博碩士論文 943206015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.145.65.168
姓名 陳建良(Jian-liang Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用廢棄纖維、爐石和灰渣等再生材料於水泥砂漿之研究
(Application of Reclaimed Materials from Waste Fiber, Slag, and Ash in Cement Mortar)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 廢棄物是錯放位置之資源。因此,將廢棄物適當的回收與再利用可符合資源永續發展之目標。為了有效益地利用廢棄物,本研究目標係利用下水泥灰渣混合其他廢棄的卜作嵐材料、水淬爐石粉,應用於水泥砂漿中,以降低水泥用量。另外,有許多研究發現,添加部分短纖維材料於水泥砂漿中可改善其結構。基於上述理由,本研究利用下水污泥灰渣與水淬爐石粉等再生材料,取代部分水泥,製作資源化水泥砂漿。同時,並應用回收之廢棄纖維如鋼纖維或塑膠纖維,做為改良資源化水泥砂漿之材料。目標期望可以提升水泥砂漿中整體再生材料之使用率,並獲得具有良好的抗壓強度、抗彎強度與乾燥收縮等工程性能之資源化水泥砂漿。
實驗結果顯示,利用下水污泥灰渣混合水淬爐石粉,取代50%水泥,製作之資源化水泥砂漿,其抗壓強度可趨近控制組,但對抗彎強度及乾燥收縮則無提升與改善之成效,因此仍有必要進一步改良資源化水泥砂漿。根據將回收廢棄之纖維材料,應用於資源化水泥砂漿之結果顯示,添加廢鋼纖維可改善砂漿之抗壓強度、抗彎強度及乾燥收縮等工程性能。在0.5~2.0%纖維添加量下,資源化水泥砂漿可較控制組提升5~21%之抗壓強度、20~71%之抗彎強度,及減少5~17%之乾燥收縮量。至於廢塑膠纖維則僅對砂漿之抗彎強度與乾燥收縮有些許成效,而對抗壓強度則無效果。綜合考量纖維對砂漿之改良效益,及對工作性之影響等因素,初步建議塑膠纖維與鋼纖維最適之纖維添加量,分別為0.5%以及1.0%。
摘要(英) A waste is a resource out of place. Therefore, proper reclaim and reuse of wastematerials can meet the goal for sustainable development of resource. In order tobeneficial use of waste materials, this study was aim to utilize the admixture of sewagesludge ash (SSA) incorporated with other waste pozzolanic material, granulated blastfurnace slag (GBFS), into the cement mortar for reducing the amount of cementdemand. Also, many studies found that adding a small fraction of short fibers to mortarmixture during mixing was an effective way to improve the structure of cement mortar.For these reasons, this study intended to replace part of cement by the reclaimedmaterials of SSA and GBFS to produce a so-called “recycled cement mortar (RCM)”.Additionally, the recycled waste fiber, steel or plastic fiber, was also applied into RCMas the reinforced material. The overall objective was expected to investigate thefeasibility of applying large amount of waste materials as resources into cement mortar,and eventually, to obtain a RCM with well engineering properties, for example,compressive strength, flexural strength and drying shrinkage.
Experimental results revealed that the RCM which using the admixture of SSAand GBFS to replace 50% of cement could obtain a close compressive strength ascompare to that of control specimen, but still could not enhance the flexural strengthand improve dry shrinkage. It indicated the necessary of further modification of RCM.Regarding the application of recycled waste fibers to reinforce RCM, the resultsshowed that the waste steel fiber could improve the engineering properties of RCM,included compressive strength, flexural strength and drying shrinkage. Thecompressive strength and flexural strength of RCM with waste steel fiber ranges from0.5 to 2 % by volume were about 5~21% and 20~71%, respectively, better than thoseof unreinforced RCM. Also, the reduction of the drying shrinkage was about 5~17%.In addition, the waste plastic fiber was only slight improvement in flexural strengthand drying shrinkage but no effect on the compressive strength of RCM. Consideringthe benefits of modification and the influence of workability of specimen, the optimumcontent of plastic fiber and steel fiber added to RCM was 0.5 and 1% by volume,respectively.
關鍵字(中) ★ 水淬爐石粉
★ 下水污泥灰渣
★ 廢棄纖維
★ 水泥砂漿
★ 抗壓強度
★ 抗彎強度
★ 乾燥收縮
關鍵字(英) ★ compressive strength
★ granulated blast furnace slag
★ sewage sludge ash
★ waste fiber
★ cement mortar
★ flexural strength
★ drying shrinkage
論文目次 目錄.............................................................................................................I
圖目錄......................................................................................................III
表目錄...................................................................................................... V
第一章 前言..............................................................................................1
1-1 研究緣起.....................................................................................1
1-2 研究目的與內容.........................................................................2
第二章 文獻回顧......................................................................................5
2-1 污泥灰渣應用於水泥材料.........................................................5
2-1-1 污泥灰渣應用於水泥材料之原理......................................5
2-1-2 下水污泥灰渣材料性質與影響..........................................7
2-1-3 水淬爐石粉材料性質與影響............................................10
2-1-4 污泥灰渣單一取代水泥之成效........................................13
2-1-5 污泥灰渣雙重取代水泥之成效........................................17
2-2 纖維應用於混凝土...................................................................17
2-2-1 纖維材料之種類與性質....................................................18
2-2-2 纖維加勁之原理................................................................20
2-2-3 纖維之影響參數................................................................23
2-3 纖維對於混凝土強度之影響...................................................24
2-3-1 抗壓強度............................................................................25
2-3-2 抗拉強度............................................................................26
2-3-3 抗彎強度............................................................................28
2-4 纖維對於混凝土乾縮之影響...................................................30
2-4-1 乾燥收縮之原理................................................................30
2-4-2 纖維控制漿體乾縮行為....................................................32
2-5 廢棄纖維材料應用於混凝土...................................................33
第三章 實驗材料、設備與方法..............................................................34
3-1 實驗材料...................................................................................34
3-2 試驗與分析方法.......................................................................35
3-2-1 實驗材料製備及分析方法................................................35
3-2-2 砂漿試體製備....................................................................42
3-2-3 工程性能分析方法............................................................44
3-2-4 精密儀器分析方法............................................................48
3-3 實驗流程與計畫.......................................................................54
3-3-1 實驗流程............................................................................54
3-3-2 實驗計畫............................................................................54
第四章 結果與討論................................................................................63
4-1 再生材料基本性質..................................................................63
4-1-1 污泥灰渣物理性質...........................................................63
4-1-2 污泥灰渣化學性質...........................................................64
4-1-3 廢棄纖維基本性質...........................................................68
4-2 污泥灰渣與廢棄纖維對砂漿工作性之影響..........................72
4-2-1 污泥灰渣對於砂漿工作性之影響...................................72
4-2-2 纖維拌合方式對於砂漿工作性之影響...........................74
4-2-3 廢棄纖維對於砂漿工作性之影響...................................75
4-3 污泥灰渣與廢棄纖維對於砂漿強度之影響..........................80
4-3-1 污泥灰渣對於水泥砂漿強度之影響...............................80
4-3-2 廢棄纖維對資源化水泥砂漿抗壓強度之影響...............90
4-3-3 廢棄纖維對於資源化水泥砂漿抗彎強度之影響.........108
4-4 污泥灰渣與廢棄纖維對於砂漿乾縮行為之影響.................116
4-4-1 污泥灰渣對水泥砂漿乾縮行為之影響.........................116
4-4-2 廢棄纖維對於資源化水泥砂漿乾縮行為之影.............119
4-5 廢棄纖維應用於資源化水泥砂漿實用性綜合評估............123
第五章 結論與建議..............................................................................127
5-1 結論........................................................................................127
5-2 建議........................................................................................129
參考文獻................................................................................................130
參考文獻 1. Auchey, F.L. and P.K. Dutta, “Use of Recycled High Density Polyethylene Fibers as Secondary Reinforcement in Concrete Subjected to Severe Environment,” Proc., the International Society of Offshore and Polar Engineers (ISOPE), Golden, Colo., Vol.4, pp.287-291 (1996).
2. Balaguru, P., “Evaluation of New Synthetic Fiber for Use in Concrete,” Civil Engineering Report, No. 88-10, pp. 93 (1988).
3. Balaguru, P. and M.G. Dipsia, “Properties of Fiber Reinforced High-Strength Lightweight Concrete,” ACI Materials Journal, Vol.90, No.5, pp.399-405 (1993).
4. Balaguru, P.N. and S.P. Shah, Fiber-Reinforced Cement Composites, McGraw-Hill, Inc., 1992.
5. Bernd, W. and F.S. Carl, “Utilization of Sewage Sludge Ash in the Brick and Tile Industry,” Water Science and Technology, Vol. 36, pp.251-258 (1997).
6. Bhatty, J.I. and K.J. Reid, “Compressive Strength of Municipal Sludge Ash Mortars,” ACI Materials Journal, Vol.86, pp.394-400 (1989).
7. Bindiganavile, V. and N. Banthia, “Polymer and Steel Fiber-Reinforced Cementitious Composites under Impact Loading-Part1: Bond-Slip Response,” ACI Materials Journal, Vol.98, pp.10-16 (2001).
8. Blankenhorn, P.R., M.R. Silsbee, B.D. Blankenhorn, M. DiCola, and K. Kessler, “Temperature and Moisture Effects on Selected Properties of Wood Fiber-Cement Composites,” Cement and Concrete Research, Vol.29, pp.737-741 (1999).
9. Chang, D.I. and W.K. Chai, “Flexural Fracture and Fatigue Behavior of Steel-Fiber-Reinforced Concrete Structures,” Nuclear Engineering and Design, Vol.156, pp.201-207 (1995).
10. Fisher, A.K., F. Bullen, and D. Beal, “The Durability of Cellulose Fibre Reinforced Concrete Pipes in Sewage Applications,” Cement and Concrete Research, Vol. 31, pp. 543-553 (2001).
11. Fu, X. and D.D.L. Chung, “Sensitivity of the Bond Strength to the Structure of the Interface between Reinforcement and Cement, and the Variability of this Structure,” Cement and Concrete Research, Vol.28, pp.787-793 (1998).
12. Fu, X., W. Hou, C. Yang, D. Li, and X. Wu , “Studies on High-Strength Slag and Fly Ash Compound Cement,” Cement and Concrete Research, Vol.30, pp.1239-1243 (2000).
13. Gao, J., W. Sun, and K. Morino, “Mechanical Property of Steel Fiber-Reinforced, High-Strength, Lightweight Concrete,” Cement and Concrete Composite, Vol.19, pp.307-313 (1997).
14. Gardner, N. J. and M.J. Lockman, “Design Provisions for Drying Shrinkage and Creep of Normal-Strength Concrete,” ACI Materials Journal, Vol.98 pp.159-167 (2001).
15. Groom, J.L., D.V. Holmquist, and K.Y. Yarbrough, “Use of Waste Nylon Fibers in Portland Cement Concrete to Reduce Plastic Shrinkage Cracking ,” Proc., Recovery and Effective Reuse of Discarded Materials and By-Products for Construction of Highway Facilities, Denver, pp.179-183 (1993).
16. Hannant, D.J., Fiber Cements and Fiber Concrete, John Wiley & Sons, Ltd., Chichester, United Kingdom, p.53 (1978).
17. James, R. and G. Chairman, “Erosion of Concrete in Hydraulic Structure,” Reported by ACI Committee 210, ACI Manual Practice, part 1 (1998).
18. Keyvani, S.A. and N. Saeki, “Behavior of Fiber Concrete Composites Using Recycled Steel Shaving,” Journal of Solid Waste technology And Management, Vol.24, pp.1-8 (1997).
19. Khajuria, A. and P. Balaguru, “Behavior of New Synthetic Fiber Reinforced Concrete,” Civil Engineering Department Report, No.89-13, p.89 (1989).
20. Kim, P.J., C.H. Wu, Z. Lin, V.C. Li, B. deLhoneux, and S.A.S. Akers, “Micromechanics-Based Durability Study of Cellulose Cement in Flexure,” Cement and Concrete Research, Vol.29, pp.201-208 (1999).
21. Krstulovic-Opara, N. and M.J. Al-Shannag, “Compressive Behavior of Slurry Infiltrated Mat Concrete,” ACI Materials Journal, Vol.96, pp.367-377 (1999).
22. Krstulovic-Opara, N. and S. Malak, “Micromechanical Tensile Behavior of Slurry Infiltrated Continuous-Fiber-Mat Reinforced Concrete(SIMCON),” ACI Materials Journal, Vol.94, pp.373-384 (1997).
23. Li, G. and X. Zhao, “Properties of Concrete Incorporating Fly Ash and Ground Granulated Blast-Furnace Slag,” Cement Concrete Composites, Vol.25, pp293-299 (2002).
24. Li, Y. and S. Hu, “the Microstructure of the Interfacial Transition Zone between Steel and Cement Paste,” Cement and Concrete Research, Vol.31, pp.385-388 (2001).
25. Lim, Y.M., H. Wu, and V.C. Li, “Development of Flexural Composite Properties and Dry Shrinkage Behavior of High-Performance Fiber Reinforced Cementitious Composites at Early Ages,” ACI Materials Journal, Vol.96, pp.20-26 (1999).
26. Lorenzis, L.D., B. Miller, and A. Nanni, “Bond of Fiber-Reinforced Polymer Laminates to Concrete,” ACI Materials Journal, Vol.98, pp.256-264 (2001).
27. Lu, W., X. Fu, and D.D.L. Chung, “Shotcrete A Comparative Study of the Wettability of Steel, Carbon, and Polyethylene Fibers by Water,” Cement and Concrete Research, Vol.28, pp.783-786 (1998).
28. Malhotra, V.M., G.G. Carette, and A. Bilodeau, “Mechanical Properties and Durability of Polypropylene Fiber Reinforced High-Volume Fly Ash Concrete for Shotcrete Applications,” ACI Materials Journal, Vol.91, pp.478-486 (1994).
29. Mesbah, H.A. and F. Buyle-Bodin, “Efficiency of Polypropylene and Metallic Fibres on Control of Shrinkage and Cracking of Recycled Aggregate Mortars,” Construction and Building Materials, Vol.13, pp.439-447 (1999).
30. Mindess, S. and J.F. Young, Concrete, Prentice-Hall Inc., New Jersey (1981).
31. Monzo, J., J. Paya, M.V. Borrachero, and A. Corcoles, “Use of Sewage Sludge Ash(SSA)-Cement Admixtures in Mortars,” Cement Concrete Research, Vol.26, pp.1389-1398 (1996).
32. Naaman, A.E., D. Otter, and H. Najm, “Elastic Modulus of SIFCON in Tension and Compression,” ACI Materials Journal, Vol.88, pp.603-612 (1991).
33. Naaman, A.E., S. Garcia, M. Korkmaz, and V.C. Li, “Investigation of the Use of Carpet Waste PP Fibers in Concrete,” Proc., Mat. Engrg. Conf., K. Chong, ed., ASCE, New York, USA, pp.782-791 (1996).
34. Najm, H.S. and A.E. Naaman, “Prediction Model for Elastic Modulus of High-Performance Fiber Reinforced Cement-Based Composites,” ACI Materials Journal, Vol.92, pp.304-314 (1995).
35. Ochi, T., S. Okubo, and K. Fukui, “Development of Recycled PET Fiber and Its Application as Concrete-Reinforced Fiber,” Cement and Concrete Composites, Vol.29, pp.448-455 (2007).
36. Okafor, F.O., O.J. Eze-Uzomaka, and N. Egbuniwe, “The Structural Properties and Optimum Mix Proportions of Palmnut Fiber-Reinforced Mortar Composite,” Cement and Concrete Research, Vol.26, pp.1045-1055 (1996).
37. Park, S.B., and B.I. Lee, “Experimental Study on the Engineering Properties of Carbon Fiber Reinforced Cement Composites,” Cement and Concrete Research, Vol.21, pp.589-600 (1991).
38. Park, S.B., and B.I. Lee, “Mechanical Properties of Carbon Fiber-Reinforced Polymer Impregnated Cement Composites,” Cement and Concrete Composite, Vol.15, pp.153-163 (1993).
39. Park, S.B., E.S. Yoon, and B.I. Lee, “Effects of Processing and Materials Variations on Mechanical Properties of Lightweight Cement Composites,” Cement and Concrete Research, Vol.29, pp.193-200 (1999).
40. Pei, W., D. Wang, X. Hu, Y. Zhao, Y. Xu, and J. Wu, “Performance Characteristics of Subdenier Monofilament Polypropylene Fiber Reinforced Mortars,” Journal of Applied Polymer Science, Vol.94, pp.2251-2256 (2004).
41. Poskova, T. and C. Meyer, “Low-Cycle Fatigue of Plain and Fiber-Reinforced Concrete,” ACI Materials Journal, Vol.94, pp.373-385 (1997).
42. Poston, R.W., K. Kesner, J.E. McDonald, A.M. Vaysburd, and P.H. Emmons, “Concrete Repair Material Performance-Laboratory Study,” ACI Materials Journal, Vol.98, pp.137-147 (2001).
43. Ramarkrishnam, V., “Materials and Properties of Fiber Concrete,” Proceedings of the International Symposium on Fiber Reinforced Concrete, Dec. 1987,Madras, India, Vol.1, pp.2.3-2.23 (1987).
44. Rao, G. A., “Long-Term Drying Shrinkage of Mortar-Influence of Silica Fume and Size of Fine Aggregate,” Cement and Concrete Research, Vol. 31, pp.171-175 (2001).
45. Redon, C. and J.L. Chermant, “Compactness of the Cement Microstructure Versus Crack Bridging in Mortars Reinforced with Amorphous Cast Iron Fibers and Silica Fumes,” Applied Composite Materials, Vol.8, pp.149-161 (2001).
46. Robins, P., S. Austin, J. Chandler, and P. Jones, “Flexural Strain and Crack Width Measurement of Steel-Fiber-Reinforced Concrete by Optical Grid and Electrical Gauge Methods,” Cement and Concrete Research, Vol.31, pp.719-729 (2001).
47. Roy, D.M. and G.M. Idon, “Hydration, Structure, and Properties of Blast Furnace Slag Cements, Mortars and Concrete,” ACI Journal, Technical paper, No.79-43, pp. 444-457 (1982).
48. Sarigaphuti, M., S.P. Shah, and K.D. Vinson, “Shrinkage Cracking and Durability Characteristics of Cellulose Fiber Reinforced Concrete,” ACI Materials Journal, Vol.90, pp.309-318 (1993).
49. Shao, Y. and S.P. Shah, “Mechanical Properties of PVA Fiber Reinforced Cement Composites Fabricated by Extrusion Processing,” ACI Materials Journal, Vol.94, pp.555-564 (1997).
50. Silva, D.A., A.M. Betioli, P.J.P. Gleize, H.R. Roman, L.A. Gómez, and J.L.D. Ribeiro, “Degradation of Recycled PET Fibers in Portland Cement-Based Materials,” Cement Concrete Research, Vol.35, pp.1741-1746 (2005).
51. Singh, S.P. and S.K. Kaushik, “Flexural Fatigue Analysis of Steel Fiber-Reinforced Concrete,” ACI Materials Journal, Vol.98, pp.306-312 (2001).
52. Soroushian, P. and S. Ravanbakhsh, “High-Early-Strength Concrete: Mixture Proportioning with Processed Cellulose Fiber for Durability,” ACI Materials Journal, Vol.96, pp.593-599 (1999).
53. Sun, W., H. Chen, X. Lou, and H. Qian, “The Effect of Hybrid Fibers and Expansive Agent on the Shrinkage and Permeability of High-Performance Concrete,” Cement and Concrete Research, Vol.31, pp.595-601 (2001).
54. Tan, K. and X. Pu, “Strengthening Effects of Finely Ground Fly Ash, Granulated Blast Furnace Slag, and Their Combination,” Cement and Concrete Research, Vol.28, pp1819-1825 (1998).
55. Tay, J.H., “Sludge Ash as Filler for Portland Cement Concrete,” Journal of Environmental Engineering, ASCE, Vol.113, pp.345-351 (1987).
56. Tay, J.H. and K.Y. Show, “Municipal Wastewater Sludge as Cementitious and Blended Cement Materials,” Cement Concrete Composites, Vol.16, pp.39-48 (1994).
57. Tay, J.H. and K.Y. Show, “Reuse of Wastewater Sludge in Manufacturing Non-Conventional Construction Materials - an Innovative Approach to Ultimate Sludge Disposal,” Water Science and Technology, Vol.26, pp.1165-1174 (1992).
58. Tay, J.H. and W.K. Yip, “Sludge Ash as Lightweight Concrete Material,” Journal of Environmental Engineering, ASCE, Vol.115, pp.56-64 (1989).
59. Toledo, R.D. and M.A. Sanjuan, “Effect of Low Modulus Sisal and Polypropylene Fiber on the Free and Restrained Shrinkage of Mortar at Early Age,” Cement and Concrete Research, Vol.29, pp.1597-1604 (1999).
60. Toutanji, H., S. McNeil, and Z. Bayasi, “Chloride Permeability and Impact Resistance of Polypropylene-Fiber-Reinforced Silica Fume Concrete,” Cement and Concrete Research, Vol.28, pp.961-968 (1998).
61. Wainwright, P.J. and N. Rey, “The Influence of Ground Granulated Blast Furnace Slag(GGBS) Additions and Time Delay on The Bleeding of Concrete,” Cement Concrete Composites, Vol.22, pp253-257 (2000).
62. Wang, Y., “Properties of Concrete Reinforced with Recycled Carpet Waste Fibers,” Brittle matrix composites 5, Woodhead Publishing, Cambridge, U.K., pp.134-142 (1997).
63. Wang, Y., A. Zureick, B. Cho, and D.E. Scott, “Properties of Fibre Reinforced Concrete Using Recycled Fibres from Carpet Industrial Waste,” Journal of Materials Science, Vol.29, pp.4191-4199 (1994).
64. Wen, S. and D.D.L. Chung, “Piezoresistivity in Continuous Carbon Fiber Cement-Matrix Composite,” Cement and Concrete Research, Vol.29, pp.445-449 (1999).
65. Xu, G., S. Magnani, and D. Hannant, “Tensile Behavior of Fiber-Cement Hybrid Composites Containing Polyvinyl Alcohol Fiber Yarns,” ACI Materials Journal, Vol.95, pp.667-674 (1998).
66. Xu, Y., and D.D.L. Chung, “Effect of Carbon Fibers on the Vibration-Reduction Ability of Cement,” Cement and Concrete Research, Vol.29, pp.1107-1109 (1999).
67. Zhang, C., A. Wang, and M. Tang, “The Filling Role of Pozzolanic Material,” Cement and Concrete Research, Vol. 26, pp.943-947 (1996).
68. Zhang, J. and V.C. Li, “Influences of Fibers on Drying Shrinkage of Fiber-reinforced Cementitous Composite,” Journal of Engineering Mechanics, Vol. 127, pp.37-44 (2001).
69. Zhang, J. and H. Stang, “Applications of Stress Crack Width Relationship in Predicting the Flexural Behavior of Fiber-Reinforced Concrete,” Cement and Concrete Research, Vol.28, pp.439-452 (1998).
70. Zhu, W., and P.J.M. Bartos, “Assessment of Interfacial Microstructure and Bond Properties in Aged GRC Using a Novel Microindentation Method,” Cement and Concrete Research, Vol.27, pp.1701-1711 (1997).
71. Zollo, R.F., “Fiber-Reinforced Concrete: an Overview after 30 Years of Development,” Cement and Concrete Composites, Vol.19, pp107-122 (1997).
72. 石田制一等編著,賴耿陽譯著,現代工業材料總覽,復漢出版社,台南(1988)。
73. 李智強,「纖維材料對於污泥灰渣砂漿工程性質之研究」,碩士論文,國立中央大學環境工程研究所,中壢(2002)。
74. 吳岳澤,「污泥灰渣全資源化水泥砂漿之研究」,碩士論文,國立中央大學環境工程研究所,中壢(2006)。
75. 宋佩宣,「纖維材料及纖維混凝土加強原理(中)」,現代營建,第110期,第61-66頁(1989)。
76. 巫漢添、李騰芳、林忠仁、陳彥夙,「聚丙烯纖維混凝土與砂漿的工程性質暨防裂成效(下)」,現代營建,第247期, 第59-67頁(2000)。
77. 巫漢添、李騰芳、林忠仁、陳彥夙,「聚丙烯纖維混凝土與砂漿的工程性質暨防裂成效(上)」,現代營建,第246期, 第68-76頁(2000)。
78. 沈永年,「高性能混凝土水化作用機理之研究」,博士論文,國立台灣工業技術學院營建工程技術研究所,台北(1997)。
79. 周至遠,「高溫對玻璃纖維混凝土影響之研究」,碩士論文,私立中原大學土木工程研究所,台南(2004)。
80. 林炳炎,飛灰、矽灰、高爐爐石用在混凝土中,三民出版社,台北(1993)。
81. 洪志武,「纖維直徑分布對混凝土強度之影響」,碩士論文,國立成功大學土木工程研究所,台南(2002)。
82. 張大鵬,「高強度/高性能混凝土之應用與考量(上)」,營建資訊,第180期,第32-41頁(1998)。
83. 陳清泉,陳振川,袁宏續,詹穎雯,「爐石為水泥熟料與填加料對混凝土特性影響之文獻及國外現況調查研究」,財團法人台灣營建研究中心研究報告,第61頁,台北(1987)。
84. 傅國柱,「還原渣取代部分水泥之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2002)。
85. 曾迪華、潘時正、李釗,「下水污泥灰渣特性及應用於水泥砂將之初步研究」,第九屆下水道技術研討會論文集,第239-253頁,台北(1999)。
86. 曾迪華、潘時正、李智強、李釗,「研磨加工改良下水污泥灰渣卜作嵐活性及砂漿性質」,第十屆下水道技術研討會論文集,第103-112頁,台北(2000)。
87. 黃兆龍,「高爐熟料的角色功能與應用技術」,中華民國八十二年混凝土技術研討會-高爐水泥混凝土之應用論文集,第307-426頁,台北(1993)。
88. 黃兆龍,洪文方,「爐石在混凝土的應用-固態廢棄物處理研究方案之二」,財團法人台灣營建研究中心研究報告,第21頁,台北(1985)。
89. 黃尊謙,「都市垃圾焚化飛灰鎔融處理取代部分水泥之研究」,碩士論文,國立中央大學環境工程研究所,中壢(1999)。
90. 楊錦懷、陳昶良,「纖維加強混凝土應用於預鑄構件接頭之剪力行為」,Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol.10, pp.205-214 (1998).
91. 熊田喜代志撰,賴耿陽譯,纖維試驗法,綜合出版社,台南(1971)。
92. 潘時正,「下水污泥灰渣特性及應用於水泥砂漿之研究」,博士論文,國立中央大學環境工程研究所,中壢(2002)。
93. 潘時正、曾迪華、李釗,「下水污泥灰渣特性及再利用於水泥材料之評估」,國立中央大學環境工程學刊,第五期,第115-129頁(1998)。
指導教授 曾迪華(Dyi-hwa Tseng) 審核日期 2007-11-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明