博碩士論文 953206006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.119.160.242
姓名 侯雅馨(Ya-Hsin Hou)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 大氣氣膠腐植質含量分析及氣膠成分對氣膠含水量的研究
(The determination of HULIS in atmospheric aerosol and the investigation of the effects of the associated aerosol species on aerosol water mass)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大氣氣膠的吸濕成長行為對於氣候、能見度、雲的形成扮演一個重要的角色,近幾年來,無機鹽類對於氣膠吸濕成長已有許多研究,但在有機物影響的研究仍然相當少。本文針對高山(鹿林山)、上風區(石門)、都會區(新莊)三個地區測站以GC-TCD系統量測方法(Chang and Lee, 2002;Lee and Chang,2002)進行大氣氣膠含水量實驗。石門與新莊測站採樣時間為2007年12月,正值受沙塵影響,鹿林山測站為2008年3月,正值受生質燃燒影響。
本文分析氣膠水溶性離子、有機碳、元素碳、水可溶有機碳(WSOC) 、並開發出HULIS (Humic like substances)分析方法。另外,以ISORROPIA模式模擬無機氣膠含水量,比較量測值與模擬值含水量的差異,並探討分析的氣膠化學成分對大氣氣膠含水量的影響。
實驗結果顯示,石門地區HULIS平均濃度為0.82 μg m-3,其來源為海水中浮游植物隨浪花飄向內陸時附著在蒸發的海鹽上;新莊地區平均濃度為0.65 μg m-3,其來源可能來自機動車輛排放的污染;鹿林山地區平均濃度為0.91 μg m-3,其來源應以生質燃燒排放長程傳輸為主。
石門/新莊/鹿林山氣膠含水量實測值減去模式推估值分別為-12.25 μg m-3、-5.58 μg m-3、0.67 μg m-3,表示在石門和新莊地區有機物抑制氣膠吸水,鹿林山地區的有機物則可加強氣膠吸水。本文另外發現隨著HULIS-C/WSOC 比例增加,發現氣膠有稍微提前潮解的現象。
在多元迴歸分析中,階段復迴歸納入NH4+和EC為顯著的預測因子,NH4+的選擇如同預期,可能是由於其代表硫酸鹽和硝酸鹽,但EC意外被選入,可能是由於硫酸鹽和硝酸鹽附著以EC為核心的氣膠上,但應該需要更多的數據來確認這個推論。本文得到的氣膠含水量的迴歸模式為Y (measured water content) = 9.741×EC + 3.667×NH4++5.592,R2=0.84。
絕對主成分分析中,第一因子代表為水溶性無機鹽類對於氣膠含水量的貢獻,其影響為正值。第二因子海鹽和第三因子HULIS對氣膠含水量影響為負值,本文認為是受到石門HULIS來源的經由海水浮游植物附著在蒸發的海鹽上飄向內陸所致,因為HULIS對含水量影響為負值,導致第二因子也抑制氣膠吸水。在總結上,本文認為氣膠含水量取決於無機鹽類的多寡,但有機物可能對於含水量有微量增加或抑制的影響,唯這個推論需要更多的數據來確認。
摘要(英) Hygroscopic growth of atmospheric aerosol particles plays an important role in climate forcing, visibility degradation, and cloud formation. In recent years many studies have conducted on the influence of inorganic salts to aerosol hygroscopic behavior but very few worked on the effects of organic components. This study collected atmospheric aerosols at mountain (Lulin), upwind area (Shimen), and urban area (Hsinchuang) and measured aerosol waster mass with a GC-TCD system (Chang and Lee, 2002;Lee and Chang, 2002). The sampling time period at Hsinchuang and Shimen was with the occurrence of a yellow-dust event in December 2007 and at Mt. Lulin during biomass burning transport in March 2008.
In this study, water-soluble inorganic ions, organic carbon, elemental carbon, water-soluble organic carbon (WSOC) and humic like substances (HULIS) were measured. In addition, the ISORROPIA model was adopted to simulate aerosol water mass contributed from the inorganic salts for the comparison between the measured ones. The difference between measured and modeled aerosol water mass is discussed using the resolved aerosol chemical components.
The results show average HULIS concentration at the Shimen site was 0.82 μg m-3 and was contributed from the phytoplankton in the sea water attached to the evaporated sea salt. The average HULIS concentration at Hsinchuang site was 0.65 μg m-3 with primary vehicle emission as its origin. Moreover, the Lulin site was averaged at 0.91 μg m-3 and was mainly contributed from long-range transport plume from biomass burning.
The subtraction of modeled aerosol water mass from measured ones shows the differences at the Shimen, Hsinchuang, and Lulin site are -12.25 μg m-3, -5.58 μg m-3, and 0.67 μg m-3, respectively. It indicates organic components inhibit aerosol water uptake at the Shimen and Hsinchuang sites and enhance water uptake at the Lulin site. In addition, aerosol is found to deliquesce at low relative humidity range in accordance with the increase of HULIS-C/WSOC ratios.
In the multiple regression analysis, stepwise regression selects NH4+ and EC as significant predictors. The choice of NH4+ is as expected because it represents the aerosol sulfate and nitrate. However, the selection of EC is out of expectation, which is probably due to the coating of sulfate and nitrate onto the associated aerosol EC core. This inference needs more data to verify. The resulted multiple regression function is Y (measured water content) = 9.741×EC + 3.667×NH4++5.592, R2=0.84.
In the absolute principle component analysis for factors contributed to aerosol water mass, the first factor stands for positive contribution from water-soluble inorganic salts. In contrast, the second and the third factors represent negative contributions from sea salt and HULIS. The reason for this is probably due to the phytoplankton in the sea water attached to the evaporated sea salt. As the phytoplankton has a negative effect on aerosol water uptake so the sea salt in the contribution of aerosol water mass. In summary, aerosol water mass is dependent on the amount of inorganic salts; however, organic components might have a minor effect on enhancing or inhibiting water uptake. This inference certainly needs more data to verify.
關鍵字(中) ★ 腐植質 關鍵字(英) ★ HULIS
論文目次 第一章 前言 1
1.1 研究緣起 1
1.2 研究內容與目的 1
第二章 文獻回顧 3
2.1 大氣氣膠組成 3
2.1.1 大氣中常見腐植質的種類與含量 3
2.1.2 大氣中腐植質來源與特性 6
2. 2 氣膠含水特性 7
2.2.1 無機氣膠含水特性 8
2.2.2 有機氣膠含水特性 10
2.2.3 有機無機混合氣膠含水特性 13
2.3 氣膠含水量量測方法 14
2.3.1 秤重法 14
2.3.2 TDMA (tandem differential mobility analyzer)法 15
2.3.3 EDB(electrodynamic balance)法 16
2.3.4 RSMS (rapid single-particle mass spectrometry)法 17
2.3.5 FTIR (fourier transform infrared spectroscopy)法 17
2.3.6 Karl Fischer 法 17
2.3.7 EA-TCD 法 17
2.3.8 其他量測方法 18
2.4 氣膠含水特性對環境的衝擊 18
2.4.1 氣膠質量濃度量測 18
2.4.2 酸性沉降 19
2.4.3 氣膠光學性質 20
2.4.4 氣候變遷 20
2.4.5 人體健康 21
第三章 研究方法 23
3.1 研究架構 23
3.2 腐植質中的碳分析方法 25
3.2.1 化學藥品與實驗器材 25
3.3 採樣規劃 26
3.3.1 採樣地點介紹 27
3.3.2 採樣裝置設備 29
3.3.3 採樣濾紙的處理與保存 33
3.3.4 質量濃度分析方法 33
3.3.5 水溶性離子分析方法 34
3.3.6 腐植質分析方法 34
3.3.7腐植質中的含碳量前處理步驟與說明 35
3.3.8 碳成分分析方法 35
3.4 GC-TCD氣膠含水量量測系統 38
3.4.1 GC-TCD量測原理 39
3.4.2 GC-TCD 量測系統單元 40
3.4.3 偵測極限 42
3.4.4 萃取時間與調理時間 43
3.5 ISORROPIA 模式 43
第四章 結果與討論 45
4.1 大氣氣膠成分分析 45
4.1.1 人工採樣器、自動監測儀器、高量採樣器比對 45
4.1.2 大氣氣膠腐植質的碳分析 47
4.1.3碳分析儀與總有機碳的比較 51
4.1.4 石門/新莊/鹿林山地區氣膠特性比較 52
4.1.5 大氣氣膠中WSOC與HULIS來源推論 64
4.1.6 石門/新莊/鹿林山氣膠成長因子的比較 72
4.2 影響氣膠含水量的因子探討 85
4.2.1 ISORROPIA 模式推估氣膠含水量 85
4.2.2 ISORROPIA 模式推估氣膠含水量趨勢 88
4.2.3氣膠含水量與質量濃度的相關性 97
4.2.4 水可溶有機碳與硫酸鹽對於氣膠含水量的影響 98
4.2.5 有機物中抑制氣膠含水量的成份 100
4.2.6 HULIS對於氣膠含水量及AMC值的影響 101
4.2.7 PM2.5細微氣膠中主要成分對氣膠AMC值的影響 102
4.3以統計方式進行影響氣膠含水量探討 106
4.3.1 氣膠含水量與氣膠成份的多元迴歸式分析 106
4.3.2 氣膠含水量與氣膠成分的絕對主成分分析 107
第五章 結論與建議 110
5.1 結論 110
5.2建議 111
第六章 參考文獻 112
參考文獻 Abbt-Braun, G., Lankes, U., Frimmel, F. H., 2004. Structural characterization of
aquatic humic substances - The need for a multiple method approach, Aquatic
Science 66, 151–170.
Allen, G. A., 1998. Invited comments on: “real time liquid water mass
measurement for airborne particulates”. Aerosol Science and
Technology 29, 563-565.
Andreae, M., 1983. Soot Carbon and Excess Fine Potassium: Long-Range Transport of
Combustion-Derived Aerosols. Science 220, 1148-1151.
Andrews, E., Larson, S. M., 1993. Effect of surfactant layers on the size
changes of aerosol particles as a function of relative humidity.
Environmental Science and Technology 27, 857-865.
Buffle, J., 1977. Les substance humiques et leurs interactions aver les
ions mineraux, in Conference Proceedings de la Commission
d’Hydrologie Appliqu´ee de A.G. H.T.M., 3–10, l’Universit´e
d’Orsay.
Carrico, C. M., Kreidenweis, S. M., Malm W. C., Day, D. E., Lee, T.,
Carrillo, J., McMeeking, G. R., Collett Jr. J. L., 2005. Hygroscopic
growth behavior of a carbon-dominated aerosol in Yosemite
National Park. Atmospheric Environment 39, 1393-1404.
Carson, P. G., Neubauer, K. P., Johnston, M. V., Wexler, A. S., 1995.
On-line chemical analysis of aerosols by rapid single-particle mass
spectrometry. Journal of Aerosol Science 26, 535-545.
Cavalli, F., Facchini,M.C., Decesari, S.,Mircea,M., Emblico, L., Fuzzi, S.,
Ceburnis, D., Yoon, Y.J., O'Dowd, C.D., Putaud, J.-P., Dell'Acqua, A., 2004. Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic. Journal of Geophysical Research 109 (D24), doi:10.1029/2004JD005137.
Chan, M. N., Choi, M. Y., Lee, N. N., Chan, C. K., 2005. Hygroscopicity
of water-soluble organic compounds in atmospheric aerosol: amino
acids and biomass burning derived organic species. Environmental
Science and Technology 39, 1555-1562.
Chang, S. Y., Lee, C. T., 2002. Applying GC-TCD to investigate the
hygroscopic characteristics of mixed aerosols. Atmospheric Environment 36, 1521-1530.
Chen, L. Y., Jeng, F. T., Chen, C. C., Hsiao, T. C., 2003. Hygroscopic behavior
of atmospheric aerosol in Taipei. Atmospheric Environment 37, 2069-2075.
Choi, M. Y., Chan, C. K., 2002. Continuous measurements of the water
activities of aqueous droplets of water-soluble organic compounds. Journal of Physical Chemistry 106, 4566-4572.
Cruz, C. N., Pandis, S. N., 1997. A study of the ability of pure secondary
organic aerosol to act as cloud condensation nuclei. Atmospheric
Environment 31, 2205-2214.
Cruz, C. N., Pandis, S. N., 2000. Deliquescence and hygroscopic growth
of mixed inorganic-organic atmospheric aerosol. Environmental
Science and Technology 34, 4313- 4319.
Curry, J. A., Schramm, J. L., Serreze, M. C., Ebert, E. E., 1995. Water
vapor feedback over the Aretic Ocean. Journal of Geophysical
Research 100, 14223-14229.
Cziczo, D. J., Nowak, J. B., Hu, J. H., Abbatt, J. P. D., 1997. Infrared
spectroscopy of model tropospheric aerosols as a function of relative
humidity : observation of deliquescence and crystallization. Journal
of Geophysical Research 102(D15), doi:10.1029/JD01361.
Decesari, S., Facchini, M.C., Matta, E., Lettini, F., Mircea, M., Fuzzi, S.,
Tagliavini, E., Putaud, J.P., 2001. Chemical features and seasonal variation of fine aerosol water-soluble organic compounds in the Po Valley, Italy. Atmospheric Environment 35, 3691–3699.
Decesari, S., Facchini, M. C., Matta, E., Mircea, M., Fuzzi, S., Chughtai, A. R., Smith,
D. M., 2002. Water soluble organic compounds formed by oxidation of soot.
Atmospheric Environment, 36, 1827–1832.
Dick, W.D., Saxena, P., McMurry, P.H., 2000. Estimation of water uptake byorganic
compounds in submicron aerosol measured during the Southeastern Aerosol and Visibility Study. Journal of Geophysical Research 105, 1471–1479.
Dinar, E., Taraniuk, I., Graber, E. R., Anttila, T., Mentel, T. F., Rudich, Y.,
2007. Hygroscopic growth of atmospheric and model humic-like substances, Journal of Geophysical Research 112(D05), doi:10.1029/2006JD007442.
Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 16667, 2006
Facchini, M. C., Fuzzi, S., Zappoli, S., Andracchio, A., Gelencs´er,
A., Kiss, G., Kriv´acsy, Z., M´esz´aros, E., Hansson, H. C., Alsberg,
T., Zebuhr, Y., 1999. Partitioning of the organic aerosol component
between fog droplets and interstitial air, Journal of Geophysical Research 26(D21), 821–26.
Ferron, G.A., Karg, E., Busch, B., Heyder, J., 2005. Ambient particles at an
urban, semi-urban and rural site in Central Europe:hygroscopic properties,
Atmospheric Environment 39, 343–352
Gelencsér, A., 2004. Carbonaceous Aerosol. Atmospheric and
Ocean ographic Sciences Library 30. Springer1-4020-2886-5.
Gysel, M., Weingartner, E., Nyeki1, S., Paulsen1, D., Baltensperger, U.,
Galambos, I., Kiss, G., 2004. Hygroscopic properties of water-soluble
matter and humic-like organics in atmospheric fine aerosol. Atmospheric
Chemistry and Physics 4, 35–50.
Han, J. H., Martin, S. T., 1999. Heterogeneous nucleation of the
efflorescence of (NH4)2SO4 particles internally mixed with Al2O3,
TiO2, and ZrO2. Journal of Geophysical Research 104(D3), 3543-3553.
Havers, N., Burba, P., Lambert, J., Klockow, D., 1998. Spectroscopic
characterisation of humic-like substances in airborne particulate matter. Journal of Atmospheric Chemistry 29, 45–54.
Hemming, B. L., Seinfeld, J. H., 2001. On the Hygroscopic Behavior of
Atmospheric Organic Aerosols. Industrial and Engineering Chemistry
Research 40, 4162-4171.
Henry, R. C., 1997. The Application of The linear System Theory of
Visual Acuity To Visibility Reduction by Aerosols. Enviromental
Research and Technology 11, 697-701.
Hitzenberger, R., Berner, A., Dusek, U., Alabashi, R., 1997.
Humidity dependent growth of size-segregated aerosol samples.
Aerosol Scence and Technology 27, 116-130.
Huang, X. F., Yu, J. Z., 2007. Size distributions of elemental carbon in a
coastal urban atmosphere in South China: characteristics, evolution
processes, and implications for the mixing state. Atmospheric Chemistry
and Physics Discussions 7, 10743–10766.
Janos, P., 2003. Separation methods in the chemistry of humic substances,
Journal of Chromatography 983, 1–18.
Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prevot, A. S.
H., Fisseha, R., Weingartner, E., Frankevich, V., Zenobi, R., Baltensperger, U., 2004. Identification of polymers as major components of atmospheric organic aerosols, Science 303, 1659–1662.
Khvorostyanov, V.I., Curry, J.A., 1999. A simple analytical model of
aerosol properties with account for hygroscopic growth 2. Scattering
and absorption coefficients. Journal of Geophysical Research 104(D2),
2163-2174.
Kim, J., Yoon, S. C., Jefferson, A., Kim, S. W., 2006. Aerosol hygroscopic properties
during Asian dust, pollution, and biomass burning episodes at Gosan, Korea in
April 2001. Atmospheric Environment 40, 1550–1560.
Kiss, G., Varga, B., Galambos, I., Ganszky, I., 2002. Characterization of water
soluble organic matter isolated from atmospheric fine aerosol, Journal of Geophysical Research 107(D21), doi:10.1029/2001JD000603.
Kiss, G., Tombacz, E., Hansson, H.C., 2005. Surface Tension Effects of
Humic-Like Substances in the Aqueous Extract of Tropospheric Fine
Aerosol. Journal of Atmospheric Chemistry 50, 279–294.
Krivácsy, Z., Kiss, G., Varga, B., Galambos, I., Sárvári, Z., Gelencsér, A.,
Molnár, Á., Fuzzi, S., Facchini, M.C., Zappoli, S., Andracchio, A., Alsberg, T., Hansson, H.C., Persson, L., 2000. Study of humic like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis. Atmospheric Environment 34, 4273–4281.
Krivácsy, Z., Hoffer, A., Sárvári, Z., Temesi, D., Baltensperger, U., Nyeki, S.,
Weingartner, E., Kleefeld, S., Jennings, S.G., 2001. Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmospheric Environment 35, 6231–6244.
Krivácsy, Z., Gelencsér, A., Kiss, G., Mészáros, E., Molnár, Á., Hoffer, A.,
Mészáros, T., Sárvári, Z., Temesi, D., Varga, B., Baltensperger, U., Nyeki, S., Weingartner, E., 2001. Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch. Journal of Atmospheric Chemistry 39, 235–259.
Lee, C. T., Hsu, W. C., 1998. A Novel Method to Measure Aerosol Water
Mass. Journal of Aerosol Science 29, 827-837.
Lee, C.T., Hsu, W.C., 2000. The measurement of liquid water mass associated
with collected hygroscopic particles. Journal of Aerosol Science 31,
189–197.
Lee, C. T., Chang, S. Y., 2002. A GC-TCD method for measuring the liquid water
mass of collected aerosols. Atmospheric Environment 36, 1883-1894.
Lide, D. R., 1991. Handbook of chemistry and physics.
Lightstone, J. M., Onasch, T. B., Imre, D., 2000. Deliquescence,
efflorescence, and water activity in ammonium nitrate and mixed
ammonium nitrate/succinic acid microparticles. Journal of Physical
Chemistry A 104, 9337-9346.
Malm, W. C., 1991. Considerations in the Accuracy of a Long-Path
Transmissometer. Aerosol Science and Technology 14, 459-471.
Martin, S. T., 1998. Phase transformations of the ternary system
(NH4)2SO4-H2SO4-H2O and the implications for cirrus cloud
formation. Geophysical Research Letter 25, 1657-1660.
Matta, E., Facchini, M.C., Decesari, S., Mircea, M., Cavalli, F., Fuzzi, S., Putaud, J.
P., DellAcqua, A., 2003. Mass closure on the chemical species in size-segregated atmospheric aerosol collected in an urban area of the Po Valley, Italy. Atmospheric Chemistry and Physics 3, 623–637.
Mayol-Bracero, O.L., Guyon, P., Graham, B., Roberts, G., Andreae,
M.O., Decesari, S., Facchini, M.C., Fuzzi, S., Artaxo, P., 2002.
Water-soluble organic compounds in biomass burning aerosols over
Amazonia, 2. Apportionment of the chemical composition and
importance of the polyacidic fraction. Journal of Geophysical
Research 107 (D20), doi:10.1029/2001JD000522.
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C.,
Feingold, G. et al. (2006). The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmospheric Chemistry and Physics 6, 2593–2649.
Mukai, H., Ambe, Y., 1986. Characterization of a humic acid-like brown
substance in airborne particulate matter and tentative identification of its origin. Atmospheric Environment 20, 813–819.
Neubauer, K. R., Johnston, M. V., Wexler, A. S., 1998. Humidity
effects on the mass spectra of single aerosols particles. Atmospheric
Environment 32, 2521-2529.
Onasch, T. B., Siefert, R. L., Brooks, S. D., Prenni, A. J., Murray,
B., Wilson, M. A., Tolbert, M. A., 1999. Infrared spectroscopic
study of the deliquescence and efflorescence of ammonium sulfate
aerosol as a function of temperature. Journal of Geophysical
Research 104(D17), 21317-21326.
Pilinis, C., 1989. Numerical Simulation of Visibility Degradation Due to
Particulate Matter: Model Development and Evaluation. Journal of
Geophysical Research 94(D07), 9937-9946.
U.S. EPA, 1994. Quality Assurance Handbook for Air Pollution Measurement Systems,
Reference, Method for the Determination of Suspended Particulates in the
Atmosphere. High Volume Method 2, section 2.2.
Rogers, C. F., Watson, J. G., Day, D., and Oraltay, R. G., 1998.
Real-time liquid water mass measurement for airborne particulates.
Aerosol Science and Technology 29, 557-562.
Salma, I., Ocskay, R., Chi, X., Maenhaut, W., 2007. Sampling artefacts,
concentration and chemical composition of fine water-soluble organic carbon and humic-like substances in a continental urban atmospheric environment. Atmospheric Environment 41, 4106-4118.
Samburova, V., Szidat, S., Hueglin, C., Fisseha, R., Baltensperger,
U., Zenobi, R., Kalberer, M., 2005b. Seasonal variation of
high-molecular-weight compounds in the water-soluble fraction of
organic urban aerosols. Journal of Geophysical Research 110(D23), doi:10.1029/2005JD005910.
Sarah, D. B., Paul, J. D., Sonia, M. K., 2004. Water uptake by particles containing
humic materials and mixtures of humic materials with ammonium sulfate.
Atmospheric Environment 38, 1859–1868.
Saxena, P., Hildemann, L. M., McMurry, P. H., Seinfeld, J. H.,1995.
Journal of Geophysical Research 100 (D9), 18755-18770.
Saxena, P., Hildemann, L. M., 1996. Water-soluble organics in atmospheric
particles:A critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry 24, 57-109.
Seinfeld, J. H., Pandis, S. N., 1998. Atmospheric chemistry and physics : from air
pollution to climate change. Atmospheric chemistry and physics.
Simoneit, B. R. T., 1980. Eoalian particulates form oceanic and rural areas –
their lipids fulvic and humic acids and residual carbon, in A. Douglas and J. Maxwell, eds., Advances in Organic Geochemistry, 343–352.
Speer, R. E., Barnes, H. M., Brown, R., 1997. An instrument for measuring the liquid
water content of aerosols. Aerosol Science and Technology 27, 50-61.
Tang, I.N., 1980. Deliquescence properties and particle size change of hygroscopic
aerosols. In generation of aerosols and facilities for exposure experiments (edited
by Willeke, K.), 153-167. Ann Arbor Science, Ann Arbor, MI.
Tang, I.N., Munkelwitz, H. R., 1993. Aerosol Phase Transformation and Growth in the
Atmosphere. Journal of Applied Meteorology 33, 791–796
Tang, I. N., Munkelwitz, H. R., 1994. Water activities, densities, and refractive indices
of aqueous sulfates and sodium nitrate droplets of atmospheric importance.
Journal of Geophysical Research 99(D09), 18801-18808.
Tang, I. N., 1996. Chemical and size effects of hygroscopic aerosols on light scattering
coefficients. Journal of Geophysical Research 101, 19245-19250.
Tolocka, M. P., Jang, M., Ginter, J. M., Cox, F. J., Kamens, R. M., Johnston,
M. V., 2004. Formation of oligomers in secondary organic aerosol,
Environment Science and Technology 38, 1428–1434.
Turpin, B. J., Saxena, P., Andrews, E., 2000. Measuring and simulating
particulate organics in the atmosphere: problems and prospects.
Atmospheric Environment 34, 2983-3013.
Tursic, J., Podkrajsek, B., Grgic, I., Ctyroky, P., 2006. Chemical composition
and hygroscopic properties of size-segregated aerosol particles collected at the Adriatic coast of Slovenia. Chemosphere 63, 1193-1202.
U.S. EPA, 1999. Visibility Monitoring Guidance. Research Triangle Park.
EPA-454/R-99-003.
Varga, B., Kiss, G., Ganszky, I., Gelencsér, A., Krivácsy, Z., 2001. Isolation of
water-soluble organic matter from atmospheric aerosol. Talanta 55,
561–572.
Weis, D. D., Ewing, G. E., 1996. Infrared spectroscopic signatures of (NH4)2SO4
aerosols. Journal of Geophysical Research 101, 18709-18720.
Winkler, P., Junge, C., 1972. The growth of atmospheric aerosol particles as a function
of relative humidity, part 1L methods and measurements at different locations.
Journal of Research Atmopheric 6, 617-638.
Yang, H., Li, Q., Yu, J. Z., 2003. Comparison of two methods for the
determination of water-soluble organic carbon in atmospheric particles.
Atmospheric Environment 37, 865–870.
Zappoli, S., Andracchio, A., Fuzzi, S., Facchini, M. C., Gelencser, A., Kiss, G.,
Krivacsy, Z., Molnar, A., Meszaros, E., Hansson, H. C., Rosman, K., Zebuhr, Y.,
1999. Inorganic, organic and macromolecular components of fine aerosol in
different spheric. Atmospheric Environment 33, 2733-2743.
Zheng, B., Sage, M., Cai, W. W., Thompson, D. M., Tavsanli, B. C., Cheah,Y. C.,
Bradley, A., 1999. Engineering a mouse balancer chromosome. Nat Grent 22,
375-378.
張士昱,2001。易潮解無機氣膠含水特性之研究。國立中央大學環境工程研究所
博士論文。
溫志雄,2002。台灣一般大氣氣膠化學成份之連續監測及含水量之量測。國立中
央大學環境工程研究所碩士論文。
許惠敏,2003。低分子量二元有機酸分析方法及含水特性之研究。國立中央大學
環境工程研究所碩士論文。
秦若鈺,2004。大氣常有機物及有機/無機混合氣膠含水特性之研究。國立中央大
學環境工程研究所碩士論文。
陳美君,2006。大氣氣膠含水量受氣膠化學成分的影響及水可溶有機碳分析方法
的建立。國立中央大學環境工程研究所碩士論文
指導教授 李崇德(Chung-Te Lee) 審核日期 2008-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明