博碩士論文 953206024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.145.65.134
姓名 賴信佑(Sin-you Lai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 台灣中部高山氣膠特性與氣流軌跡來源
(Aerosol property and air mass origin at high-alpine mountain in central Taiwan)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中南半島生質燃燒產生大量的氣膠與氣體污染物,經長程傳輸廣泛影響到下風處的空氣品質。台灣正好位於生質燃燒煙霧氣團傳輸的下風處,是觀測中南半島生質燃燒傳輸污染物的最佳地點。為了避免受到地面污染物的干擾,本文從2007年7月到2008年4月在海拔2,862公尺的鹿林站進行大氣氣膠觀測,以瞭解非生質燃燒期間及受到生質燃燒氣團傳輸影響的氣膠特性。鹿林站生質燃燒期間的PM2.5細氣膠濃度為非生質燃燒期間的3倍,PM2.5銨根離子、硫酸根離子和硝酸根離子平均濃度則分別為1.50 µg m-3、4.06 µg m-3和0.50 µg m-3。生質燃燒污染物指標之一的鉀離子平均濃度為非生質燃燒期間的4倍。有機碳(OC)各成分濃度在生質燃燒期間都明顯增加,但元素碳(EC)只有EC1-OP增加。受到生質燃燒影響,氣膠水可溶有機碳的平均濃度為非生質燃燒期間的3.2倍,左旋葡萄糖的平均濃度為非生質燃燒時期的3倍,低分子量二元酸以oxalic acid為優勢物種,平均濃度為非生質燃燒期間的4.5倍。採樣期間氣流來源以逆溯軌跡線分類,並彙整各氣流軌跡分類的氣膠成分和非生質燃燒的氣膠成分比較,發現海洋傳輸所有氣膠成分濃度都是最低的;大陸傳輸氣流PM10-2.5粗粒徑氣膠濃度較高,且鈣離子濃度明顯高於其餘傳輸類型,推測是受到大陸沙塵傳輸影響;傳輸氣流經生質燃燒源區和中國南方PM2.5、鉀離子、oxalic acid以及左旋葡萄糖濃度都明顯較非生質燃燒期間為高。本文以電子顯微鏡觀察生質燃燒氣膠單顆粒影像,發現矩形結晶形態約佔觀測的氣膠數量70~80%,其次為焦球形態,葡萄串形態數量最少且顆粒最小。在鹿林站使用不同粒徑採樣器採集對流雲霧湧升時氣膠發現,PM1與PM2.5粒徑的氣膠成分濃度與平時差異不大,使用PM1與TSP氣膠的成分濃度差異較明顯。雲霧湧升時氣膠成分中以硝酸根離子去除的比例最高為0.41,其次是銨根離子與硫酸根離子。OC和EC的去除效率分別為0.20和0.22。受到雲霧影響時,PM2.5中的銨根離子、硫酸根離子與硝酸根離子濃度會明顯增加,顯示人為污染物隨著雲霧到來。
摘要(英) The tremendous amounts of aerosols and gas pollutants produced in Indo China will affect the downwind region as they are transported in a long distance. Taiwan is one of the best places to observe these transported pollutants as it is located in the downwind region. To circumbent the interference from ground level pollution, this study observed atmospheric aerosols at Mt. Lulin (2,862 m above sea level) from July 2007 to April 2008. The goal is to resolve the differences of aerosol property between biomass burning (BB) and non-biomass burning (NBB) periods. The PM2.5 level is three-fold during BB period as compared to that of NBB period. The PM2.5 ammonium ion, sulfate, and nitrate levels are 1.50 µg m-3, 4.06 µg m-3, and 0.50 µg m-3, respectively. Notably, the PM2.5 potassium ion as one of the markers for BB was four-fold as high as that during NBB period. As for the levels of the resolved carbonaceous fractions, organic carbons (OC) were increased significantly, while only EC1-OP was increased for elemental carbon (EC). Moreover, the mean values of water-soluble OC, levoglucosan, and low molecular-weight diacids during BB period were 3.2, 3, and 4.5 times, respecticely, in contrast to those during NBB period. Trajectory analysis for the air masses during observation period shows that the levels of aerosol components were the lowest for oceanic origin. It also shows that PM10-2.5 and calcium ion from China continent were apparently higher than those from other transport paths probably due to the influence of Asian dust. For the air masses from BB source region via southern China, PM2.5, potassion ion, oxalic acid, and levoglucosan were all higher during BB period than that of NBB period. For the aerosol morphology during BB period, the analysis of scanning electron microscopy reveals that rectangular crystal type is around 70-80% in the number of the observed aerosol particles followed by tar ball type and grape chain aggregrate takes the least. Different size cut samplers were adopted at Mt. Lulin to collect aerosols when in the uprising convective cloud, little difference was found for PM1 and PM2.5 aerosol components; however, a difference was exist for PM1 and TSP. Among aerosol components, the scavenging ratio was highest at 0.41 for nitrate followed by ammonium ion and sulfate. The scavenging ratio for OC and EC were 0.20 and 0.22, respectively. During cloud affecting period, the levels of PM2.5 ammonium ion, sulfate, and nitrate were significantly increased, which indicates anthropogenic pollutants were entrained in the cloud.
關鍵字(中) ★ 高山氣膠
★ 氣膠化學特性
★ 雲霧氣膠
★ 生質燃燒
關鍵字(英) ★ cloud aerosol
★ aerosol chemical property
★ mountain aerosol
★ biomass burning
論文目次 第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 氣膠的來源、分類及粒徑分布 3
2.2 氣膠的特性 4
2.2.1 氣膠的物理特性 4
2.2.2 氣膠的化學特性 4
2.3 高山氣膠特性 6
2.4 生質燃燒 8
2.4.1 生質燃燒的來源 8
2.4.2 生質燃燒的過程 11
2.4.3 生質燃燒的氣體特性 11
2.4.4 生質燃燒氣膠的生成 12
2.4.5 生質燃燒氣膠的光學特性 13
2.4.6 生質燃燒氣膠的化學特性 13
2.4.7 生質燃燒氣膠長程傳輸的特性 20
2.4.8 生質燃燒氣膠的影像分析 21
2.5 雲霧間隙氣膠 24
第三章 研究方法 26
3.1 採樣方法與採樣器 29
3.1.1 採樣地點描述 29
3.1.2 採樣時間 32
3.1.3 採樣儀器介紹 32
3.1.4 採樣濾紙選擇及前處理程序 37
3.2 樣本分析方法 39
3.2.1 氣膠質量濃度分析 39
3.2.2 氣膠水溶性離子分析 40
3.2.3 氣膠碳成分分析 41
3.2.4 氣膠有機成分分析-左旋葡萄糖 43
3.2.5 氣膠有機成分分析-二元酸 46
3.2.6 氣膠水可溶有機碳分析 46
3.2.7 氣膠影像分析 47
3.3 雲霧氣膠的收集 48
3.4 判別生質燃燒發生的方法 48
第四章 結果與討論 51
4.1 鹿林山背景站頂樓與平地氣膠濃度的差異 53
4.1.1 鹿林站頂樓氣膠濃度平行比對 54
4.1.2 鹿林站頂樓與平地氣膠濃度比對 56
4.2 R&P TEOM 1400A監測儀數值的修正 59
4.3 鹿林站觀測期間污染物濃度特性差異 61
4.3.1 氣膠來源確認 61
4.3.2 鹿林站觀測期間環境條件及軌跡線描述 65
4.3.3 鹿林站觀測期間氣膠質量濃度差異 73
4.3.4 鹿林站觀測期間氣膠水溶性離子與前驅氣體特性 76
4.3.5 鹿林站觀測期間氣膠碳成分特性 83
4.3.6 鹿林站觀測期間氣膠有機成分特性 92
4.3.7 鹿林站觀測期間氣膠黑碳濃度與氣體特性 95
4.3.8 鹿林站觀測期間FK/CK的比例 99
4.3.9 鹿林站觀測期間沙塵氣膠特性 100
4.3.10 鹿林站觀測期間氣膠成分佔PM2.5比例的變化 102
4.4 逆溯氣流軌跡分類氣膠特性探討 103
4.4.1 逆溯氣流軌跡線分類 103
4.4.2 各氣流軌跡傳輸類型氣膠質量濃度 104
4.4.3 各氣流軌跡傳輸類型氣膠水溶性離子與前驅氣體 107
4.4.4 各氣流軌跡傳輸類型氣膠碳成分 112
4.4.5 各氣流軌跡傳輸類型氣膠有機成分特性 116
4.4.6 各氣流軌跡傳輸類型離子比值與相關性 120
4.4.7 以Oxalic acid推估生質燃燒的貢獻量 124
4.5 生質燃燒氣膠單顆粒影像分析 126
4.5.1 矩形結晶形態 127
4.5.2 焦球形態 130
4.5.3 小圓球葡萄串形態 132
4.6 雲霧氣膠特性 134
4.6.1 不同粒徑下的雲霧氣膠水溶性離子 135
4.6.2 不同粒徑下的雲霧氣膠碳成分 139
4.6.3 氣膠在雲霧中的去除效率 141
第五章 結論與建議 144
5.1 結論 144
5.2 建議 148
第六章 參考文獻 149
附錄一 口試委員意見答覆 170
附錄二 逆溯氣流軌跡線分類 175
參考文獻 秦若鈺,2004。大氣常見有機物分析及有機/無機混和氣膠含水特性之研究。國立中央大學環境工程研究所碩士論文。
黃希爾,2004。東亞生質燃燒對台灣高山氣膠特性的影響。國立中央大學環境工程研究所碩士論文。
陳鴻文,2006。生質燃燒長程傳輸對台灣中部高山氣膠特性及其指標物影響。國立中央大學環境工程研究所碩士論文。
劉原良,2006。生質燃燒與非生質燃燒期間台灣中部高山氣膠及其前驅氣體特性變化。國立中央大學環境工程研究所碩士論文。
翁國豪,2007。生質燃燒氣膠長程傳輸及高山雲霧間隙氣膠特性之研究。國立中央大學環境工程研究所碩士論文。
Abas, M. R., Oros, D. R., Simoneit, B. R. T., 2004. Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes. Chemosphere, 55, 1089–1095.
Abas, M. R., Simoneit, B. R. T., 1996. Composition of extractable organics matter of air particles from Malaysia:initial study. Atmospheric Environment, 30, 2779–2793.
Aikawa, M., Hiraki, T., Suzuki, M., Tamaki, M., Kasahara, M., 2007. Separate chemical characterizations of fog water, aerosol, and gas before, during, and after fog events near an industrialezed area in Japan. Atmospheric Environment, 41, 1950–1959.
Alfaro, S. C., Gaudichet, A., Rajot, J. L., Gomes, L., Maille, M., Cachier, H., 2003. Variability of aerosol size-resolved composition at an Indian coastal site during the Indian Ocean Experiment (INDOEX) intensive field phase. Journal of Geophysical Research, 108(D8), 4235, doi:10.1029/2002JD002645.
Andreae, M. O., 1983. Soot carbon and excess fine potassium: Long-range transport of combustion-derived aerosols. Science, 220(4602), 1148–1151.
Andreae, M. O., Andreae, T. W., Annegam, H., Beer, J., Cachier, H., le Canut, P., Elbert, W., Maenhaut, W., Salma, I., Wienhold, F. G., Zenker, T., 1998. Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition. Journal of Geophysical Research, 103(D24), 32119-32128, doi:10.1029/98JD02280.
Andreae, M. O., Merlet, P., 2001. Emission of tracer gases and aerosols from biomass burning. Global Biochemical Cycles, 15, 955-966.
Andreae, M. O., Jones, C. D., Cox, P. M., 2005. Strong present-day aerosol cooling implies a hot future. Nature, 435, 1087–1190.
Arimoto, R., Zhang, X. Y., Huebert, B. J., Kang, C. H., Savoie, D. L., Prospero, J. M., Sage, S. K., Schloesslin, C. A., Khaing, H. M., Oh, S. N., 2004. Chemical composition of atmospheric aerosols from Zhenbeitai, China, and Gosan, South Korea, during ACE-Asia. Journal of Geophysical Research, 109(D19), doi:10.1029/2003JD004323.
Bey, I., Jacob, D. J., Logan, J. A., Yantosca, R. M., 2001. Asian chemical outflow to the Pacific in spring : Origins, pathways, and budgets. Journal of Geophysical Research, 106(D19), 23097-23113.
Bin Abas, M. R., Rahman, N. A., Omar, N. Y. M. J., Maah, M. J., Abu Samah, A., Oros, D. R., Otto, A., Simoneit, B. R. T., 2004. Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia. Atmospheric Environment, 38, 4223-4241.
Breon, F. M., 2006. How do aerosols affect cloudiness and climate? Science, 313(5787), 623–624.
Breon, F. M., Tanre, D., Generoso, S., 2002. Aerosol effect on cloud droplet size monitored from satellite. Science, 295(5556), 834–838.
Brown, S. G., Herckes, P., Ashbaugh, L., Hannigan, M. P., Kreidenweis, S. M., Collett, J. L., 2002. Characterization of organic aerosol in Big Bend National Park, Texas. Atmospheric Environment, 36, 5807-5818.
Cachier, H., Jacob, J., Bremond, M. P., Lacaux, J. P., Gaudichet, A., Baudet, J., 1991. Biomass burning in a savanna region of the Ivory Coast. Atmospheric Climatic and Biospheric Implication, 174-180.
Cachier, H., Liousse, C., Buat-Menard, P., Gaudichet, A., 1995. Particulate content of savanna fire emission. Journal of Atmospheric Chemistry, 22, 123–148.
Cadle, S. H., Dasch, J. M., 1988. Wintertime concentrations and sinks of atmospheric particulate carbon at a rural location in northern Michigan. Atmospheric Environment, 22, 1373–1381.
Carrico, C. M., Bergin, M. H., Shrestha, A. B., Dibb, J. E., Gomes, L., Harris, J. M., 2003. The importance of carbon and mineral dust to seasonal aerosol properties in the Nepal Himalaya. Atmospheric Environment, 37, 2811– 2824.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley Jr., J. A., Hansen, J. E., Hofmann, D. J., 1992. Climate forcing by anthropogenic aerosols. Science, 255(5043), 423–430.
Choi, J. C., Lee, M., Chun, Y., Kim, J., Oh, S., 2001. Chemical composition and source signature of spring aerosol in Seoul, Korea. Journal of Geophysical Research, 106(D16), 18067–18674.
Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., Purcell, R. G., 1993. The DRI Thermal/Optical Reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies. Atmospheric Environment, 27A, 1185–1201.
Chung, S. H., Seinfeld, J. H., 2002. Global distribution and climate forcing of carbonaceous aerosols. Journal of Geophysical Research, 107(D19), 4407, doi:10.1029/2001JD001397.
Chylek, P., Lesins, G. B., Videen, G., Wong, J. G. D., Pinnick, R. G., Ngo, D., Klett, J. D., 1996. Black carbon and absorption of solar radiation by clouds. Journal of Geophysical Research, 101(D18), 23365-23371.
Colbeck, I., Harrison, R. M., 1984. Ozone-secondary aerosol- visibility relationships in North-West England. Science of the Total Environment, 34, 87-100.
Countess, R. J., Wolff, G. T., Cadle, S. H., 1980. The Denver 173 winteraerosol: a comprehensive chemical characterization. Journal of the Air Pollution Control Association, 30, 1194–1200.
Cozic, J., Verheggen, B., Mertes, S., Connolly, P., Bower, K., Petzold, A., Baltensperger, U., Weingartner, E., 2007. Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics, 7, 1797-1807.
Cristofanelli, P., Bonasoni, P., Carboni, G., Calzolari, F., Casarola, L., Sajani, S. Z., Santaguida, R., 2007. Aonmalous high ozone concentrations recorded at a high mountain station in Italy in summer 2003. Atmospheric Environment, 41, 1383-1394.
Crutzen, P. J., Andreae, M. O., 1990. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science, 250(4988), 1669–1678.
Crutzen, P. J., Carmichael, G. R., 1993. Modelling the influence of fires on atmospheric chemistry. Emissions from the combustion process in vegetation. In:Crutzen, P. J., Goldammer, J. G. (eds) Fire in the environment:the ecological, atmospheric and climatic importance of vegetation fires, Dahlem Worksh Rep. Environmental Sciences Research Rep 13. Wiley, Chichester, 89-105.
Draxler, R. R., 1999. Hybrid single-particle lagrangian integrated trajectories: Version 0-User’s Guide. NOAA Technical Memorandum ERL ARL-230, Air Resources Laboratory, Sliver Spring, MD, USA.
Duncan, B. N., Bey, I., Chin, M., Mickley, L. J., Fairlie, T. D., Martin, R. V., Matsueda, H., 2003. Indonesian wildfires of 1997: Impact on tropospheric chemistry. Journal of Geophysical Research, 108(D15), 4458, doi:10.1029/2002JD003195..
Edye, L. A., Richards, G. N., 1991. Analysis of condensates from wood smoke: components derived from polysaccharides and lignins. Environment Science and Techology, 25, 1133-1137.
Elias, V. O., Simoneit, B. R. T., Cordeiro, R. C., Turcq, B., 2001. Evaluating levoglucosan as an indicator of biomass burning in Carajas, Amazonia: A comparison to the charcoal record. Geochimica Et Cosmochimica Acta, 65, 267-272.
Engling, G., Herckes, P., Kreidenweis, S. M., Malm, W. C., Collett, J. L., 2006. Composition of the fine organic aerosol in Yosemite National Park during the 2002 Yosemite Aerosol Characterization Study. Atmospheric Environment, 40, 2959-2972.
Facchini, M. C., Decesari, S., Mircea, M., Fuzzi, S., Loglio, G., 2000. Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon content and chemical composition. Atmospheric Environment, 34, 4853-4857.
Falkovich, A. H., Graber, E. R., Schkolnik, G., Rudich, Y., Maenhaut, W., Artaxo, P., 2004. Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods. Atmospheric Chemistry and Physics, 5, 781-797.
Ferek, R. J., Reid, J. S., Hobbs, P. V., Blake, D. R., Liousse, C., 1998. Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. Journal of Geophysical Research, 103(D24), 32107–32118.
Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Osborne, S., Andreae, M. O., 2003. Inoganic and carbonaceous aerosols during the Southern African Regional Science Initiative (SAFARI2000) experiment: Chemical characteristics, physical properties, and emission date for smoke from African biomass burning. Journal of Geophysical Research, 108(D13), 8488, doi:10.1029/2002JD002408.
Forster, C., Wandinger, U., Wotawa, G., James, P., Mattis, I., Althausen, D., Simmonds, P., O'Doherty, S., Jennings, S. G., Kleefeld, C., Schneider, J., Trickl, T., Kreipl, S., Jager, H., Stohl, A., 2001. Transport of boreal forest fire emissions from Canada to Europe. Journal of Geophysical Research, 106(D19), 22,887– 22,906.
Fraser, M. P., Lakshmanan, K., 2000. Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols. Environmental Science and Technology, 34, 4560-4564.
Frenklach, M., 2002. Reaction mechanism of soot formation in flames. Physical Chemistry Chemical Physics, 4, 2028-2037.
Gaudichet, A., Echalar, F., Chatenet, B., Quisefit, J. P., Maligret, G., Cachier, H., Menard, P. B., Artaxo, P., Maenhaut, W., 1995. Trace elements in tropical African savanna biomass burning aerosols. Journal of Atmospheric Chemistry, 22, 19–39.
Glassman, I., 1988. Soot formation in combustion process, in Twenty-Second Symposium (International) on combustion. The Combustion Institute, Pittsburgh, 295.
Graham, B., Falkovich, A. H., Rudich, Y., Maenhaut, W., Guyon, P., Andreae, M. O., 2004. Local and regional contributions to the atmospheric aerosol over Tel Aviv, Israel: a case study using elemental, ionic and organic tracers. Atmospheric Environment, 38, 1593-1604.
Graham, B., Mayol-Bracero, O. L., Guyon, P., Roberts, G. C., Decesari, S., Facchini, M. C., Artaxo, P., Maenhaut, W., Koll, P., Andreae, M. O., 2002. Water-soluble organic compounds in biomass burning aerosols over Amazonia – 1. Characterization by NMR and GC-MS. Journal of Geophysical Research, 107(D20), 8047, doi:10.1029/2001JD000336.
Gray, H. A., Cass, G. R., Huntzicker, J. J., Heyerdahl, E. K., Rau, J. A., 1986. Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles. Environmental Science and Technology, 20, 580–589.
Guazzotti, S. A., Suess, D. T., Coffee, K. R., Quinn, P. K., Bates, T. S., Wisthaler, A., Hansel, A., Ball, W. P., Dickerson, R. R., Neususs, C., Crutzen, P. J., Prather, K. A., 2003. Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion. Journal of Geophysical Research, 108 (D15), 4485, doi:10.1029/2002JD003277.
Hallberg, A., Ogren, J. A., Noone, K. J., Heintzenberg, J., Berner, A., Solly, I., Kruisz, C., Reischl, G., Fuzzi, S., Facchini, M. C., Hansson, H. C., Wiedensohler, A., Svenningsson, I. B., 1992. Phase partitioning for different aerosol species in fog. Tellus, Ser. B, 44, 545– 555,
Hallberg, A., Noone, K. J., Ogren, J. A., Svenningsson, I. B., Flossmann, A., Wiedensohler, A., Hansson, H. C., Heintzenberg, J., Anderson, T. L., Arends, B. G., Maser, R., 1994. Phase partitioning of aerosol particles in clouds at Kleiner Feldberg. Journal of Atmospheric Chemistry, 19, 107– 127.
Hawthorne, S. B., Miller, D. J., Langenfeld, J. J., Krieger, M. S., 1992. PM10 high volume collection and quantitation of semi- and nonvolatile phenols, methoxylated phenols, alkanes and polycyclic aromatic hydrocarbons from winter urban air and their relationship to wood smoke emission. Environment Science and Technology, 26, 2251–2262.
Heintzenberg, J., Leck, C., 1994. Seasonal variation of the atmospheric aerosol near the top of the marine boundary layer over Spitsbergen related to the Arctic sulfur cycle. Tellus Series B – Chemical and Physical Meteorology, 46, 52-67.
Henning, S., Weingartner, E., Schwikowski, M., Gaggeler, H. W., Gehrig, R., Hinz, K. P., Trimborn, A., Spengler, B., Baltensperger U., 2003. Seasonal variation of water-soluble ions of the aerosol at the high-alpine site Jungfraujoch (3,580 m asl). Journal of Geophysical Research, 108(D1), 4030, doi:10.1029/2002JD002439.
Hitzenberger, R., Berner, A., Giebl, H., Deobesch, K., Kasper-Giebl, A., Loeflund, M., Urban, H., Puxbaum, H., 2001. Black carbon (BC) in alpine aerosols and cloud water - concentrations and scavenging efficiencies. Atmospheric Environment, 35, 5135-5141.
Hobbs, P. V., Sinha, P., Yokelson, R. J., Christian, T. J., Blake, D. R., Gau, S., Kirchstetter, T. W., Novakov, T., Pilewskie, P., 2003. Evolution of gases and particles from a savanna fire in South Africa. Journal of Geophysical Research, 108(D13), 8485, doi:10.1029 /2002JD002352.
Hobbs, P. V., Radke, L. F., 1969. Cloud condensation nuclei from a simulated forest fire. Science, 163(3864), 279–280.
Horvath, H., 1993. Atmospheric light absorption - A review. Atmospheric Environment, 27A, 293-317.
Horvath, L., Sutton, M. A., 1998. Long-term record of ammonia and ammonium concentrations at K-Puszta, Hungary. Atmospheric Environment, 32, 339–344.
Intergovernmental Panel on Climate Change (IPCC), 2007. Climate Change 2007 : The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Jaffe, D., Bertschi, I., Jaegle, L., Novelli, P., Reid, J. S., Tanimoto, H., Vingarzan, R., Westphal, D. L., 2004. Long-range transport of Siberian biomass burning emissions and impact on surface ozone in western North America. Geophysical Research Letters, 31.
Jenkins, B. M., Jones, A. D., Turn, S. Q., Williams, R. B., 1996. Emission factors for polycyclic aromatic hydrocarbons from biomass burning. Environmental Science and Technology, 30, 2462-2469.
Jimenez, J., Wu, C. F., Claiborn, C., Gould, T., Simpson, C. D., Larson, T., Liu, L. J. S., 2006. Agricultural burning smoke in eastern Washington - part 1: Atmospheric characterization. Atmospheric Environment, 40, 639-650.
Kaneyasu, N., Igarashi, Y., Sawa, Y., Takahashi, H., Takada, H., Kumata, H., Holler, R., 2007. Chemical and optical properties of 2003 Siberian forest fire smoke observed at the summit of Mt. Fuji, Japan. Journal of Geophysical Research, 112(D13), 214, doi:10.1029/2007JD008544.
Kang, C. M., Lee, H. S., Kang, B. W., Lee, S. K., Sunwoo, Y., 2004. Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea. Atmospheric Environment, 38, 4749-4760.
Kawamura, K., Sakaguchi, F., 1999. Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research, 104(D3), 3501–3509.
Kiehl, J. T., Rodhe, H., 1995. Modeling geographical and seasonal forcing due to aerosols. In: Charlson, R. J., Heintzenberg, J., Eds., Aerosol Forcing of Climate. Wiley, New York, 281–296.
Kim, E., Hopke, P. K., Edgerton, E. S., 2004. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment, 38, 3349-3362.
Koutrakls, P., Sloulas, C., Ferguson, S. T., Wolfson, J. M., 1993. Development and evaluation of a glass honeycomb denuder/filter pack system to collect atmospheric gases and particles. Environmental Science and Technology, 27, 2497-2501.
Krivacsy, Z., Hoffer, A., Sarvari, Z., Temesi, D., Baltensperger, U., Nyeki, S., Weingartner, E., Kleefeld, S., Jennings, S. G., 2001. Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmospheric Environment, 35, 6231–6244.
Kuhlbusch, T. A. J., Crutzen, P. J., 1996. Black carbon, the global carbon cycle, and atmosphere carbon dioxide. Biomass burning and Global Change, 161-169.
Kulshrestha, U. C., Jain, M., Sekar, R., Vairamani, M., Sarkar, A. K., Parashar, D. C., 2001. Chemical characteristics and source apportionment of aerosols over Indian Ocean during INDOEX-1999. Current Science, 80, 180-185.
Lahaye, J., Prado, G., 1981. Morphology and internal structure of soot and carbon blacks, in Particulate Carbon: Formation During Combustion, edited by D. C. Siegla and G. W. Smith, 33–55, Plenum, New York.
Lammel, G., Novakov, T., 1995. Water nucleation properties of carbon black and diesel soot particles. Atmospheric Environment, 29, 812-821.
Langford, A. O., Fehsenfeld, F. C., Zachariassen, J., Schimel, D. S., 1992. Gaseous ammonia fluxes and background concentrations in terrestrial ecosystems of the United States. Global Biogeochemical Cycles, 6, 459–483.
Lara, L. L., Artaxo, P., Martinelli, L. A., Camargo, P. B., Victoria, R. L., Ferraz, E. S. B., 2005. Properties of aerosol from sugar-cane burning emission in Southeastern Brazil. Atmospheric Environment, 39, 4627-4637.
Larson, T. V., Koenig, J. Q., 1994. Wood smoke: Emissions and noncancer respireatory effects. Annual Review Public Health, 15, 133-156.
Levine, J. S., Cahoon, D. R., Costulis, J. A., Couch, R. H., Davis, R. E., Garn, P. A., Jalink Jr., A., McAdoo, J. A., Robinson, D. M., Roettker, W. A., Sasamoto, W. A., Sherrill, R. T., Smith, K. D., 1997. FireSat and the global monitoring of biomass burning. In: Levine, J.S. (Ed.), Biomass Burning and Global Change, MIT Press, Cambridge, MA, pp. 107–129.
Li, J., Posfai, M., Hobbs, P. V., Buseck, P. R., 2003. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research, 108(D13), 8484, doi:10.1029/2002JD002310.
Li, W., Hopke, P. K., 1993. Initial size distribution and hygroscopicity of indoor combustion aerosol particles. Aerosol Science and Technology, 19, 305-316.
Liousse, C., Devaux, C., Dulac, F., Cachier, H., 1995. Aging of savanna biomass burning in southern Africa: Individual particle characterization of atmospheric aerosols and savanna fire samples. Journal of Atmospheric Chemistry, 22, 1–17.
Liu, H. Y., Chang, W. L., Oltmans, S. J., Chan, L. Y., Harris, J. M., 1999. On springtime high ozone events in the lower troposphere from Southeast Asian biomass burning. Atmospheric Environment, 33, 2403-2410.
Liu, H. Y., Jacob, D. J., Bey, I., Yantosca, R. M., Duncan, B. N., Sachse, G. W., 2002. Transport pathways for Asian pollution outflow over the Pacific: Interannual and season variations. Journal of Geophysical Research, 108(D20), 8786, doi:10.1029/2002JD003102.
Lohmann, U., Feichter, J., 2005. Global indirect aerosol effects: a review. Atmospheric Chemistry and Physics, 5, 715-737.
Mangelson, N. F., Lewis, L., Joseph, J. M., Cui, W., Machir, J., Williams, N. W., Eatough, D. J., Rees, L. B., Wilkerson, T., Jensen, D. T., 1997. The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in cache valley, utah. AWMA, 47, 167-175.
Marenco, F., Bonasoni, P., Calzolari, F., Ceriani, M., Chiari, M., Cristofanelli, P., D’Alessandro, A., Fermo, P., Lucarelli, F., Mazzei, F., Nava, S., Piazzalunga, A., Prati, P., Valli, G., Vecchi, R., 2006. Characterization of atmospheric aerosols at Monte Cimone, Italy, during summer 2004: Source apportionment and transport mechanisms. Journal of Geophysical Research, 111(D24), doi:10.1029/2006JD007145.
Martins, J. V., Artaxo, P., Liousse, C., Reid, J. S., Hobbs, P. V., Kaufman, Y. J., 1998a. Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil. Journal of Geophysical Research, 103(D24), 32041– 32050.
Martins, J. V., Hobbs, P. V., Weiss, R. E., Artaxo, P., 1998b. Sphericity and morphology of smoke particles from biomass burning in Brazil. Journal of Geophysical Research, 103(D24), 32051– 32057.
Matsumoto, K., Nagao, I., Tanaka, H., Miyaji, H., Iida, T., Ikebe, Y., 1998. Seasonal characteristics of organic and inorganic species and their size distributions in atmospheric aerosols over the northwest Pacific Ocean. Atmosphere Environment, 32, 1931–1946.
Mckenzie, L. M., Hao, W. M., Richards, G. N., Ward, D. E., 1995. Measurement and modeling of air toxins from smoldering combustion of biomass. Environmental Science and Technology, 29, 2047-2054.
Morawska, L., Bofinger, N. D., Kosic, L., Nwankwoala, A., 1998. Submicron and supermicron particles from diesel vehicle emissions. Environmental Science and Technology, 32, 2033-2042.
Morawska, L., Jamriska, M., Bofinger, N. D., 1997. Size characteristics and aging of the environmental tobacco smoke. The Science of the Total Environmental, 196, 43-55.
Narukawa, M., Kawamura, K., Takeuchi, N., Nakajima, T., 1999. Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires. Geophysical Research Letter, 26, 3101–3104.
Niemi, J. V., Tervahattu, H., Vehkamaki, H., Kulmala, M., Koskentalo, T., Sillampaa, M., 2004. Characterization and source identification of a fine particle episode in Finland. Atmospheric Environment, 38, 5003–5012.
Novakov, T., Corrigan, C. E., 1996. Cloud condensation nucleus activity of the organic component of biomass smoke particles. Geophysical Research Letter, 23, 2141-2144.
Nyeki, S., Baltensperger, U., Schwikowski, M., 1996. The diurnal variation of aerosol chemical composition during the 1995 summer campaign at the Jungfraujoch high-alpine station (3454 m), Switzerland. Journal of Aerosol Science, 27, 105–106.
Ojanen, C., Pakkanen, T., Aurela, M., Makela, T., Merilainen, J., Hillamo, R., Aarnio, P., Koskentalo, T., Hamekoski, K., Rantanen, L., Lappi, M., 1998. Size distribution, composition and sources of inhalable particles in the Helsinki metropolitan area (in Finnish with an abstract in English). Paakaupunkiseudun julkaisusarja C7. Helsinki Metropolitan Area Council (YTV), Helsinki.
Osada, K., Kido, M., Nishita, C., Matsunaga, K., Iwasaka, Y., Nagatani, M., Nakada, H., 2002. Changes in ionic constituents of free tropospheric aerosol particles obtained at Mt. Norikura (2770 m a.s.l.), central Japan, during the Shurin period in 2000. Atmospheric Environment, 36, 5469–5477.
Pakkanen, T. A., Loukkola, K., Korhonen, C. H., Aurela, M., Makela, T., Hillamo, R. E., Aarnio, P., Koskentalo, T., Kousa, A., Maenhaut, W., 2001. Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area. Atmospheric Environment, 35, 5381–5391.
Patterson, E. M., McMohan, C. K., 1984. Absorption characteristics of forest fire particulate matter. Atmospheric Environment, 18, 2541–2551.
Penner, J. E., Dickinson, R. E., Oneill, C. A., 1992. Effects of aerosol from biomass burning on the global radiation budget. Science, 256(5062), 1432-1434.
Penner, J. E., Dong, X. Q., Chen, Y., 2004. Observational evidence of a change in radiative forcing due to the indirect aerosol effect. Nature, 427, 231–234.
Posfai, M., Anderson, J. R., Buseck, P. R., Shattuck, T. W., Tindale, N. W., 1994. Constituents of a remote Pacific marine aerosol: A TEM study. Atmospheric Environment, 28, 1747-1756.
Posfai, M., Simonics, R., Li, J., Hobbs, P. V., Buseck, P. R., 2003. Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. Journal of Geophysical Research, 108(D13), 8483, doi:10.1029/2002JD002291.
Puxbaum, H., Wopenka, B., 1984. Chemical composition of nucleation and accumulation mode particles collected in Vienna, Austria. Atmospheric Environment, 18, 573–580.
Raes, F., Dingenen, R. V., Vignati, E., Wilson, J., Putaud, J. P., Seinfeld, J. H., Adams, P., 2000. Formation and cycling of aerosols in the global troposphere. Atmosphere Environment, 34, 4215–4240.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., Rosenfeld, D., 2001. Atmosphere-Aerosols, climate, and the hydrological cycle. Science, 294(5549), 2119-2124.
Rattray, G., Sievering, H., 2001. Dry deposition of ammonia, nitric acid, ammonium, and nitrate to alpine tundra at Niwot Ridge, Colorado. Atmospheric Environment, 35, 1105–1109.
Roberts, G. C., Andreae, M. O., Maenhaut, W., Fernandez-Jimenez, M. T., 2001. Composition and sources of aerosol in a central African rain forest during the dry season. Journal of Geophysical Research, 106(D13), 14423-14434.
Rogers, C. F., Hidson, J. G., Zeilinska, B., Tanner, R. L., Hallett, J., Watson, J. G., 1991. Cloud condensation nuclei from biomass burning, in Global Biomass Burning : Atmospheric, Climatic, and Biospheric Implications, 431-438.
Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R., Simoneit, B. R. T., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment, 27A, 1309–1330.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., Simoneit, B. R. T., 1998. Sources of fine organic aerosol: 9. Pine, oak and synthetic log combustion in residential fireplaces. Environmental Science and Technology, 32, 13–22.
Rosenfeld, D., 2006. Aerosols, clouds, and climate. Science, 312(5778), 1323–1324.
Ruellan, S., Cachier, H., Caudichet, A., Masclet, P., Lacaux, J. P., 1999. Airborne aerosols over Africa during the experiment for regional sources and sinks of oxidants (EXPRESSO). Journal of Geophysical Research, 104(D23), 30673–30690.
Ryu, S. Y., Kwon, B. G., Kim, Y. J., Kim, H. H., Chun, K. J., 2006. Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea. Atmospheric Research, 84, 362-373.
Saarikoski, S., Sillanpaa, M., Sofiev, M., Timonen, H., Saarnio, K., Teinela, K., Karppinen, A., Kukkonen, J., Hillamo, R., 2007. Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: Experimental and modelling assessments. Atmospheric Environment, 41, 3577-3589.
Salam, A., Bauer, H., Kassin, K., Ullah, S. M., Puxbaum, H., 2003. Aerosol chemical characteristics of an island site in the Bay of Bengal (Bhola-Bangladesh). Journal of Environmental Monitoring, 5, 483–490.
Sandberg, D., Martin, R., 1975. Particle sizes in slash fire smoke. Portland, OR, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.
Sanhueza, E., Crutzen, P. J., Fernandez, E., 1999. Production of boundary layer ozone from tropical American Savannah biomass burning emissions. Atmospheric Environment, 33, 4969-4975.
Santos, C. Y. M., Azevedo, D. D., Neto, F. R. D., 2004. Atmospheric distribution of organic compounds from urban areas near a coal-fired power station. Atmospheric Environment, 38, 1247-1257.
Schauer, J. J., Kleeman, M. J., Cass, G. R., Simoneit, B. R. T., 1999. Measurement of emissions from air pollution sources. 1. C1 through C29 organic compounds from meat charbroiling. Environment Science and Technology, 33, 1566–1577.
Seinfeld, J. H., Pandis, S. N., 1998. Atmospheric chemistry and physics : From air pollution to climate change. Wiley-Interscience, New York, pp. 808-823.
Sellegri, K., Laj, P., Dupuy, R., Legrand, M., Preunkert, S., Putaud, J. P., 2003. Size-dependent scavenging efficiencies of multicomponent atmospheric aerosols in clouds. Journal of Geophysical Research, 108(D11), 4334, doi:10.1029/2002JD002749.
Shafizadeh, F., 1984. The chemistry of pyrolysis and combustion. In: Rowell, R. (Ed), Chemistry of solid wood, Advances in Chemistry Series, 207. American Chemical Society. Washington, DC, 489-529.
Shah, J. J., Johnson, R. L., Heyerdahl, E. K., Huntzicker, J. J., 1986. Carbonaceous Aerosol at Urban and Rural Sites in the United States. Journal of Air Pollution Control Association, 36, 254–257.
Simoneit, B. R. T., Rogge, W. F., Mazurek, M. A., Standley, L. J., Hildemann, L. M., Cass, G. R., 1993. Ligin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion. Environment Science and Technology, 27, 2533-2541.
Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F., Cass, G. R., 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmosphere Environment, 33, 173–182.
Simoneit, B. R. T., Elias, V. O., 2000. Organic tracers from biomass burning in atmospheric particulate matter over the ocean. Marine Chemistry, 69, 301–312.
Sinha, P., Hobbs, P. V., Yokelson, R. J., Bertschi, I. T., Blake, D. R., Simpson, I. J., Gao, S., Kirchstetter, T. W., Novakov, T., 2003. Emissions of trace gases and particles from savanna fires in southern Africa. Journal of Geophysical Research, 108(D13), 8487, doi:10.1029/2002JD002325.
Skaar, C., 1984. Wood-water relationships. In: Rowell, R. (Ed), Chemistry of Solid Wood, Advances in Chemistry Series, 207. American Chemical Society, Washington, DC, 127-172.
Solomon, P. A., Moyers, J. L., 1984. Use of a High Volume Dichotomous Virtual Impactor to Estimate Light Extinction due to Carbon and Related Species in the Phoenix Haze. Science of the Total Environment, 36, 169-175.
Standley, L. J., Simoneit, B. R. T., 1990. Preliminary correlation of organic molecular tracers in residential wood smoke with the source of fuel. Atmospheric Environment, 24B, 67-73.
Streets, D. G., Yarber, K. F., Woo, J. H., Carmichael, G. R., 2003. Biomass burning in Asia:annual and seasonal estimates and atmospheric emissions. Global Biogeochemical cycles, 17, 1099.
Sutherland, E. R., Martin, R. J., 2003. Airway inflammation in chronic obstructive pulmonary disease: Comparisons with asthma. Journal of Allergy and Clinical Immunology, 112, 819-827.
Sutherland, E. R., 2004. Outpatient treatment of chronic obstructive pulmonary disease: Comparisons with asthma. Journal of Allergy and Clinical Immunology, 114, 715-724.
Turns, S. R., 1996. An introducetion to combustion. Concepts and Applications McGuaw hill, New York, 291-297.
U.S. Environmental Protection Agency, 1998. Guideline on Speciated Particulate Monitoring, prepared by J. C. Chow, et al., Desert Research Institute, NV, for N. Frank, et al., US EPA, OAQPS RPT.
Valaoras, G., Huntzicker, J. J., White, W. H., 1988. On the contribution of motor vehicles to the Athenian “Nephos”: An application of factor signitres. Atmpspheric Environment, 22, 965–971.
Wagner, H. G., 1981. Soot formation: An overview, in Particulate Carbon: Formation During Combustion, edited by D. C. Siegla and G. W. Smith, pp. 1– 29, Plenum, New York.
Wang, Y., Zhuang, G., Chen, S., An, Z., Zheng, A., 2007. Characteristics and sources of formic, acetic and oxalic acids in PM2.5 and PM10 aerosols in Beijing, China. Atmospheric Research, 84, 169-181.
Weingartner, E., Burtscher, H., Baltensperger, U., 1997. Hygroscopic properties
of carbon and diesel soot particles. Atmospheric Environment, 31, 2311 – 2327.
Wilson, T. R. S., 1975. Salinity and the major elements of sea water. Chemical Oceanography, 1, 2nd edtion., J. P. Riley and G. Skittow (eds.), Academic, Orlando, Fla.
Wu, W. Z., Wang, J. X., Zhao, G. F., You, L., 2002. The emission soot of biomass fuels combustion as a source of endocrine disrupters. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances and Environmental Engineering, 37, 579-600.
Yamasoe, M. A., Artaxo, P., Miguel, A. H., Allen, A. G., 2000. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: Water-soluble species and trace elements. Atmopheric Environment, 34, 1641-1653.
Yeatman, S. G., Spokes, L. J., Dennis, P. F., Jickells T. D., 2001. Comparisons of aerosol nitrogen isotopic composition at two polluted coastal sites. Atmosphere Environment, 35, 1307–1320.
Zdrahal, Z., Oliveira, J., Vermeylen, R., Claeys, M., Maenhaut, W., 2002. Improved method for quantifying levoglucosan and related monosaccharide anhydrides in atmospheric aerosols and application to samples from urban and tropical locations. Environment Science and Technology, 36, 747–753.
指導教授 李崇德(Chung-Te Lee) 審核日期 2009-1-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明