博碩士論文 87321033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.219.109.150
姓名 張志強(Chih-Chiang Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 SAPO-34之微波合成與CoAPO﹑CuO/CeO2﹑La1-xSrxCo1-yMnyO3之X光吸收光譜分析
(Synthesis of SAPO-34 By Microwave Heating and X-ray Absorption Spectroscopic Study of CoAPO﹑CuO/CeO2 and La1-xSrxCo1-yMnyO3)
相關論文
★ 機車觸媒轉化器處理效能提升之研究★ 聚苯胺及三氧化鎢互補式電變色元件電變色性質研究
★ NO在Perovskite oxide上的分解反應之研究★ 電化學法合成聚苯胺及其複合材料電變色性質的研究
★ 經摻雜之二氧化鈦觸媒膜光分解性質之研究★ 在Perovskite氧化物上進行CO-NO反應之研究
★ 聚苯胺與聚苯乙烯殼核複合材料之研究★ 導電高分子與聚胺基甲酸酯複合材料之研究
★ 在孔道均一的模板內合成聚苯胺奈米管★ 梳狀聚苯乙烯磺酸與聚苯胺複合材料之合 成與分析
★ 在二氧化鈦上進行Salicylic acid可見光 光催化反應的研究★ 蒙脫土/環氧樹脂、蒙脫土/聚苯胺和聚苯胺管奈米材料之研究
★ 於陶瓷纖維紙上合成ZSM-5沸石與聚乙烯觸媒裂解之研究★ 二氧化鈦的合成與光催化性質的研究
★ 苯在Au/CeO2與Au/V2O5/CeO2上進行完全氧化反應之研究★ 聚苯胺金屬奈米複合管的合成及鑑定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要分成兩部份,第一部份是利用微波加熱來幫助合成SAPO-34,第二部份則利用X光吸收光譜術來分析CoAPO﹑CuO/CeO2與La1-xSrxCo1-yMnyO3中,Cu﹑Co﹑Mn的周圍環境。
SAPO-34應用於由甲醇合成小分子烯類製程,具有良好的選擇性,但以傳統的水熱法合成,需要200℃以及長達55小時的合成時間。本研究利用微波消化提供液體高動能﹑迅速加熱﹑增加分子碰撞﹑促使膠體溶解並混合完全等優點﹐縮短SAPO-34合成時間。經由多方的嘗試,目前已能將合成時間由水熱55小時縮短至水熱30小時加上微波2小時,而能得到不錯的SAPO-34結晶。但整體結晶度仍較完全水熱法低。
將Co崁入AlPO4中形成CoAPO,可以增加沸石酸性與離子交換能力,同時改變孔道大小,使其對許多碳氫化合物的異構化製程具有良好活性與選擇性。研究Co在AlPO4中所處環境,有助於了解CoAPO的催化反應機構,而能進一步探討Co在反應中所扮演的角色。利用X光吸收光譜術可研究CoAPO中Co的局部環境,結果顯示大部分的Co以+2價存在於結構中,而經過鍛燒的樣品其Co-O距離則會增加。
CuO/CeO2對CO具有良好的氧化效果﹐可取代貴重金屬應用於觸媒轉化器。而La1-xSrxCo1-yMnyO3這種Perovskite型混合氧化物﹐具有高熱穩定性﹐對CO﹑碳氫化合物具有良好氧化力﹐對NO亦具有還原力﹐加上價格較低廉﹐遂有取代原本貴重金屬支撐在氧化鋁上的研究價值。本篇論文另一部份即利用X光吸收光譜術﹐針對Cu之K-吸收邊緣分析其XANES圖譜與EXAFS結果﹐來探討Cu的氧化態與周圍環境。針對La1-xSrxCo1-yMnyO3系列觸媒﹐分別以Co與Mn之K-吸收邊緣之吸收光譜﹐來分析取代元素對氧化態的影響與其鄰近氧原子之空缺狀態。由CuO/CeO2之XANES圖譜顯示Cu處於+2價,從其傅立葉轉換後之k3x(k)圖形亦可觀察出,隨著CuO的擔載量減少,Cu與Cu隔氧相鄰(Cu-O-Cu)的機會減少,而Cu之配位數有從未支撐之氧化銅的6配位下降至4.7左右的趨勢,與崁入模型之理論配位數5吻合。至於La1-xSrxCo1-yMnyO3的結果則顯示,Co的氧化態隨Mn的取代量增加而降低,Mn大量取代Co時會造成Co的配位數下降;Mn的氧化態隨Co的取代量增加而增加﹐Co大量取代Mn時則造成Mn的配位數增加;以Sr部分取代La對Co跟Mn的氧化態沒有影響﹐但會降低Co跟Mn周圍的氧原子配位數。此外,其所處的氣體環境與溫度對於各中Co與Mn的氧化態亦有所影響。
摘要(英) Recently much effort has been invested in the examination of the potential of microwave power for facilitating chemical reaction. The microwave-assisted synthesis of zeolites is a rather new field of research. In this study, we report the synthesis of SAPO-34 by combination of hydrothermal and microwave heating, to reduce the time of synthesis from 55 hours by hydrothermal heating to 30 hours by hydrothermal heating plus additional 2 hours by microwave heating.
Metal-substituted aluminophosphate molecular sieves have recently received extensive attention for researchers working in molecular sieve science and shape-selective catalysis. The incoporation of metals into the framework can generate Brønsted acidity and ion-exchange capacity on the neutral aluminophosphate molecular sieves and modify the activity and product selectivity on hydrocarbon reactions. In this study, the local environments about the cobalt atoms in as-synthesized, calcined and hydrogen-reduced CoAPO-5 and CoAPO-11 have been studied by X-ray absorption spectroscopy. Results indicate a considerable fraction of Co2+ was oxidized to Co3+ in the calcined samples. On reduction with hydrogen, Co3+ was reduced to Co2+.
Cerium oxide is widely used as a support for Pt and Rh based automobile catalysts. Ceria exhibits special features that make it a promising material for use as a support for such a redox catalyst. However, due to the ever increasing demand upon expensive PGMs, viable non-noble metal catalysts are alternative. CuO supported on ceria is an alternative. The CuO/CeO2 catalysts exhibit high catalytic activity in CO oxidation. The marked enhancement of catalytic activities is due to the combined effect of CuO and CeO2. CuO/CeO2 catalysts show a different behavior with respect to unsupported CuO. In this study, the local environment of copper is examined by means of X-ray absorption spectroscopic at the copper K-edge of CuO/CeO2 with various loading amount. From the results, it’s suggested that, in addition to the well dispersed Cu2+ species at low CuO loading, a small fraction of CuO clusters are formed above CuO loading of 0.8mmole/100m2_CeO2.
The higher emission standard for automobile and motorcycle requires the catalytic converter with high thermal stability and low light off temperature. The high thermal stability of Perovskite makes them good candidates as high thermal stable catalyst in catalytic converter. X-ray absorption spectra of LaCoO3 and LaMnO3 with La partially substituted by Sr and Mn, Co partially substituted by each other were studied in order to understand the local environment around Co and Mn. The oxidation state of Co decreases when Mn substitute a large amount of Co. The oxidation state of Mn increases when Co substitute a large amount of Mn. The coordination numbers of the first oxygen shell decrease upon substitution for LaCoO3 while increase upon substitution for LaMnO3.
關鍵字(中) ★ SAPO-34
★ 微波加熱
★ CoAPO
★ X光吸收光譜
★ 氧化銅
★ Perovskite
關鍵字(英) ★ SAPO-34
★ Microwave
★ CoAPO
★ XANES
★ EXAFS
★ XAS
★ CuO
★ Perovskite
論文目次 中文摘要…………………………………………………………………4
英文摘要…………………………………………………………………6
圖目錄……………………………………………………………………8
表目錄…………………………………………………………………..11
第一章緒論………………………………………………………..12
1.1前言………………………………………………………..12
1.2SAPO-34與微波加熱合成簡介…………………………..14
1.2-1SAPO-34……………………………………………..14
1.2-2微波合成………………………………………………15
1.3CoAPO-5與CoAPO-11簡介…………………………….17
1.4CuO/CeO2型觸媒簡介……………………………………21
1.5Perovskite型觸媒簡介……………………………………24
1.6X光吸收光譜術簡介……………………………………..30
第二章實驗方法…………………………………………………..35
2.1化學藥品…………………………………………………..35
2.2實驗儀器…………………………………………………..36
2.3SAPO-34的製備與鑑定………………………………....37
2.3-1SAPO-34製備………………………………………..37
2.3-2SAPO-34鑑定………………………………………..39
2.4CoAPO-5與CoAPO-11的製備………………………….40
2.4-1CoAPO-5的製備……………………………………..40
2.4-2CoAPO-11的製備……………………………………41
2.5CuO/CeO2與perovskite的製備…………………………..42
2.5-1CuO/CeO2的製備與鑑定…………………………….42
2.5-2Perovskite的製備﹑鑑定與活性測試……………….42
2.6X光吸收光譜術測量方法………………………………..45
2.7X光吸收光譜數據分析步驟…………………………….49
第三章結果與討論……………………………………………….51
3.1SAPO-34之微波加熱合成……………………………….51
3.1-1結晶結構鑑定………………………………………...51
3.1-2元素分析……………………………………………...52
3.1-3化學環境分析………………………………………...52
3.1-4表面形態觀察………………………………………...53
3.2CoAPO-5與CoAPO-11之XAS分析……………………62
3.2-1XANES結果………………………………………….62
3.2-2EXAFS結果…………………………………………..63
3.3CuO/CeO2之XAS分析…………………………………..69
3.4La1-xSrxCo1-yMnyO3之XAS分析………………………..76
3.4-1取代元素的影響……………………………………...76
3.4-2觸媒所處環境的影響………………………………...90
3.5Perovskite之X光吸收光譜術結果
與反應活性測試比較…………………………………….97
3.5-1Co系列與Mn系列比較…………………………….97
3.5-2Co與Mn取代量的影響…………………………….97
3.5-3Sr取代的影響………………………………………..99
第四章結論………………………………………………….…...102
第五章參考文獻…………………………………………………104
參考文獻 1.S. T. Wilson, B. M. Lok and E. M. Flanigen, U.S. Patent 4, 310, 440 (1982).
2.S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan and E. M. Flanigen, J. Am. Chem. Soc. 104, 1146 (1982).
3.B. M. Lok, C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan and E. M. Flanigen, U.S. Patent 4, 440, 871 (1984).
4.E. M. Flanigen, B. M. Lok, R. L. Patton and S. T. Wilson, New Developments in Zeolite Science and Tech., ed. Y. Murakami, A. Iijima and J. W. Ward, Kodansha, Tokyo, 103 (1986).
5.M. Ito, Y. Shimoyama, Y. Suito, Y. Tsurita and M. Otake, Acta. Crystallogr., Sect. C., 41, 1698 (1985).
6.S. W. Kaiser, U. S. Patent 4, 499, 327 (1983).
7.林稜偕,國立中央大學化學工程所碩士論文 (1998).
8.E. T. Thostenson, T. W. Chou, Composites: Part A, 30, 1055 (1999).
9.D. Michael, P. Mingos, Chemical Processing of Advanced Materials, John Wiley and Sons, New York, 717 (1992).
10.J. C. Jansen, A. Arafat, A. K. Barakat, H. van Bekkum, Synthesis of Microporous Materials, Vol.Ⅰ, Van Nostrand Reinhold, New York, 507 (1992).
11.A. Araft, J. C. Jansen, A. R. Ebaid, H. van Bekkum, Zeolites 13, 162 (1993).
12.I. Girnus, K. Jancke, R. Vetter, J. Richter-Mendau, J. Caro, Zeolites 15, 13 (1995).
13.P. Ratnasamy and R. Kumar, Catal. Today, 9, 329 (1991).
14.L. Meusinger, H. Vinek, G. Dworeckow, M. Goepper and J. A. Lercher, Zeolite Chemistry and Catalysis, ed. P. A. Jacobs et al., Elsevier, Amsterdam, 373 (1991).
15.廖軒葛,國立中央大學化工所碩士論文,(1987)。
16.K. J. Chao, S. P. Sheu and W. S. Sheu, J. Chem. Soc. Faraday Trans., 88, 19, 2949 (1992).
17.K. J. Chao, A. C. Wei, H. C. Wu and J. F. Lee, Catalysis Today, 49, 277 (1999).
18.R. Dictor and S. Roberts, J. Phys. Chem. 93, 5846 (1989).
19.E. C. Su and W. G. Rothschild, J. Catal. 99, 506 (1986).
20.T. X. T. Sayle, S. C. Parker, C. R. A. Catlow, J. Chem. Soc., Chem. Commun. 977 (1992).
21.W. Lin, M. Flytzani_Stephanopoulos, J. Catal. 153, 304 (1995).
22.W. Lin, M. Flytzani_Stephanopoulos, J. Catal. 153, 317 (1995).
23.M. F. Luo, Y. J. Zhong, X. X. Yuan, X. M. Zheng, App. Catal. A: General, 162, 121 (1997).
24.H. C. Yao, Y. F. Y. Yao, J. Catal. 86, 254 (1984).
25.C. Hardacre, R. M. Ormerod and R. M. Lambert, J. Phys. Chem. 98, 10901 (1994).
26.G. S. Zafiris and R. J. Gorte., J. Catal. 139, 561 (1993).
27.A. Martínez-Arias, J. Soria and J. C. Conesa, J. Catal. 168, 364 (1997).
28.Y. C. Xie and Y. Q. Tang, Adv. Catal. 37, 1 (1990).
29.Y. Chen, L. F. Zhang, J. F. Lin and Y. S. Jin, Catal. Sci. and Tech. 1, 41 (1991).
30.Y. Chen, L. Dong, Y. S. Jin, B. Xu and W. Ji, Studies in Surface Sci. and Catal. 101, 1293 (1996).
31.L. Dong, Y. Jin and Y. Chen, Scinece in China (Series B), 40, 1, 24 (1997).
32.H. D. Cochrane, J. L. Hutchison, Ultramiscopy, 31, 130 (1989).
33.H. D. Cochrane, J. L. Hutchison, Ultramiscopy, 34, 10 (1990).
34.R. J. H. Voorhoeve, J. P.Remeika, P. E. Freeland, B. T. Mathias, Science 177,353 (1972).
35.R. J. H. Voorhoeve, Advanced Materials in Catalysis; Academic Press: New York, (1997).
36.E.A. Lombardo, M. A. Ulla, Res. Chem. Intermed., 24, 5, 581 (1998).
37.Nolven Guilhaume, Michel Primet, J. Catalysis, 165, 197 (1997).
38.Weiping Ding, Yi Chen, Xiancai Fu, Applied Catalysis:A, 104, 61(1993).
39.R. Doshi, C. B. Alcock, J. Catalysis, 140, 557 (1993).
40.K. S. Chan, J. Ma, S. Jaenick, Applied Catalysis A, 107, 201 (1994).
41.Takashi Hibono et al., Applied Catalysis A, 145, 297 (1996).
42.Shen-ST, Weng-HS, Ind. & Eng. Chem. Res, 37, 7, 2654 (1998).
43.Nolven Guilhaume, Applied Catalysis B, 10, 325 (1996).
44.Tzong-Rong Ling, Applied Catalysis A, 136, 191 (1996).
45.K. Nomura, Applied Catalysis A, 137, 25 (1996).
46.Hideki Taguchi, J. Solid State Chemistry, 129, 60 (1997).
47.T. Nitadori, T. Ichiki and M. Misono, Bull. Chem. Soc. Jpn., 61, 621 (1988).
48.J. M. D. Tascon and L. Gonzales Tejuca, React. Kinet. Catal. Lett., 15, 185 (1980).
49.K. S. Chan, J. Ma, S. Jaenicke, G. K. Chuah and J. Y. Lee, Applied Catalysis A, 107, 201(1994).
50.Hiroyuki Yasuda, J. Chem. Soc. Faraday Trans., 90(8), 1183 (1994).
51.M. Stojanović, C. A. Mims, H. Moudallal, Y. L. Yang and A. J. J. Jacobson, Catalysis, 166, 2, 324(1997).
52.Bente Gilbu Tilset, Applied Catalysis A, 147, 189(1996).
53.G. Thornton, B. C. Tofield and A. W. Hewat, J. Solid State Chem., 61, 301 (1986).
54.James E. Penner-Haha, Coordination Chemistry Review, 190-192, 1101 (1999).
55.G. Vlaic, D. Andreatta and P. E. Colavita, Catalysis Today, 41, 261 (1998).
56.G. G. Li, F. Bridges and C. H. Booth, Physical Review B, 52, 9, 6332 (1995).
57.J. F. Lee, Chemistry (The Chinese Chem. Soc., Taiwan China) 53, 3, 280 (1995).
58.李志甫,同步輻射研究中心簡訊,39,9 (1998).
59.A. M. Prakash and S. Unnikrishnan, J. Chem. Soc. Faraday Trans., 90, 15, 2291 (1994).
60.王秀英,國立中央大學化學工程所碩士論文,(1990).
61.M. Briend, R. Vomscheid, M. J. Peltre, P. P. Man, and D. Barthomeuf, J. Phys. Chem. 99, 8270 (1995).
62.S. Ashtekar, S. V. V. Chilukuri and D. K. Chakrabarty, J. Phys. Chem. 98, 4878, (1994).
63.A. Moen, David G. Nicholson, B. S. Clausen, P. L. Hansen, A. Molenbroek and G. Steffensen, Chem. Mater., 9, 1241 (1997).
64.A. Moen, David G. Nicholson, M. Rønning, G. M. Lamble, J. F. Lee and H. Emerich, J. Chem. Soc., Faraday Trans., 93, 22, 4071 (1997).
65.A. Martínez-Arias, M. Fernández-Gracía, J. Soria and J. C. Conesa, J. Catal., 182, 367 (1999).
66.P. Elmer, Handbook of X-ray Photoelectron Spectroscopy, New York, (1978).
67.M. Fernández-Gracía, E. Gómex Rebollo, A. Guerrero Ruiz, J. C. Conesa and J. Soria, J. Catal., 172, 146 (1977).
68.Z. Zhu, Z. Liu, S. Liu, H. Niu, T. Hu, T. Liu and Y. Xie, Applied Catalysis B:Environmental, 26, 1, 25 (2000).
69.K. Fukumi, A. Chayahara, K. Kadano, H. Kageyama, T. Akai, N. Kitamura, M. Makihara, K. Fujii and J. Hayakama, J. Non-Crystal. Solids, 238, 143 (1998).
70.P. Porta, S. D. Rossi, M. Faticanti, G. Minelli, I. Pettiti, L. Lisi and M. Turco, J. Solid State Chemistry, 146, 2, 291 (1999).
71.D. Ferri and L. Forni, Applied Catalysis B: Environmental, 16, 119 (1998).
72.G. Subías, J. García, J. Blasco, M. G. Proietti and M. C. Sánchez, J. Magnetism and Mngnetic Materials, 196-197, 534 (1999).
73.S. Ponce, M. A. Peña and J. L. G. Fierro, Applied Catalysis B: Environmental, 24, 193 (2000).
74.L. G. Tejuca, J. L. G. Fierro and J. M. D. Tascón, Adv. In Catal., 36, 237 (1989).
75.M. O’Connell, A. K. Norman, C. F. Hüttermann and M. A. Morris, Catalysis Today, 47, 123 (1999).
76.L. Marchetti and L. Forni, Applied Catalysis B: Environmental, 15, 179 (1998).
77.T. Seiyama, Catal. Rev.-Sci. Eng., 34, 4, 281 (1992).
指導教授 楊思明(Sze-Ming Yang) 審核日期 2000-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明