博碩士論文 953206023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.216.121.55
姓名 吳義偉(Yi-Wei Wu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以介電質放電技術進行氧化鋁擔載鎳觸媒表面改質之研究
(Plasma modification of the Ni/γ-Al2O3 catalyst with Dielectric Barrier Discharges)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用電漿進行觸媒表面改質對於觸媒改良為一具有前景之技術,許多研究發現經過電漿處理過之觸媒可增加活性及穩定性。本研究將介電質放電技術 (dielectric barrier discharge, DBD)應用於Ni/Al2O3 觸媒之製作前處理,再進行乙醇蒸氣重組反應,以了解電漿氣體種類以及電漿處理在觸媒製作程序之不同對於蒸氣重組反應之影響。本研究之介電材料為石英,內徑10.6 mm,內電極直徑0.1 mm,放電長度100 mm。介電質放電實驗之固定參數包括施加電壓16 kV及頻率100 Hz,每公克觸媒施予之能量為10800焦耳,空間流速1498 hr-1,溫度為室溫,操作參數則為改變進流氣體之種類(氫氣、氧氣)以及處理順序(觸媒鍛燒前,鍛燒後)。乙醇蒸氣重組實驗之固定參數包括空間流速10602 hr-1,乙醇和水的進流莫耳比為1:3,操作參數則為反應溫度 (446、535、637、736 ℃)。
在電漿處理之觸媒與傳統觸媒之關係上,在鍛燒前以氫氣、氧氣電漿進行處理之觸媒,其乙醇轉化率,氫氣選擇性階低於傳統觸媒,在溫度為446 ℃的狀況下,傳統觸媒,氧氣電漿觸媒、氫氣電漿觸媒之乙醇轉化率分別為82.6%、61.9%、57.1%,氫氣選擇性分別為42.9%、22.8%、0.0%。隨著溫度上升至736 ℃,各觸媒的乙醇轉化率可上升至99.0%以上,傳統觸媒,氧氣電漿觸媒、氫氣電漿觸媒之氫氣選擇性分別為85.7%、71.6%、83.0%。在鍛燒後以氫氣電漿進行處理之觸媒,其乙醇轉化率,氫氣選擇性階低於傳統觸媒及氧氣電漿觸媒,在溫度為446 ℃的狀況下,傳統觸媒,氧氣電漿觸媒、氫氣電漿觸媒之乙醇轉化率分別為56.9%、39.2%、60.4%,氫氣選擇性皆為0.0%。隨著溫度上升至736 ℃,各觸媒的乙醇轉化率可上升至99.0%以上,傳統觸媒,氧氣電漿觸媒、氫氣電漿觸媒之氫氣選擇性為51.7%, 39.9%,72.5%。考慮觸媒積碳的影響,將傳統和鍛燒後經電漿處理之觸媒將溫度由高至低進行實驗,在溫度為446 ℃的狀況下,傳統觸媒,氧氣電漿觸媒、氫氣電漿觸媒之乙醇轉化率分別為79.0%、66.9%、90.6%,氫氣選擇性為42.8%、64.5%、37.4%。在736 ℃的狀況下,傳統觸媒,氧氣電漿觸媒、氫氣電漿觸媒之乙醇轉化率分別為99.8%、96.6%、99.6%,氫氣選擇性為87.0%、82.3%、92.8%。
摘要(英) The plasma modification of the catalyst is a novel way to improve performance of catalyst. Such prepared catalyst presents a higher catalytic activity and an enhanced stability over the catalyst prepared without plasma treatment. This study aims to evaluate the characteristics of Ni/Al2O3 catalyst for steam reforming of ethanol to syngas via a DBD by different flowing gases and with different processes. DBD reactor is made of the quartz tube with the inner diameter of 10.6 mm. A stainless steel rod with the diameter of 0.1 mm is used as the inner electrode and the length of discharge region is 100.0 mm. Experimental tests are conducted at fixed applied voltage (16 kV), frequency (100 Hz), applied energy of catalyst (10800 J/g), space velocity (1498 hr-1) and temperature (25 ℃), while the flowing gases include hydrogen and oxygen, the processes include discharge before and after calcination. Steam reforming experimental tests are conducted at fixed space velocity (10602 hr-1), ethanol-water mole ratio (1:3), while the temperature vary from 446 ℃ to 736 ℃.
The catalyst prepared with discharge before calcination exhibits lower ethanol conversion rate and hydrogen selectivity, compared to the catalyst prepared without plasma treatment. At 446 ℃, ethanol conversion efficiency of traditional, O2 plasma and H2 plasma catalyst are 82.6%, 61.9% and 57.1%, H2 selectivities of each one are 42.9%, 22.8% and 0.0%, respectively. At 736 ℃, ethanol conversion efficiency of each catalyst reaches to above 99.0%, H2 selectivities of traditional, O2 plasma and H2 plasma catalyst are 85.7%, 71.6% and 83.0%, respectively. At another case, the catalyst prepared with discharge after calcination by H2 plasma shows improved ethanol conversion rate and hydrogen selectivity, compared to O2 plasma and tranditional catalyst. At 446 ℃, ethanol conversion efficiency of O2 plasma and H2 plasma catalyst are 56.9%, 39.2% and 60.4%, the H2 selectivities of each one are all 0.0%. At 736 ℃, the ethanol conversion efficiency of each catalyst reach above 99.0%, H2 selectivities of traditional, O2 plasma and H2 plasma catalyst are 51.7%, 39.9% and 72.5%, respectively. In order to reduce the effect of coke formation, the catalyst discharged after calcination conducts steam reforming process by temperature decrease way, at 446 ℃, ethanol conversion efficiency of traditional, O2 plasma and H2 plasma catalyst are 79.0%, 66.9% and 90.6%, H2 selectivities of each one are 42.8%, 64.5%, 37.4%, respectively. At 736 ℃, ethanol conversion efficiency of each catalyst are able to reach to above 99.0%, H2 selectivities of each one are 42.8%, 64.5%, 37.4%, respectively. 87.0%, 82.3%, 92.8%.
The present investigation confirms the DBD treatment of Ni/γ-Al2O3 catalyst with hydrogen after calcination thermally, leads to better activity and selectivity for steam reforming of ethanol to syngas.
關鍵字(中) ★ 電漿
★ 鎳觸媒
★ 乙醇
★ 蒸氣重組
關鍵字(英) ★ Plasma
★ Ni/γ-Al2O3 Catalyst
★ Ethanol
★ Steam reforming
論文目次 一、前言 1
1-1 研究緣起 1
1-2 研究目的 2
二、文獻回顧 3
2-1 氫氣的介紹 3
2-2 乙醇 5
2-2-1 乙醇之基本介紹 5
2-2-2 乙醇在燃料電池上的應用 6
2-3 碳氫化合物重組 7
2-3-1 水蒸氣重組法 8
2-3-2 部分氧化法 9
2-3-3 自發熱重組法 10
2-4 水蒸氣重組法 11
2-4-1 以水蒸氣重組法進行乙醇產氫之機制 12
2-4-2 水蒸氣重組法之程序 15
2-5 觸媒 17
2-5-1乙醇/水蒸氣重組產氫所使用之觸媒 17
2-5-2 Ni/γ-Al2O3觸媒的簡介 20
2-6 電漿 22
2-6-1 電漿原理 22
2-6-2 電漿產生方式 24
2-6-3 電漿放電對觸媒表面特性之影響 28
三、研究設備與研究方法 34
3-1 觸媒製備 34
3-1-1 觸媒製備藥品 34
3-1-2 觸媒製備步驟 34
3-2 實驗設備 35
3-2-1 氣體供應系統 36
3-2-2 乙醇及水汽化系統 37
3-2-3 介電質放電系統 37
3-2-4 水蒸氣重組反應系統 39
3-2-5 氣體冷凝系統 39
3-2-6 最終產物鑑定系統 40
3-3 研究方法 40
3-3-1 研究規劃 40
3-3-2 主體實驗 41
3-3-3 轉化效率之表示方式 44
四、結果與討論 46
4-1介電質放電實驗 46
4-2 電漿處理前、後之觸媒活性實驗 48
4-2-1 乙醇轉化率 48
4-2-2 電漿處理前、後觸媒之各產物選擇性 51
4-2-3 各產物選擇性比較 57
4-2-4 氫氣產率 73
4-3 反應溫度對產物之影響 75
4-4 非熱電漿對觸媒表面之影響 76
4-5 積碳之影響 79
4-6 表面特性分析 81
4-6-1 A組觸媒之BET表面積分析 81
4-6-2 A組觸媒之XRD圖譜 81
五、結論與建議 83
5-1 結論 83
5-2 建議 84
參考文獻 86
附錄:選擇性實驗數據原始資料……………………………………………………….......95
參考文獻 Amphlett, J. C., Leclerc, S., Mann, R. F., Peppley, B. A., and Roberge, P. R., “Fuel cell hydrogen production by catalytic ethanol-steam reforming,” Proceedings of the 33rd Intersociety Energy Conversion Engineering Conference, Colorado Sprongs, 98-269, 1998.
Armor, J. N., “Review: The multiple roles for catalysis in the production of hydrogen,” Applied Catalysis A, 176, 159-176, 1999.
Aupretre, F., Descorme, C. and Duprez, D., “Bio-ethanol catalytic steam reforming over supported metal catalysts,” Catalysis Communications, 3, 263-267, 2002.
Aupretre, F., Descorme, C., Duprez, D. Casanave, D., and Uzio, D., “Ethanol steam reforming over MgxNi1−xAl2O3 spinel oxide-supported Rh catalysts,” Journal of Catalysis, 233, 2, 464-477, 2005.
Batista, M. S., Santos, R. K. S., Assaf, E. M., Assaf, J. M. and Ticianelli, E. A., “Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol,” Journal of Power Sources, 124, 99-103, 2003.
Bruijn, F. de, “The current status of fuel cell technology for mobile and stationary applications,” Green Chemistry, 7, 132, 2005.
Chapman, B., Glow discharge processes, A Wiley-Interscience Publication, Canada, 297-342, 1980.
Cavallaro, S., “Ethanol steam reforming on Rh/Al2O3 catalysts,” Energy & Fuels, 14, 1195-1199, 2000.
Cavallaro, S., Mondello, N. and Freni, S., “Hydrogen produced from ethanol for internal reforming molten carbonate fuel cell,” Journal of Power Sources, 102, 198-204, 2001.
Cavallaro, S., Chiodo, V., Freni, S., Mondello, N. and Frusteri, F., “Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol: H2 production for MC,” Applied Catalysis A, 249, 119-128, 2003a.
Cavallaro, S., Chiodo, V., Vita, A. and Freni, S., “Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst,” Journal of Power Sources, 123, 10-16, 2003b.
Cheng, D. G., Zhu, X. L., Ben, Y. H., He, F., Cui, L. and Liu, C.J., “Carbon dioxide reforming of methane over treated with glow discharge plasma,” Catalysis Today, 115, 205-210, 2006.
Chen, M.H., Chu, W., Dai, X.Y., and Zhang, X.W., “New palladium catalysts prepared by glow discharge plasma for the selective hydrogenation of acetylene,” Catalysis Today, 89, 201-204, 2004.
Comas, J., Marino, F., Laborde, M. and Amadeo, N., “Bio-ethanol steam reforming on Ni/Al2O3 catalyst,” Chemical Engineering Journal, 98, 61-68, 2004.
Deluga, G. A., Salge, J. R., Schmidt, L. D. and Verykios, X. E., “Renewable hydrogen from ethanol by autothermal reforming,” Science, 303, 5660, 993-997, 2004.
Fatsikostas, A. N., Kondarides, D. I. and Verykios, X. E., “Steam reforming of biomass-derived ethanol for the production of hydrogen for fuel cell applications,” Chemical Communications, 851-852, 2001.
Fatsikostas, A. N., Kondarides, D. I. and Verykios, X. E., ” Production of hydrogen for fuel cells by reformation of biomass-derived ethanol,” Catalysis Today, 75, 145-155, 2002.
Fatsikostas, A. N. and Verykios, X. E., “Reaction network of steam reforming of ethanol over Ni-based catalysts,” Journal of Catalysis, 225, 439-452, 2004.
Fernando, S. and Hanna, M., “Development of a novel biofuel blend using ethanol-biodiesel-diesel microemulsions: EB-diesel,” Energy & Fuels, 18, 1695-1703, 2004.
Fierro, V., Akdim, O., and Mirodatos, C., “On-board hydrogen production in a hybrid electric vehicle by bio-ethanol oxidative steam reforming over Ni and noble metal based catalysts,” Green Chemistry, 5, 20, 2003.
Freni, S., “Rh-based catalysts for indirect internal reforming ethanol applications in molten carbonate fuel cells,” Journal of Power Sources, 94, 14-19, 2001.
Freni, S., Cavallaro, S., Mondello, N., Spadaro, L., and Frusteri, F., “Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts,” Catalysis Communications, 4, 259-268, 2003.
Frusteri, F., Freni, S., Chiodo, V., Bonura, G., Donato, S. and Cavallaro, S., “Hydrogen from biomass-derived ethanol to feed a MC fuel cell: A comparison among MgO supported Rh, Pd, Co and Ni catalysts,” Presented in the Technical Program, Pisa, Italy, May 16-19, 2004.
Goula, M. A., Kontou, S. K. and Tsiakaras, P. E., “Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al2O3 catalyst,” Applied Catalysis B, 49, 135-144. 2004.
Haga, F., Nakajima, T., Miya, H. and Mishima, S., “Catalytic properties of supported cobalt catalysts for steam reforming of ethanol,” Catalysis Letters, 48, 223-227 1997.
Haryanto, A., Fernando, S., Murali, N. and Adhikari, S., “Current status of hydrogen production techniques by steam reforming of ethanol: A review,” Energy & Fuels, 19, 2098-2106, 2005.
Idriss, H., “Ethanol reactions over the surfaces of noble metal/cerium oxide Catalysts,” Platinum Metals Review, 48, 105-115, 2004.
Kaddouri, A. and Mazzocchia, C., “A study of the influence of the synthesis conditions upon the catalytic properties of Co/SiO2 or Co/ Al2O3 catalysts used for ethanol steam reforming,” Catalysis Communications, 5, 339-345, 2004.
Li, Z. H., Tian, S. X. , Wang, H. T., and Tian, H. B., “Plasma treatment of Ni catalyst via a corona discharge,” Journal of Molecular Catalysis A: Chemical, 211, 149-153, 2004.
Liu, C. J., Vissokov, G. P., and Jang, B. W. L., “Catalyst preparation using plasma technologies,” Catalysis Today, 72, 173-184, 2002.
Liu, C. J., Yu, K., Zhang, Y. P., Zhua, X., Hea, F., and Eliasson, B., “Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion,” Applied Catalysis B: Environmental, 47, 95-100, 2004
Liu, X. Z., Wang, J. G., Liu, C. J., Hec, F., and Eliasson, B., “Partial oxidation of methane to syngas over Ni-Fe/Al2O3 catalyst with plasma enhanced activity,” Reaction Kinetics and Catalysis Letters, 79, 1, 69-76, 2003.
Liu, C. J., Zou, J., Yu, K., Yu, D., Han, Y., Zhan, J., Ratanatawanate, C., and Jang, B. W. L., “Plasma application for more environmentally friendly catalyst preparation,” Pure and Applied Chemistry, 78, 6, 1227-1238, 2006.
Llorca, J., Piscina, P. R., Sales, J. and Homs, N., “Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts,” Chemical Communications, 641-642, 2001.
Llorca, J., Homs, N., Sales, J. and Piscina, P. R., “Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming,” Journal of Catalysis, 209, 306-317, 2002.
Llorca, J., Piscina, P. R., Dalmon, J. A., Sales, J. and Homs, N., “CO-free hydrogen from steam-reforming of bioethanol over ZnO supported cobalt catalysts: Effect of the metallic precursor,” Applied Catalysis B, 43, 355-369 2003.
Llorca, J., Homs, N., Sales, J., Fierro, J. L. G. and Piscina, P. R., “Effect of sodium addition on the performance of Co-ZnO-based catalysts for hydrogen production from bioethanol,” Jouranl of Catalysis, 222, 470-480, 2004.
Marino, F., Cerrella, E.G., Duhalde, S., Jobbagy, M., and Laborde, M. A., “Hydrogen from steam reforming of ethanol. Characterization and performance of copper-nickel supported catalysts,” International Journal of Hydrogen Energy, 23, 1095, 1998.
Marino, F., Boveri, M., Baronetti, G., and Laborde, M. “Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper-nickel catalysts,” International Journal of Hydrogen Energy, 29, 67-71, 2004.
Marino, F., Boveri, M., Baronetti, G., and Laborde, M., “Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/γ-Al2O3 catalysts. Effect of Ni,” International Journal of Hydrogen Energy, 26, 665-668, 2001.
Mitsuharu, K., Film deposition by plasma techniques, ISBN 3-540-54057 Springer-Verlag Berlin Heidelberg New York, 11-48, 1992.
Momirlan, M. and Veziroglu, T.N., “The properties of hydrogen as fuel tomorrowin sustainable energy system for a cleaner planet,” International Journal of Hydrogen Energy, 30, 795-802, 2005.
Montini, T., Rogatis, L. D., Gombac, V., Fornasiero, P., and Graziani, M., “Rh(1%)@CexZr1-xO2–Al2O3 nanocomposites : Active and stable catalysts for ethanol steam reforming,” Applied Catalysis B: Environmental, 71, 125-134, 2007.
Morgenstern, D. A. and Fornango, J. P., “Low-temperature reforming of ethanol over copper-plated raney nickel: A new route to sustainable hydrogen for transportation,” Energy & Fuels, 19, 1708, 2005.
Ogden, J. M., “Review of small stationary reformers for hydrogen production,” Report to the International Energy Agency, 2001.
Otakar, S., Industrial separators for gas cleaning, Wiley-Interscience Publication, 360-379, 1979.
Parizotto, N. V., Rocha, K. O., Damyanova, S., Passos, F. B., Zanchet, D., Marques C. M. P., and Bueno J. M. C., “Alumina-supported Ni catalysts modified with silver for the steam reforming of methane: Effect of Ag on the control of coke formation,” Applied Catalysis A: General, 330, 12-22, 2007.
Raizer, Y. P., Allen, J. E. and Kisin, V. I., Gas Discharge Physics, ISBN 3-540-19462-2, Springer-Verlag Berlin Heidelberg, New York, 8-33, 1991.
Romm, J., “Testimony for the hearing reviewing the hydrogen fuel and freedom car Initiatives,” 2004.
Sanchez-Sanchez, M.C., Navarro, R.M., and Fierro, J.L.G.,” Ethanol steam reforming over Ni/MxOy–Al2O3 (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production,” International Journal of Hydrogen Energy, 32, 1462-1471, 2007.
Sarmiento, B., Brey, J. J., Viera, I. G., Gonzalez-Elipe, A. R., Cotrino, J., and Rico, V. J., “Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge,” Journal of Power Sources, 169, 140–143, 2007.
Satterfield, C. N., “Heterogeneous catalysis in industrial practice,” Second edition, McGRAW-HILL, 1991.
Sekine, Y., Urasaki, K., Asai, S., Matsukata, M., Kikuchia, E., and Kadob, S., “A novel method for hydrogen production from liquid ethanol/water at room temperature,” Chemical Communications, 78-79, 2005.
Sheng, P. Y., Yee, A., Bowmaker, G. A., and Idriss, H., “H2 production from ethanol over Rh–Pt/CeO2 catalysts: The role of Rh for the efficient dissociation of the carbon–carbon bond,” Journal of Catalysis, 208, 393-403, 2002.
Sheng, P. Y. and Idriss, H., “Ethanol reactions over Au-Rh/CeO2 catalysts. Total decomposition and H2 formation,” Journal of Vacuum Science Technology A, 22, 1652-1658, 2004.
Spilsbury, C., “Hydrogen: Production, supply and distribution. Presented at the Hydrogen Production Workshop,” University of Glamorgan, Pontypridd, Wales, U.K., February 14, 2001.
Srinivas, D., Satyanarayana, C. V. V., Potdar, H. S. and Ratnasamy, P., “Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol,” Applied Catalysis A, 246, 323-334, 2003.
Sun, J., Qiu, X., Wu, F., Zhu, W., Wang, W., and Hao, S., “Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel cell application, “ International Journal of Hydrogen Energy, 29, 1075-1081, 2004.
Therdthianwong, A., Sakulkoakiet, T. and Therdthianwong, S., “Hydrogen production by catalytic ethanol steam reforming,” ScienceAsia, 27, 193-198, 2001.
Toth, M., Domok, M., Raskox, J., Hancz, A. and Erdohelyi, A., “In reforming of ethanol on different supported Rh catalysts,” Presented in the Technical Program, Pisa, Italy, 16-19, 2004.
Trimm, D. L. and Onsan, Z. I., “Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles,” Catalysis Reviews, 43, 31-84, 2001.
Vaidya, P. D. and Rodrigues, A. E., “Insight into steam reforming of ethanol to produce hydrogen for fuel cells,” Chemical Engineering Journal, 117, 39-49, 2006.
Vargas, J. C., Sternenberg, F., Roger, A. C. and Kiennemann, A., “Steam reforming of bioethanol on Co°/Ce-Zr-Co and Co°/Ce-Zr catalysts: A comparison between cobalt integration and cobalt impregnation,” Presented in the Technical Program, Pisa, Italy, 16-19, 2004.
Vasudeva, K., Mitra, N., Umasankar, P., and Dhingra, S. C., “Steam reforming of ethanol for hydrogen production: thermodynamic analysis,” International Journal of Hydrogen Energy, 21, 13-18, 1996.
Velu, S., Satoh, N., Gopinath, C. S. and Suzuki, K., “Oxidative reforming of bio-ethanol over Cu/Ni/Zn/Al mixed oxide catalysts for hydrogen production,” Catalysis Letters, 82, 145-152, 2002.
Wang, J. G., Liu, C. J., Zhang, Y. P., Yu, K. L., Zhu, X. L., and He, F., “Partial oxidation of methane to syngas over glow discharge plasma treated Ni–Fe/Al2O3 catalyst,” Catalysis Today, 89, 183-191, 2004.
Zhang, Y., Chu, W., Cao, W., Luo, C., Wen, X., and Zhou, K., “A plasma-activated Ni/α-Al2O3 catalyst for the conversion of CH4 to syngas,” Plasma Chemistry and Plasma Processing, 20, 1, 2000.
Zhang, Y. P., Ma, P. S., Zhu, X., Liu, C. J., and Shen, Y., “A novel plasma-treated Pt/NaZSM-5 catalyst for NO reduction by methane,” Catalysis Communications, 5, 35-39, 2004.
Zhao, S., Luo, T. and Gorte, R. J., “Deactivation of the water-gas-shift activity of Pd/Ceria by Mo,” Journal of Catalysis, 221, 413-420, 2004.
Zhu, Y. R., Li, Z. H., Zhou, Y. H., Lv, J., and Wang, H. T., “Plasma treatment of Ni and Pt catalysis for partial oxidation of methane,” Reaction Kinetics and Catalysis Letters, 87, 1, 33-41, 2006a.
Zhu, X., Huo, P. P., Zhang, Y. P., and Liu, C. J., “Characterization of argon glow discharge plasma reduced Pt/Al2O3 catalyst,” Industrial & Engineering Chemistry Research, 45, 8604-8609, 2006b.
Zou, J. J., He, H., Cui, L., and Du, H. Y., “Highly efficient Pt/TiO2 photocatalyst for hydrogen generation prepared by a cold plasma method,” International Journal of Hydrogen Energy, 32, 1762-1770, 2007.
Zou, J. J., Liu, C. J., and Zhang, Y. P., “Control of the metal−support interface of NiO-loaded photocatalysts via cold plasma treatment,” Langmuir, 22, 2334, 2006.
赤崎正則, 村岡克紀,渡邊征夫, 狫原建治, 電漿工學的基礎, 復文書局, 9-44, 1990.
阿部東彥, 加田正之, 入三欲, 電漿化學, 復文書局, 15, 1991.
指導教授 張木彬(Moo-Been Chang) 審核日期 2009-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明