博碩士論文 963206021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.133.144.140
姓名 王盈婷(Ying-ting Wang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 多孔性吸附介質的合成及其對重金屬吸附之研究
(Synthesis and characterization of porous materials for the adsorption of toxic heavy metal ions)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於具有結構整齊和一定孔徑分布,因此多孔性吸附介質可當作分子篩對環
境中的汙染物進行吸附或催化,但受限於其孔徑大小多分布於微孔範圍,因此本
研究自行合成多孔性吸附介質,以最具穩定性之水熱合成的方法,改變其合成條
件,試圖改質多孔性吸附介質表面。控制有機模板合成條件、水熱合成條件、移
除模板合成條件、過濾與乾燥方法合成條件、控制pH 合成條件等,將不同條件
合成出的多孔性吸附介質進行儀器表面特性分析,探討不同變因對多孔性吸附介
質合成之影響。並利用重金屬Cu2+、Pb2+、Ni2+進行吸附實驗。多孔性吸附介質
合成實驗結果顯示,使用含碳鏈數越多的三甲基氨鹽作為模板,可使多孔性吸附
介質比表面積變大、孔洞分佈較平均;相反的,若要得到較大的孔洞體積,可以
選擇NTMA(NonylTrimethylAmmoniumBromide)作為模板合成多孔性吸附介質。
水熱條件的時間與溫度均對合成多孔性吸附介質造成影響,水熱時間越長,可以
使孔洞大小分布範圍拉大,但其表面積會明顯下降,水熱溫度越高,可讓其比表
面積越大。移除模板溫度控制在500-7000C 範圍,結果顯示移除模板溫度越高,
可得較大孔洞體積,但比表面積明顯變小。超過7000C 會使多孔性吸附介質結構
崩解。使用透析膜和冷凍乾燥替代傳統抽氣過濾和烘箱乾燥,可以合成較大孔洞
體積之多孔性吸附介質。控制pH=9-12 合成多孔性吸附介質,結果顯示在pH=9
可以合成出較大孔徑之多孔性吸附介質。實驗結果顯示控制pH=5 與等離子強度
條件下進行吸附實驗,可得到較佳吸附效果。本實驗依不同條件所合成之多孔性
吸附劑,由於其表面積的不同,使其吸附效果產生差異,明顯顯示表面積越大,
對重金屬之飽和吸附量越大,多孔性吸附介質對Pb2+的吸附量也較Cu2+與Ni+佳。
摘要(英) Mesoporous materials have great potential for environmental
processes,but many applications require the materials to exhibit specific
surface chemistry and binding sites.The unique surface and pore structure
of ordered mesoporous materials make them promising for applications in
adsorption and catalysis.This study described the effective synthesis of
mesoporous materials with uniform pore arrangement and high surface
area for the adsorption of different metal ions such as Pb2+,Cu2+ and
Ni+.This work involved synthesis of mesoporous materials using several
template and hexadecytrimethylammoniumbromide(HDTMA) was found
to be the effective template resulting into higher surface area and uniform
small pore size.We also discuss the effect of preparation method and
temperature to vary the pore size and surface area.To get the larger pore
size,the calcination of removing the template at higher temperature is
adopted.The mesoporous materials are characterized by FT-IR , XRD,
SEM,TEM and BET.The XRD pattern indicates that the structure of
porous materials is hexagonal.The characteristic peaks in FT-IR for Si-O
is observed around 1082 cm-1 and for CH2 and CH3 is around 2805-2918
cm-1.The adsorption experiments of Pb2+,Cu2+ and Ni+ show that the
adsorption capacity of Pb2+ is higher than that of Cu2+ and Ni+ indicating
that the ion exchange property is mainly dependent on pore size
distribution and surface area of the porous adsorbent materials.
關鍵字(中) ★ 重金屬
★ 吸附
★ 表面特性
★ 多孔性吸附介質
關鍵字(英) ★ mesoporous materials
★ adsorption
★ heavy mental
★ surface characteristics
論文目次 目錄
目錄............................................................................................................. I
圖目錄........................................................................................................V
表目錄...................................................................................................... XI
第一章 前 言...........................................................................................1
1-1 研究緣起.....................................................................................1
1-2 研究目的與內容.........................................................................3
第二章 文獻回顧.......................................................................................4
2-1 多孔性吸附介質發展.................................................................4
2-2 多孔性吸附介質特性.................................................................5
2-2-1 合成多孔性吸附介質之途徑及方法..............................5
2-2-2 合成多孔性吸附介質之形成機制..................................9
2-2-3 多孔性材料簡介............................................................12
2-3 多孔性吸附介質的應用............................................................16
2-3-1 合成多孔性吸附介質之相關研究.................................18
2-4 重金屬汙染...............................................................................23
2-4-1 重金屬來源與危害.........................................................23
2-4-2 去除重金屬之方法........................................................26
2-4-3 以吸附去除重金屬之相關研究....................................28
II
2-5 吸附理論...................................................................................30
2-5-1 吸附模式........................................................................31
第三章 實驗內容、設備、材料及方法................................................34
3-1 實驗內容...................................................................................34
3-2 實驗設備...................................................................................37
3-3 實驗藥品材料...........................................................................41
3-4 多孔性吸附介質合成實驗........................................................42
3-4-1 有機模板條件實驗.........................................................42
3-4-2 水熱合成條件實驗.........................................................43
3-4-3 移除模板條件實驗.........................................................45
3-4-4 過濾與乾燥方法實驗.....................................................46
3-4-5 pH 控制實驗...................................................................47
3-5 實驗分析及前處理....................................................................51
3-5-1 TEM(Transmission electron microscopy).......................51
3-5-2 SEM(Scanning electron microscopy) .............................51
3-5-3 XRD(X-ray diffraction) ..................................................52
3-5-4 BET(Brunauer-Emmett-Teller) .......................................53
3-5-5 FTIR(Fourier transformed infrared spectra) ...................53
3-5-6 AAS(Atomic Absorption Spectrometer).........................54
3-6 重金屬吸附實驗........................................................................55
3-6-1 重金屬吸附條件實驗.....................................................55
III
a. pH 的影響.....................................................................55
b. 吸附時間的影響.........................................................55
c. 吸附劑量的影響..........................................................55
d. 離子強度的影響.........................................................56
3-6-2 批次式重金屬吸附實驗.................................................56
第四章 結果與討論................................................................................58
4-1 合成多孔性吸附介質之比表面積及孔洞分佈.......................58
4-1-1 不同有機模板之影響....................................................59
4-1-2 不同水熱合成條件之影響............................................64
4-1-3 不同移除模板條件之影響............................................70
4-1-4 不同過濾與乾燥條件之影響........................................75
4-1-5 控制pH 條件之影響.....................................................78
4-2 合成多孔性吸附介質之光譜鑑定...........................................82
4-2-1 X 光繞射光譜 (XRD)....................................................82
4-2-2 紅外光譜 (FTIR) ..........................................................84
4-3 合成多孔性吸附介質之電子顯微鏡影像鑑定.......................87
4-3-1 穿透式電子顯微鏡 (TEM)...........................................87
4-3-2 掃描式電子顯微鏡 (SEM-EDS)..................................89
a. SEM ..............................................................................89
b. EDS...............................................................................96
IV
4-4 合成多孔性吸附介質之界達電位...........................................99
4-5 吸附條件對吸附重金屬離子之影響.....................................101
4-5-1 pH 的影響.....................................................................101
a. 對Cu2+的影響...........................................................101
b. 對Pb2+的影響...........................................................105
4-5-2 吸附時間的影響..........................................................109
4-5-3 吸附劑量的影響..........................................................110
4-5-4 離子強度的影響..........................................................111
4-6 以不同條件合成之多孔性吸附介質吸附重金屬.................114
4-6-1 Cu+2 之等溫吸附模式...................................................114
4-6-2 Pb+2 之等溫吸附模式...................................................119
4-6-3 Ni+1 之等溫吸附模式...................................................123
4-7 自行合成之多孔性吸附介質與市售吸附劑之比較.............127
第五章 結論與建議..............................................................................129
5-1 結論.........................................................................................129
5-2 建議.........................................................................................132
參考文獻.................................................................................................133
V
圖目錄
圖2-1 利用不同界面活性劑和矽酸鹽溶液自組成之不同孔洞材料示
意圖.............................................................................................................7
圖2-2 多孔性吸附介質之形成機制示意圖........................................10
圖2-3 多孔性吸附介質之形成機制示意圖 ......................................11
圖2-4 多孔性吸附介質形成機制簡單示意圖....................................12
圖2-5 MFI 結構圖................................................................................13
圖2-6 MFI 孔洞結構示意圖................................................................13
圖2-7 M41S 系列中孔洞結構示意圖.................................................14
圖2-8 HMS 分子篩的氫鍵作用示意圖..............................................15
圖2-9 常見多孔性吸附介質示意圖....................................................15
圖3-1 實驗架構圖................................................................................36
圖3-2 合成多孔性吸附介質流程圖....................................................48
圖3-3 合成多孔性吸附介質流程圖....................................................49
圖3-4 重金屬吸附實驗流程圖............................................................57
圖4-1 ZC16 之氮氣等溫吸附曲線......................................................61
圖4-2 ZC14 之氮氣等溫吸附曲線......................................................61
圖4-3 ZC12 之氮氣等溫吸附曲線......................................................61
圖4-4 ZC9 之氮氣等溫吸附曲線........................................................61
VI
圖4-5 ZC1 系列之BJH 累積孔洞分佈圖...........................................63
圖4-6 ZC1 系列之BJH 孔洞分佈圖...................................................63
圖4-7 ZC16-H、D 系列之氮氣等溫吸附曲線...................................65
圖4-8 ZC16-H、D 系列之BJH 累積孔洞分佈圖..............................66
圖4-9 ZC16-H、D 系列之BJH 孔洞分佈圖......................................66
圖4-10 ZC16-6、8、10 系列之氮氣等溫吸附曲線..........................68
圖4-11 ZC16-6、8、10 系列之BJH 累積孔洞分佈圖.....................69
圖4-12 ZC16-6、8、10 系列之BJH 孔洞分佈圖.............................69
圖4-13 ZC9-105、6、7 系列之氮氣等溫吸附曲線..........................71
圖4-14 ZC9-105、6、7 系列之BJH 累積孔洞分佈圖.....................72
圖4-15 ZC9-105、6、7 系列之BJH 孔洞分佈圖.............................72
圖4-16 ZC9-155、7 系列之氮氣等溫吸附曲線................................74
圖4-17 ZC9-155、7 系列之BJH 累積孔洞分佈圖...........................74
圖4-18 ZC9-155、7 系列之BJH 孔洞分佈圖...................................75
圖4-19 ZC9、16-C 系列之氮氣等溫吸附曲線..................................76
圖4-20 ZC9、16-C 系列之BJH 累積孔洞分佈圖.............................77
圖4-21 ZC9、16-C 系列之BJH 孔洞分佈圖.....................................77
圖4-22 ZC16-P09、10 系列之氮氣等溫吸附曲線............................79
圖4-23 ZC16-P09、10 系列之BJH 累積孔洞分佈圖.......................80
VII
圖4-24 ZC16-P09、10 系列之BJH 孔洞分佈圖...............................80
圖4-25 ZC16 之XRD 圖譜..................................................................82
圖4-26 多孔性吸附劑之XRD圖(a)無規則排列的MCM-41(b)規則排
列之MCM-41(c)MCM-48(d)MCM-50(e)八面體結構..........................83
圖4-27 ZC16 未移除模板之FTIR 光譜.............................................85
圖4-28 ZC16 去除模板後之FTIR 光譜.............................................85
圖4-29 ZC16-6 未移除模板之FTIR 光譜..........................................85
圖4-30 ZC16-6 去除模板後之FTIR 光譜..........................................86
圖4-31 ZC16-8 未去除模板之FTIR 光譜..........................................86
圖4-32 ZC16-8 去除模板後之FTIR 光譜..........................................86
圖4-33 (a) TEM 影像圖..........................................................................87
圖4-33 (b) TEM 影像圖..........................................................................88
圖4-34 ZC16 之SEM 圖,倍率分別為(1)200K、(2)100K、(3)50K、
(4)1000......................................................................................................89
圖4-35 為(1)ZC16、(2)ZC14、(3)ZC9 在相同倍率100K 下之SEM
圖...............................................................................................................90
圖4-36 (1)倍率50K 之ZC16-12H、(2)倍率10K 之ZC16-12H、..92
(3)倍率5K 之ZC16-12H、(4)倍率50K 之ZC16-04D、....................92
(5)倍率10K 之ZC16-04D、(6)倍率5K 之ZC16-04D。....................92
VIII
圖4-37 (1)倍率10K 之ZC9-105、(2)倍率5K 之ZC9-105、..........93
(3)倍率10K 之ZC9-155、(4)倍率5K 之ZC9-155、..........................93
(5)倍率10K 之ZC9-157、(6)倍率5K 之ZC9-157。..........................93
圖4-38 (1)倍率10K 之ZC16-C、(2)倍率5K 之ZC16-C、............94
(3)倍率1K 之ZC16-C、(4)倍率10K 之ZC16、.................................94
(5)倍率5K 之ZC16、(6)倍率1K 之ZC16。.......................................94
圖4-39 (1)倍率50K 之ZC16-P09、(2)倍率10K 之ZC16-P09、...95
(3)倍率50K 之ZC16-P10、(4)倍率10K 之ZC16-P10。....................95
圖4-40 ZC9 之EDS 圖譜....................................................................97
圖4-41 ZC16 之EDS 圖譜..................................................................98
圖4-42 不同有機模板合成多孔性吸附介質之界達電位..................99
圖4-43 不同多孔性吸附介質之界達電位........................................100
圖4-44 Cu+2 在不同pH 所存在的形式.............................................102
圖4-45 不同有機模板合成條件之多孔性吸附劑在不同pH 中對Cu+2
的去除率.................................................................................................103
圖4-46 不同水熱合成條件之多孔性吸附劑在不同pH 中對Cu+2的去
除率.........................................................................................................103
圖4-47 不同過濾與乾燥合成條件之多孔性吸附劑在不同pH 中對
Cu+2 的去除率........................................................................................104
IX
圖4-48 不同pH 合成條件之多孔性吸附劑在不同pH 中對Cu+2 的去
除率.........................................................................................................104
圖4-49 Pb+2 在不同pH 所存在的形式.............................................106
圖4-50 不同模板合成條件之多孔性吸附劑在不同pH 中對Pb+2 的去
除率.........................................................................................................106
圖4-51 不同水熱合成條件之多孔性吸附劑在不同pH 中對Pb+2 的去
除率.........................................................................................................107
圖4-52 不同過濾與乾燥合成條件之多孔性吸附劑在不同pH 中對
Pb+2 的去除率.........................................................................................107
圖4-53 不同pH 合成條件之多孔性吸附劑在不同pH 中對Pb+2 的去
除率.........................................................................................................108
圖4-54 吸附時間對去除率的影響....................................................109
圖4-55 吸附劑量對去除率的影響....................................................110
圖4-56 控制離子強度對ZC16 吸附Cu+2 的影響............................112
圖4-57 控制離子強度對ZC16-12H 吸附Cu+2 的影響...................112
圖4-58 控制離子強度對ZC16-P09 吸附Cu+2 的影響....................113
圖4-59 不同模板合成條件對吸附Cu+2 之等溫吸附曲線...............116
圖4-60 不同水熱合成條件對吸附Cu+2 之等溫吸附曲線...............116
圖4-61 不同去模板合成條件對吸附Cu+2 之等溫吸附曲線...........117
X
圖4-62 不同過濾和乾燥合成條件對吸附Cu+2 之等溫吸附曲線...117
圖4-63 不同pH 合成條件對吸附Cu+2 之等溫吸附曲線................118
圖4-64 不同模板合成條件對吸附Pb+2 之等溫吸附曲線...............120
圖4-65 不同去模版合成條件對吸附Pb+2 之等溫吸附曲線...........121
圖4-66 不同過濾與乾燥合成條件對吸附Pb+2 之等溫吸附曲線...121
圖4-67 不同pH 合成條件對吸附Pb+2 之等溫吸附曲線................122
圖4-68 不同模板合成條件對吸附Ni+1 之等溫吸附曲線...............124
圖4-69 不同去模板合成條件對吸附Ni+1 之等溫吸附曲線...........125
圖4-70 不同過濾與乾燥合成條件對吸附Ni+1 之等溫吸附曲線...125
圖4-71 不同pH 合成條件對吸附Ni+1 之等溫吸附曲線.................126
圖4-72 ZC9-106 與市售吸附劑對吸附Pb+2 之等溫吸附曲線........128
XI
表目錄
表2-1 不同機制合成多孔性介質之文獻整理....................................20
表2-2 改變水熱條件合成多孔性介質之文獻整理............................21
表2-3 不同材料合成多孔性介質之文獻整理....................................22
表2-4 全球排放重金屬趨勢(1000 metric tonnes/year).......................23
表2-5 重金屬在各產業界來源............................................................25
表2-6 各式吸附劑吸附銅之文獻整理................................................29
表2-7 不同吸附劑吸附重金屬之文獻整理........................................29
表3-1 不同合成條件之樣品編號........................................................35
表3-2 不同波長下有機官能基............................................................38
表3-3 實驗藥品材料理化特性表........................................................41
表3-4 合成多孔性吸附介質之合成條件............................................50
表3-5 火焰式原子吸收光譜儀操作參數............................................54
表4-1 ZC1 系列樣品之表面積和孔洞大小........................................62
表4-2 ZC16-H、D 系列樣品之表面積和孔洞大小...........................67
表4-3 ZC16-6、8、10 系列樣品之表面積和孔洞大小....................68
表4-4 ZC9-10、15、5、6、7 系列樣品之表面積和孔洞大小........70
表4-5 ZC9、16-C 系列樣品之表面積和孔洞大小............................76
表4-6 ZC9、16-C 系列樣品之表面積和孔洞大小............................79
XII
表4-7 合成多孔性吸附劑之比表面積及孔洞大小............................81
表4-8 ZC9 之EDS 分析結果..............................................................97
表4-9 ZC16 之EDS 分析結果............................................................98
表4-10 控制離子強度對Langmuir 等溫吸附曲線參數影響..........113
表4-11 Cu+2 之Langmuir 等溫吸附模式參數..................................118
表4-12 Pb+2 之Langmuir 等溫吸附模式參數...................................122
表4-13 Ni+1 之Langmuir 等溫吸附模式參數...................................126
表4-14 Pb+2 之Langmuir 等溫吸附模式參數...................................128
表4-15 市售吸附劑之BET 分析數據..............................................128
參考文獻 參考文獻
1. Mohan, D.; Pittman, C. U., Activated carbons and low cost
adsorbents for remediation of tri- and hexavalent chromium from
water. Journal of Hazardous Materials 2006, 137, (2), 762-811.
2. McBain, J.W., The Sorption of Gases and Vapours by Solid,
Rutledge and Sons, London, Ch . 5 1932.
3. Corma, A., From microporous to mesoporous molecular sieve
materials and their use in catalysis. Chemical Reviews 1997, 97, (6),
2373-2419.
4. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J.
S., Ordered Mesoporous Molecular-Sieves Synthesized by a
Liquid-Crystal Template Mechanism. Nature 1992, 359, (6397),
710-712.
5. Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Feng, P. Y.; Gier, T. E.;
Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D.,
Generalized Synthesis of Periodic Surfactant Inorganic
Composite-Materials. Nature 1994, 368, (6469), 317-321.
6. Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J., Templating of
Mesoporous Molecular-Sieves by Nonionic Polyethylene Oxide
Surfactants. Science 1995, 269, (5228), 1242-1244.
7. Tanev, P. T.; Pinnavaia, T. J., A Neutral Templating Route to
Mesoporous Molecular-Sieves. Science 1995, 267, (5199), 865-867.
8. Sun, T.; Ying, J. Y., Synthesis of microporous transition metal oxide
molecular sieves with bifunctional templating molecules.
134
Angewandte Chemie-International Edition 1998, 37, (5), 664-667.
9. Antonelli, D. M.; Nakahira, A.; Ying, J. Y., Ligand-assisted liquid
crystal templating in mesoporous niobium oxide molecular sieves.
Inorganic Chemistry 1996, 35, (11), 3126-3136.
10. Antonelli, D. M.; Ying, J. Y., Synthesis and characterization of
hexagonally packed mesoporous tantalum oxide molecular sieves.
Chemistry of Materials 1996, 8, (4), 874-881.
11. Antonelli, D. M.; Ying, J. Y., Synthesis of a stable hexagonally
packed mesoporous niobium oxide molecular sieve through a novel
ligand-assisted templating mechanism. Angewandte
Chemie-International Edition in English 1996, 35, (4), 426-430.
12. Chen, F. X.; Huang, L. M.; Li, Q. Z., Synthesis of MCM-48 using
mixed cationic-anionic surfactants as templates. Chemistry of
Materials 1997, 9, (12), 2685-+.
13. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.;
Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of
mesoporous silica with periodic 50 to 300 angstrom pores. Science
1998, 279, (5350), 548-552.
14. Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D.,
Nonionic triblock and star diblock copolymer and oligomeric
surfactant syntheses of highly ordered, hydrothermally stable,
mesoporous silica structures. Journal of the American Chemical
Society 1998, 120, (24), 6024-6036.
15. Valange, S.; Guth, J. L.; Gabelica, Z., Synthesis strategies leading to
pure alumina mesophases in aqueous solution. Mesoporous
Molecular Sieves 1998, 117, 517-518.
135
16. Huo, Q. S.; Leon, R.; Petroff, P. M.; Stucky, G. D., Mesostructure
Design with Gemini Surfactants - Supercage Formation in a
3-Dimensional Hexagonal Array. Science 1995, 268, (5215),
1324-1327.
17. Steel, A.; Carr, S. W.; Anderson, M. W., N-14 Nmr-Study of
Surfactant Mesophases in the Synthesis of Mesoporous Silicates.
Journal of the Chemical Society-Chemical Communications 1994,
(13), 1571-1572.
18. Monnier A ,Cooperation formation of inorganic organic interfaces in
the synthesis of silicate mesostructure.Science 1993 ,(261),1299 –
1303.
19. Matijasic, A.; Voegtlin, A. C.; Patarin, J.; Guth, J. L.; Huve, L.,
Room-temperature synthesis of silicate mesoporous materials. An in
situ study of the lamellar to hexagonal phase transition. Chemical
Communications 1996, (10), 1123-1124.
20. Oye, G.; Sjoblom, J.; Stocker, M., Synthesis, characterization and
potential applications of new materials in the mesoporous range.
Advances in Colloid and Interface Science 2001, 89, 439-466.
21. Firouzi, A.; Kumar, D.; Bull, L. M.; Besier, T.; Sieger, P.; Huo, Q.;
Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Nicol, J.; Margolese,
D.; Stucky, G. D.; Chmelka, B. F., Cooperative Organization of
Inorganic-Surfactant and Biomimetic Assemblies. Science 1995, 267,
(5201), 1138-1143.
22. Lesley Smart and Elaine Moore, 1st ed. 1992.
23. Sayari, A.; Hamoudi, S.; Yang, Y., Applications of pore-expanded
mesoporous silica. 1. Removal of heavy metal cations and organic
136
pollutants from wastewater. Chemistry of Materials 2005, 17, (1),
212-216.
24. Beck, J. S.; Vartuli, J. C., Recent advances in the synthesis,
characterization and applications of mesoporous molecular sieves.
Current Opinion in Solid State & Materials Science 1996, 1, (1),
76-87.
25. Zhao, X. S.; Lu, G. Q., Modification of MCM-41 by surface
silylation with trimethylchlorosilane and adsorption study. Journal
of Physical Chemistry B 1998, 102, (9), 1556-1561.
26. Zhao, X. S.; Lu, G. Q., Modification of MCM-41 by surface
silylation with trimethylchlorosilane and adsorption study. Journal
of Physical Chemistry B 1998, 102, (9), 1556-1561.
27. Herron,N.;Farneth,W.E.,The Design and Synthesis of Heterogeneous
Catalyst Systems. Advanced Materials 1996,8, No.12
28. Chen, N.Y. ;Garwood, W.E.; Dwyer, F.G.,Shape Selective Catalysis
in Industrial applications, Chap. 2, Second Edit., New York.
29. Zhao, W.; Li, Q. Z., Synthesis of nanosize MCM-48 with high
thermal stability. Chemistry of Materials 2003, 15, (22), 4160-+.
30. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J.
S., Ordered Mesoporous Molecular-Sieves Synthesized by a
Liquid-Crystal Template Mechanism. Nature 1992, 359, (6397),
710-712.
31. Cundy, C.S.; Cox, P.A.,The hydrothermal synthesis of zeolites:
Precursors,intermediates and reaction mechanism Microporous and
Mesoporous Materials 2005 (82) 1–78.
137
32. Zoe A.D.; Lethbridge, J. J.; Williams, R. I.; Walton,K. E.; Evans, C
W. S., Methods for the synthesis of large crystals of silicate zeolites.
Microporous and Mesoporous Materials2005 (79) 339–352.
33. Bambrough, C. M.; Slade, R. C. T.; Williams, R. T.; Burkett, S. L.;
Sims, S. D.; Mann, S., Sorption of nitrogen, water vapor, and
benzene by a phenyl-modified MCM-41 sorbent. Journal of Colloid
and Interface Science 1998, 201, (2), 220-222.
34. Branton, P. J.; Hall, P. G.; Sing, K. S. W., Physisorption of Nitrogen
and Oxygen by Mcm-41, a Model Mesoporous Adsorbent. Journal
of the Chemical Society-Chemical Communications 1993, (16),
1257-1258.
35. Raimondo, M.; Perez, G.; Sinibaldi, N.; DeStefanis, A.; Tomlinson,
A. A. G., Mesoporous M41S materials in capillary gas
chromatography. Chemical Communications 1997, (15), 1343-1344.
36. Nooney, R. I.; Kalyanaraman, M.; Kennedy, G.; Maginn, E. J.,
Heavy metal remediation using functionalized mesoporous silicas
with controlled macrostructure. Langmuir 2001, 17, (2), 528-533.
37. Yoshitake, H.; Yokoi, T.; Tatsumi, T., Adsorption behavior of
arsenate at transition metal cations captured by amino-functionalized
mesoporous silicas. Chemistry of Materials 2003, 15, (8),
1713-1721.
38. Lam, K. F.; Yeung, K. L.; McKay, G., An investigation of gold
adsorption from a binary mixture with selective mesoporous silica
adsorbents. Journal of Physical Chemistry B 2006, 110, (5),
2187-2194.
138
39. Corma, A.; Navarro, M. T.; Pariente, J. P., Synthesis of an Ultralarge
Pore Titanium Silicate Isomorphous to Mcm-41 and Its Application
as a Catalyst for Selective Oxidation of Hydrocarbons. Journal of the
Chemical Society-Chemical Communications 1994, (2), 147-148.
40. Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J. M., Heterogeneous
Catalysts Obtained by Grafting Metallocene Complexes onto
Mesoporous Silica. Nature 1995, 378, (6553), 159-162.
41. Kozhevnikov, I. V.; Sinnema, A.; Jansen, R. J. J.; Pamin, K.;
Vanbekkum, H., New Acid Catalyst Comprising Heteropoly Acid on
a Mesoporous Molecular-Sieve Mcm-41. Catalysis Letters 1995, 30,
(1-4), 241-252.
42. Evans, J.; Zaki, A. B.; El-Sheikh, M. Y.; El-Safty, S. A.,
Incorporation of transition-metal complexes in functionalized
mesoporous silica and their activity toward the oxidation of aromatic
amines. Journal of Physical Chemistry B 2000, 104, (44),
10271-10281.
43. Kim, S. S.; Zhang, W. Z.; Pinnavaia, T. J., Catalytic oxidation of
styrene by manganese(II) bipyridine complex cations immobilized in
mesoporous Al-MCM-41. Catalysis Letters 1997, 43, (1-2),
149-154.
44. Liu, C. J.; Li, S. G.; Pang, W. Q.; Che, C. M., Ruthenium porphyrin
encapsulated in modified mesoporous molecular sieve MCM-41 for
alkene oxidation. Chemical Communications 1997, (1), 65-66.
45. Mohana,D.;Charles, U. ;Pittman, J., Activated carbons and low cost
adsorbents for remediation of tri- and hexavalent chromium from
water. Journal of Hazardous Materials 2006 (137) 762–811
139
46. McKay,G.; Ho ,Y.S. ; Ng , J.C.Y., Biosorption of copper from
wastewaters: a review. Separation And Purification Methods
1993,28(1), 87-125.
47. Ahluwalia,S.S.;Goyal,D.,Microbial and plant derived biomass for
removal of heavy metals from wastewater. Bioresource Technology
2007 (98) 2243–2257.
48. Prado, L. L. L.; Nascente, P. A. P.; De Castro, S. C.; Gushikem, Y.,
Aluminium oxide grafted on silica gel surface: Study of the thermal
stability, structure and surface acidity. Journal of Materials Science
2000, 35, (2), 449-453.
49. Schmidt, R.; Junggreen, H.; Stocker, M., Synthesis of a mesoporous
MCM-48 material containing only tetrahedral aluminium. Chemical
Communications 1996, (7), 875-876.
50. Llewellyn, P. L.; Grillet, Y.; Rouquerol, J., Effect of T(Iii) Zoning in
Mfi-Type Zeolites on the Adsorption-Isotherm and Differential
Enthalpies of Adsorption at 77-K. Langmuir 1994, 10, (2), 570-575.
51. Llewellyn, P. L.; Pellenq, N.; Grillet, Y.; Rouquerol, F.; Rouquerol,
J., Quasi-Equilibrium Adsorption Gravimetry of Water on Mfi-Type
and Fer-Type Zeolites and on an Afi-Type Aluminophosphate.
Journal of Thermal Analysis 1994, 42, (5), 855-867.
52. Selvam, P.; Bhatia, S. K.; Sonwane, C. G., Recent advances in
processing and characterization of periodic mesoporous MCM-41
silicate molecular sieves. Industrial & Engineering Chemistry
Research 2001, 40, (15), 3237-3261.
140
53. Gregg, S. J.;Sing ,K. S. W., Adsorption, Surface Area and
Porosity. Academic Press Inc., London,1982.
54. Issabayeva,G.;Aroua,M.K.;Meriam,N.;Sulaiman,N.,Removal of
lead from aqueous solutions on palm shell activated carbo,Bioresource
Technology 2006, 97, 2350-2355.
55. Wang,X.S.;Qin,Y.,Equilibrium sorption isotherms for of Cu2+ on rice
bran, Process Biochemistry2005, 40, 677-680.
56. McKay,G;Ho,Y.S. ; Ng, J.C.Y., Biosorption of Copper from Waste
Waters: A Review, Separation & Purification Reviews1999, 28,(1),
87-125.
57. Sarabjeet, S. A.; Dinesh, G., Microbial and plant derived biomass for
removal of heavy metals from wastewater, Bioresource Technology
2007,98,2243-2257.
指導教授 李俊福(Jiunn-fwu Lee) 審核日期 2009-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明