563-565.
Andrews, E., Larson, S. M., 1993. Effect of surfactant layers on the size
changes of aerosol particles as a function of relative humidity.
Environmental Science and Technology 27, 857-865.
Boucher, O., Anderson, T. L., 1996. GCM assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. Journal of Geophysical Research 100, 26117-26134.
Carrico, C. M., Kreidenweis, S. M., Malm W. C., Day, D. E., Lee, T., Carrillo, J., McMeeking, G. R., Collett Jr. J. L., 2005. Hygroscopic growth behavior of a carbon-dominated aerosol in Yosemite National Park. Atmospheric Environment 39, 1393-1404.
Carson, P. G., Neubauer, K. P., Johnston, M. V., Wexler, A. S., 1995.
On-line chemical analysis of aerosols by rapid single-particle mass
spectrometry. Journal of Aerosol Science 26, 535-545.
Chamberlian, A. C., Chadwick, R. C., 1953. Deposition of airborne radioiodine vapor. Nucleonics 8, 22-25.
Chan, M. N., Chan, C. K., 2003. Hygroscopic Properties of Two Model Humic-Like Substances and Their Mixtures with Inorganics of Atmospheric Importance. Environ. Sci. Technol. 37, 5109-5115.
Chan, M. N., Choi, M. Y., Lee, N. N., Chan, C. K., 2005. Hygroscopicity of water-soluble organic compounds in atmospheric aerosol: amino acids and biomass burning derived organic species. Environmental Science and Technology. 39, 1555-1562.
Chang, S. Y., Lee, C. T., 2002. Applying GC-TCD to investigate the hygroscopic characteristics of mixed aerosols. Atmos. Environ., 36, 1521-1530
Chang, S.Y., Lee, C.T., 2002. Applying GC-TCD to investigate the hygroscopic characteristics of mixed aerosols,” Atmospheric Environment 36, 1521-1530. Chen, L. Y., Jeng, F. T., Chen, C. C., Hsiao, T. C., 2003. Hygroscopic behavior of atmospheric aerosol in Taipei. Atmospheric Environment 37, 2069-2075.
Chebbi, A., Carlier, P., 1996. Carboxylic acids in the troposphere, occurrence, sources and sinks: a review. Atmospheric Environment 30, 4233-4249.
Choi, M. Y., Chan, C. K., 2002. Continuous measurements of the water activities of aqueous droplets of water-soluble organic compounds. J. Phys. Chem. A 106, 4566-4572.
Chow, J. C., Waston, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., Purcell, R. G., 1993. The DRI thermal/opical reflectance carbon analysis system: description, evaluation and application in US. Air Quality Studies. Atmos. Environ., 27A, 1185-1201.
Chow, J. C., Watson, J. G., Fujita, E. M., Lu, Z., Lawson, D. R., Ashbaugh, L. L., 1994. Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmospheric Environment 28, 2061-2080.
Claudia, M., Beiping, L., Thomas, P., 2004. Mixing of the Organic Aerosol Fractions: Liquids as the Thermodynamically Stable Phases. J. Phys. Chem. A108, 2216-2224.
Cruz, C. N., Pandis, S. N., 1997. A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei.
Atmospheric Environment 31, 2205-2214.
Cruz, C.N., Pandis, S. N., 1998. The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmosphere aerosol. Journal of Geophysical Research 103, D11, 13111-13123.
Cruz, C. N., Pandis, S. N., 2000. Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosol. Environmental Science and Technology 34, 4313- 4319.
Curry, J. A., Schramm, J. L., Serreze, M. C., Ebert, E. E., 1995. Water vapor feedback over the Aretic Ocean. Journal of Geophysical Research 100, 14223-14229.
Cziczo, D. J., Nowak, J. B., Hu, J. H., Abbatt, J. P. D., 1997. Infrared spectroscopy of model tropospheric aerosols as a function of relative humidity : observation of deliquescence and crystallization. Journal of Geophysical Research 102, 18843-18850.
Decesari, S., Facchini, M. C., Matta, E., Lettini, F., Mircea, M., Fuzzi, S., Tagliavini, E., Putaud, J. P., 2001. Chemical features and seasonal variation of fine aerosol water-soluble organic compounds in the Po Valley, Italy. Atmospheric Environment 35, 3691-3699.
Eichel, C., Kramer, M., Schut, L., Wurzler, S., 1996. The water-soluble fraction of atmospheric aerosol particles and its influence on cloud microphysics. Journal of Geophysical Research 101, D23, 29499-29510.
Facchini, M. C., Fuzzi, S., Zappoli, S., Andracchio, A., Gelencser, A., Kiss, G., Krivacsy, Z., Meszaros, E., Hansson, H.C., Alsberg, T., Zebuhr, Y., 1999a. Partitioning of the organic aerosol component between fog droplets and interstitial aerosol. Journal of Geophysical Research 104, 26, 821-26832.
Facchini, M. C., Mircea, M., Fuzzi, S., Charlson, R., 1999b. Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 401, 257-259.
Facchini, M. C., Decesari, S., Mircea, M., Fuzzi, S., Loglio, G., 2000. Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon content and chemical composition. Atmos. Environ., 34, 4853-4857.
Falkovich, A. H., Graber, E. R., Schkolnik, G., Rudich, Y., Maenhaut, W., Artaxo, P., 2005. Low molecular weight organic acids in aerosol particles from Rondonia, Brazil, during the biomass-burning, transition and wet periods. Atmospheric Chemistry ans Physics Discussions 5, 781-797.
Gao, S., Hegg, D. A., Hobbs, P. V., Kirchstetter, T. W., Magi, B. I., Sadilek, M., 2003. Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution. J. Geophys. Res. 108(D13), 8491, doi:10.1029/2002JD002324.
Ge, Z., Wexler, A. S., Johnston, M. V., 1996. Multicomponent aerosol crystallization. Journal of Colloid and Interface Science 183, 68-77.
Graham, B., Mayol-Bracero, O. L., Guyon, P., Roberts, G. C., Decesari, S., Facchini, M. C., Artaxo, P., Maenhaut, W., Koll, P., Andreae, M. O., 2001. Water-soluble organic compounds in biomass burning aerosols over Amazonia-1.Characterization by NMR and GC-MS. J. Geophys. Res. 107(D20) 8047, doi:10.1029/2001JD000336.
Gray, H. A., Cass, G. R., Huntzicker, J. J., Heyerdahl, E. K., Rau, J. A., 1986. Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles. Envir. Sci. Technol. 20, 580-589.
Hameri, K., Rood, M. J., Hansson, H.-C. J., 1992. Aerosol Sci. 23, suppl. 1, S437.
Hameri, K., Charlson, R., Hansson, H. C., 2002. Hygroscopic properties of mixed ammonium sulfate and carboxylic acids particles. AIChE, 48, 1309.
Han, J. H., Martin, S. T., 1999. Heterogeneous nucleation of the
efflorescence of (NH4)2SO4 particles internally mixed with Al2O3, TiO2, and ZrO2. Journal of Geophysical Research 104, 3543-3553.
Hansson, H. C., Rood, M. J., Koloutsou-Vakakis, S., Hämeri, K.,
Orsini, D., Wiedensohler, A., 1998. NaCl aerosol particle hygroscopicity dependence on mixing with organic compounds. Journal of Atmospheric Chemistry 31, 321-346.
Hatakeyama S., Ohno M., Weng J., Takagi H., Akimoto H., 1987. Mechanism for the formation of gaseous and particulate products from ozone-cycloalkene reactions in air. Envir. Sci. Technol. 21, 52-57.
Hemming, B. L., Seinfeld, J. H., 2001. On the Hygroscopic Behavior of Atmospheric Organic Aerosols. Industrial & Engineering Chemistry Research 40, 4162-4171.
Henry, R. C., 1997. The Application of The linear System Theory of
Visual Acuity To Visibility Reduction by Aerosols. Enviromental
Research and Technology, 697-701.
Hildemann, L. M., 1996. Personal Communication.
Hitzenberger, R., Berner, A., Dusek, U., Alabashi, R., 1997.
Humidity-dependent growth of size-segregated aerosol samples.
Aerosol Scence and Technology 27, 116-130.
Huntzicker, J. J., Johnson, R. L., Shah, J. J., Cary, R. A., 1982. Analysis of organic and elemental carbon in ambient aerosols by a thermal-optical method. In: Wolf D. T., Klimisch, R.L., (Eds.), Particulate Carbon: Atmospheric Life Cycle. Plenum Press, NY, pp. 79-88.
Kawamura K. and Gagosian R. B., 1987. Implication of ω-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids. Nature 325, 330-332.
Kawamura K. and Kaplan I. R., 1987. Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angles ambient air. Envir. Sci. Technol. 21,105-110.
Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environment Science and Technology 27, 2227-2235.
Kawamura, K., Kasukabe, H. 1995. Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosol: One year of observations. Atmospheric Environment. 30, 1709-1722.
Kawamura, K., Kasukabe, H., Yasui, O., Barrie, L. A., 1995. Production of dicarboxylic acids in the arctic atmosphere at polar sunrise. Geophysical Research Letters 22,1253-1256.
Kawamura, K., Sempere, R., Imai, Y., 1996a. Water soluble dicarboxylic aicds and related compounds in Antarctic aerosols. Journal of Geophysical Research 101, 18721-18728.
Kawamura, K., Steinberg, S., Kaplan, I.R., 1996b. Concentrations of monocarboxylic and dicarboxylic acids and aldehydes in Southern California wet precipitations: comparison of urban and non-urban samples and compositional changes during scavenging. Atmospheric Environment 30, 1035-1052.
Kawamura, K., Sakaguchi, F., 1999. Molecular distribution of water soluble dicarboxylic acid in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research 104, 3501-3509.
Kerminen, V. M., Ojanen, C., Pakkanen, T., Hillamo, R., Aurela, M., Merilainen, J., 2000. Low-molecular-weight dicarboxylic acids in an urban and rural atmosphere. Journal of Aerosol Science 31, 349-362.
Kerminen, V. M., 2001. Relative roles of secondary sulfate and organics in atmospheric cloud condensation nuclei production. Journal of Geophyscal Research 106, 17, 321-333.
Khvorostyanov, V. I., Curry, J. A., 1999. A simple analytical
model of aerosol properties with account for hygroscopic growth 2. Scattering and absorption coefficients. Journal of Geophysical Research 104, 2163-2174.
Larson, S. M., Cass, G. R., Gray, H. A., 1989. Characteristics of summer midday low-visibility enents and the Los Angeles basin. Envir. Sci. Technol. 10, 118-130.
Lee, C. T., Hsu, W. C., 1998. A Novel Method to Measure
Aerosol Water Mass. Journal of Aerosol Science 29, 827-837.
Lee, C. T., Chang, S. Y., 2002. A GC-TCD method for measuring the liquid water mass of collected aerosols. Atmospheric Environment 36, 1883-1894.
Li, W., Hopke, P. K., 1993. Initial size distribution and hygroscopicity of indoor combustion aerosol particles. Aerosol Science and Technology, 19, 305-316.
Lightstone, J. M., Onasch, T. B., Imre, D., 2000. Deliquescence, efflorescence, and water activity in ammonium nitrate and mixed ammonium nitrate/succinic acid microparticles. Journal of Physical Chemistry 104A, 9337-9346.
Malm, W. C., 1991. Considerations in the Accuracy of a Long-Path Transmissometer. Aerosol Science and Technology 14, 459-471.
Malm, W. C., 1997. The effects of models of aerosol hygroscopicity on the apportionment of extinction. Atmospheric Environment 31(13), 1965-1976.
Malm, W. C., Day, D. E., Kreidenweis, S. M., Collett Jr. J. L., Carruci, C., McMeeking G., Lee, T., 2005. Hygroscopic properties of an organic-laden aerosol. Atmospheric Environment 39,4969-4982.
Martin, S. T., 1998. Phase transformations of the ternary system
(NH4)2SO4-H2SO4-H2O and the implications for cirrus cloud formation. Geophysical Research Letter 25, 1657-1660.
Matsumoto, K., Tanaka, H., Nagao, I., Ishizaka, Y., 1997. Contribution of particulate sulfate and organic carbon to cloud condensation nuclei in the marine atmosphere. Geophysical Research Letters 24, 655–658.
Morawska, L., Jamriska, M., Bofinger, N. D., 1997. Size characteristics and aging of the environment tobacco smoke. The Science of the Total Environmental, 196, 43-55.
Mueller, P. K. (1982). Atmospheric Particulate Carbon Observations in Urban and Rural Areas of the United States. In Particulate Carbon, Atmospheric Life Cycle, edited by G.T. Wolff and R.L. Klimisch. Plenum Press, New York, 343-370.
MuMurry, P. H., and Zhang, X. Q., 1989. Size distributions of ambient organic and elemental carbon. Aerosol Sci. Technol. 10, 430-437
Mylonas, D. T., Allen, D. T., Ehrman, S. H., Pratsinis, S. E., 1991. The source and size
Narukawa, M., Kawamura, K., Takeuchi, N., Nakajima, T., 1999. Distribution of dicarboxylic acids and carbon isopotic compositions in aerosols from 1997 Indonesian forest fires. Geophysical Research Letters 26, 3101-3104.
Nenes A., Pandis S. N., Pilinis C., 1998a. ISORROPIA : A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols, Aquat. Geoch., 4, 123-152.
Nenes A., Pilinis C., Pandis S. N., 1998b. Continued Development and Testing of a New Thermodynamic Aerosol Module for Urban and Regional Air Quality Models, Atmos. Env., 33, 1553-1560.
Neubauer, K. R., Johnston, M. V., Wexler, A. S., 1998. Humidity
effects on the mass spectra of single aerosols particles. Atmospheric Environment 32, 2521-2529.
Norton R. B., Roberts J. M., Huebert B. J., 1983. Tropospheric oxalate. Geophys. Res. Lett. 10, 517-520.
Novakov, T., Penner, J. E., 1993. Large contributions of organic aerosols to cloud-condensation nuclei concentrations. Nature 365, 823-825.
Novakov, T., Corrigan, C. E. Cloud condensation nucleus activity of the organic component of biomass smoke particles. Geophys. Res. Lett. 1996, 23, 2141-2144.
Onasch, T. B., Siefert, R. L., Brooks, S. D., Prenni, A. J., Murray,
B., Wilson, M. A., Tolbert, M. A., 1999. Infrared spectroscopic study of the deliquescence and efflorescence of ammonium sulfate aerosol as a function of temperature. Journal of Geophysical Research 104, 21317-21326.
Pathak, R. K., Louie, P. K. K., Chan, C. K., 2004. Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment. 38, 2965-2974.
Peng, C., Chan, M. N., Chan, C. K., 2001. The Hygroscopic Properties of Dicarboxylic and Multifunctional Acids: Measurements and UNIFAC Prediction. Environmental Science and Technology 35, 4495-4501.
Peng, C., Chan, C. K., 2001. The water cycles of water-soluble organic salts of atmospheric importance. Atmospheric Environment. 35, 1183-1192.
Pilinis, C., 1989. Numerical Simulation of Visibility Degradation Due to Particulate Matter: Model Development and Evaluation. Journal of Geophysical Research 94, 9937-9946.
Prenni, A. J., DeMott, P. J., Kreidenweis, S. M., Sherman, D. E., Russell,
L. M., Ming, Y., 2001. The effects of low molecular weight
dicarboxylic acids on cloud formation. J. Phys. Chem. A 105,
11240-11248.
Prenni, A. J., DeMott, P. J., Kreidenweis, S. M., 2003. Water uptake of
internally mixed particles containing ammonium sulfate and
dicarboxylic acids. Atmospheric Environment 37, 4243-4251.
Raymond, T. M., Pandis, S. N., 2002. Cloud activation of single
-component organic aerosol particles. Journal of Geophysical
Research 107, 4787-4796.
Reid, J. S. R., Eck, K. T. F., Eleuterio, D. P., 2004. A review of biomass
burning particles. Atmospheric Chemistry and Physics Discussions
4, 5135-5200.
Rogers, C. F., Watson, J. G., Day, D., and Oraltay, R. G., 1998.
Real-time liquid water mass measurement for airborne particulates. Aerosol Science and Technology 29, 557-562.
Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R., Simoneit, B. R. T., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment 27, 1309-1330.
Rogge, W. F., Mazurek, M. A., Hildemann, L. M., and Cass, G. R., 1993b. Quantification of Urban Organic Aerosols at a Molecular Level: Identification, Abundance and Seasonal Variation, Atmos. Environ. 27, 2700-2711.
Rood, M. J., Shaw, M. A., Larson, T. V., 1989. Ubiquitous nature of
ambient metastable aerosol. Nature 337, 537-539.
Saxena, P., Hildemann, L. M., McMurry, P. H., Seinfeld, J. H.,1995.
J.Geophys.Res., 100 (D9), 18755-18770.
Saxena, P., Hildemann, L. M., 1996. Water-soluble organics in atmospheric particles:A critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry 24, 57-109.
Saxena, P., Hildemann, L. M., 1997. Water Absorption by Organics
Survey of Laboratory Evidence and Evaluation of UNIFAC for
Estimating Water Activity. Environmental Science and Technology 31, 3318-3324.
Schauer, J. J., 1998. Source Contributions to Atmospheric Organic Compound Concentrations: Emission Measurements and Model Predictions, Ph.D. dissertation thesis, California Institute of Technology, Pasadena, CA.
Seinfeld, J. H., 2004. Air Pollution:A Half Century of Progress,
American Institute of Chemical Engineers AIChE J, 50, 1096-1108.
Sempere, R., Kawamura, K., 1996. Low molecular weight dicarboxylic acids and related polar compounds in the remote marine rain sample collected from Western Pacific. Atmospheric Environment 30, 1609-1619.
Sempere, R., Kawamura, K., 1994. Comparative distributions of
dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere. Atmospheric Environment 28, 449- 459.
Shulman, M. L., Jacobson, M. C., Carlson, R. J., Synovec, R. E., Young,
T. E., 1996. Dissolution behavior and surface tension effects of
organic compounds in nucleating cloud droplets. Geophysical
Research Letters 23, 277-280.
Skific, M. J., M. S. Thesis, University of Illinois, 1997.
Sloane, C. S., Watson, J., Chow, J., Pritchett, L., Richards, L. W., 1991. Size-segregated fine particle measurements by chemical species and their impact on visibility impairment in Denver. Atmospheric Environment 25A, 1013-1024.
Speer, R. E., Barnes, H. M., Brown, R., 1997. An instrument for measuring the liquid water content of aerosols. Aerosol Science and Technology 27, 50-61.
Tang, I. N., 1980. Deliquescence properties and particle size
change of hygroscopic aerosols. In generation of aerosols and facilities for exposure experiments (edited by Willeke, K.), 153
-167. Ann Arbor Science, Ann Arbor, MI.
Tang, I. N., Munkelwitz, H. R., 1993. Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols. Atmospheric Environment 27A, 467- 473.
Tang, I. N., Munkelwitz, H. R. J. Geophys. Res. 1994, 99, 18801.
Tang, I. N., Munkelwitz, H. R., Davis, J. G., 1997. Aerosol growth studies-Ⅱ. Preparation and growth measurements of mondisperse salt aerosols. Journal of Aerosol Science, 8, 149-159.
Turpin, B. J., Saxena, P., Andrews, E., 2000. Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmospheric Environment 34, 2983-3013.
Turpin, B. J., Lim, H-J., 2001. Species contributions to PM2.5 mass concentrations : revisting common assumptions for estimating organic mass. Aerosol Science and Technology 35, 602- 610.
U.S. EPA, 1997a. Nation Ambient Air Quality standards for Particulate Matter final Rule, 40CFR part 50, Federal Register, 62 (138): 38651-38760, July 17.
U.S. EPA, 1999. Visibility Monitoring Guidance. Research Triangle Park. EPA-454/R-99-003.
Viana, M., Chi, X., Maenhaut, W., Querol, X., Alastuey, A., Mikuska, P., Vecera, Z., 2006. Organic and elemental carbon concentrations in carbonaceous aerosols during summer and winter sampling campaigns in Barcelona, Spain. Atmos. Environ., 40, 2180-2193.
Wang, G., Niu, S., Liu, C., Wang, L., 2002. Identification of dicarboxylic acid and aldehydes of PM10 and PM2.5 aerosols in Nanjing, China. Atmospheric Environment 36, 1941-1950.
Wang, H., Kawamura, K., Shooter, D., 2005. Carbonaceous and ionic components in wintertime atmospheric aerosols from two New Zealand cities: Implications for solid fuel combustion. Atmospheric Environment 39, 5865-5875. Atmospheric Environment 39, 7020-7029.
Wang, Y., Zhuang, G., Sun, Y., An, Z., 2005. Water-soluble part of the aerosol in the dust storm season-evidence of the mixing between mineral and pollution aerosols.
Warneck, P., 2003. In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmospheric Environment 34, 1641-1653.
Waston, J. G., 2002. Visibility: science and regulation. Journal of Air and Waste Management Association 52, 628-713.
Weis, D. D., Ewing, G. E., 1996. Infrared spectroscopic signatures
of (NH4)2SO4 aerosols. Journal of Geophysical Research 101,
18709-18720.
Whitby, K. T., Cantrell, B., 1976. Fine particles, in International Conference on Environmental Sensing and Assessment, Las Vegas, NV, Institute of Electrical and Electronic Engineers.
White, W., 1990. Contributions to Light Scattering. In Visibility: Existing and Historical Conditions: Causes and Effects; Acidic Deposition State Science Report 24, Section 4; National Acid Precipitation Assessment Progrom: Washington, DC, 24, 85-102.
Winkler, P., Junge, C., 1972. The growth of atmospheric aerosol
particles as a function of relative humidity, part 1L methods and measurements at different locations. J. Rech. Atmos. 6, 617-638.
Winkler, P., 1998. The growth of atmospheric aerosol particles with relative humidity. Physica Scripta, 37, 223-230.
Xiong, J. Q., Zhong, M., Fang, C., Chen, L. C., Lippmann, M. Environ. Sci. Technol. 1998, 32, 3536.
Yang, H., Li, Qianfeng., Yu Jian Zhen., 2003. Comparison of two methods for the determination of water-soluble organic carbon in atmospheric particles. Atmospheric Environment 37, 865-870.
Yang, H., Yu, J. Z., Ho, S. S. H., Xu, J., Wu, W. S., Wan, C. H., Wang, X., Wang, X., Wang, L., 2005. The chemical composition of inorganic and carbonaceous materials in PM2.5 in Nanjing, China. Atmospheric Environment 39, 3735-3749.
Yao, X. H., Fang M., Chan, C. K., 2002. Size distributions and formation of dicarboxylic acids in atmospheric particles. Atmospheric Environment 36, 2099-2107.
Yao, X., Fang, M., Chan, C.K., Ho, K. F., Lee, S. C., 2004.
Characterization of dicarboxylic acids in PM2.5 in Hong Kong.
Atmospheric Environment 38, 963-970.
Yu, J. Z., Yang, H., Zhang, H., Lau, A. K.H., 2004. Size distributions of
water-soluble organic carbon in ambient aerosols and its size-
resolver thermal characteristics. Atmospheric Environment 38,
1061-1071.
Zappoli, S., Andracchio, A., Fuzzi, S., Facchini, M. C., Gelencser, A., Kiss, G., Krivacsy, Z., Molnar, A., Meszaros, E., Hansson, H. C., Rosman, K., Zebuhr, Y., 1999. Inorganic, organic and macromolecular components of fine aerosol in different spheric Environment 33, 2733-2743.
Zheng, B., Sage, M., Cai, W. W., Thompson, D. M., Tavsanli, B. C., Cheah,Y. C., Bradley, A., 1999. Engineering a mouse balancer chromosome. Nat Grent 22 (4), 375-378.
張士昱,2001。易潮解無機氣膠含水特行之研究。國立中央
大學環境工程研究所博士論文。
溫志雄,2002。台灣一般大氣氣膠化學成份之連續監測及含
水量之量測。國立中央大學環境工程研究所碩士論文。
許惠敏,2003。低分子量二元有機酸分析方法及含水特行之
研究。國立中央大學環境工程研究所碩士論文。
秦若鈺,2004。大氣常有機物及有機/無機混合氣膠含水特行
之研究。國立中央大學環境工程研究所碩士論文。
陳鴻文,2006。生質燃燒長程傳輸對台灣中部高山氣膠特性及其指標
的影響。國立中央大學環境工程研究所碩士論文。
指導教授 李崇德(Chung-Te Lee) 審核日期 2006-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明