博碩士論文 963206022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.224.68.59
姓名 林筱倫(Hsiao-lun Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 大宗矽甲烷儲存場所防爆特性研究
(Evaluation of Blast Wall Design Criteria of Bulk Silane Storage Facility)
相關論文
★ 氫氟酸玻璃薄化製程之安全評估與風險控制★ 台北縣毒性化學物質運作場所災害潛勢分析
★ 潛盾隧道作業安全分析★ ISO 50001能源管理系統建置機制研究
★ 廢棄物管理e化系統設計與應用★ 印刷電路板製程高溫烘烤設備失效模式與效應分析研究
★ 承攬風險管理★ 光電業組立製程人因風險探討
★ 濺鍍耙材噴砂作業粉塵及噪音暴露危害評估★ 光電廠增光膜製程健康風險評估與控制
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 高階製程安全管理架構
★ 工業化學品整合管理制度探討★ 半導體業承攬作業風險評估
★ 職業安全衛生績效管理機制★ 事件樹於職業安全風險評估應用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 矽甲烷為半導體、平面顯示器及太陽能電池三大產業廣泛使用的特殊氣體,近年,隨著國內光電、半導體產業不斷擴建,加上太陽能產業迅速興起,矽甲烷使用量大幅提升,氣體供應的方式也由小鋼瓶逐漸轉為450升Y鋼供應。然而,矽甲烷在常溫、常壓下具有自燃特性,一旦發生外洩,極可能引發重大工安事故,過去國內、外均曾發生因矽甲烷外洩所引發的火災及爆炸案例。
  國內、外法規針對矽甲烷供氣系統及儲存場所設置,已制定相關安全規範,依據國內公共危險物品及可燃性高壓氣體設置標準暨安全管理辦法,可燃性高壓氣體儲存場所面積大於25平方公尺,儲存場所與易燃固體保護物距離至少為15公尺。但是,國內既設工廠要符合上述安全距離並不容易,因此,若儲存場所與保護物之間設有防爆牆者,則安全距離可縮減為一半。然而,目前國內法規僅針對防爆牆與儲存場所的設置距離,以及不同防爆牆材質所需最小高度及厚度予以規範,並未針對防爆牆的面積進行明確定義。
  國外氫氣爆炸特性研究證實,防爆牆的正確設置可有效消減牆後過壓的情形,但是,對於矽甲烷相關研究相當有限。若使用實驗的方式不但耗時、昂貴且具有高度危險性,因此,本研究利用FLACS電腦模擬軟體,針對矽甲烷儲存場所,矽甲烷外洩可能造成的蒸氣雲爆炸進行後果模擬,探討不同防爆牆形狀、防爆牆設置地點和矽甲烷釋放量之間的關係,目的在於提升大宗矽甲烷儲存場所的安全。
摘要(英) Because of the highly successful development of the semiconductor and liquid crystal display industries and the rapidly emerging solar cell manufacturing in Taiwan, the consumption of silane has increased tremendously over the years. To meet the increasing demand, existing and new fabrication facilities have shifted from the traditional gas cabinet to bulk special gas supply system with cylinders 10 times larger than regular cylinders in volume. A distinct advantage of the so-called Y-cylinder, in addition to ample supply, is the reduced frequency of cylinder change since a notable percentage of accidents involving silane is caused by improper handling or erroneous cylinder change procedures.
  However, consequences of an accidental release of silane from Y-cylinders are much more severe than regular cylinders. Ignition and/or subsequent explosion of silane releases are difficult to predict because of the variations in gas yard geometry and the ambient conditions since it is required by Taiwan regulations to locate the gas yard outdoors. In addition, according to Public Hazardous Substances and Flammable Pressurized Gases Establishment Standards and Safety Control Regulations, a safety distance of 15 meters has to be maintained between an adjacent building and the hazardous substances if the floor area of the storage facility is greater than 25 square meters. Since such a safety distance is not readily available in most high-tech facilities, a compromised solution to reduce the safety distance by one half is the installation of blast wall between the building and the hazardous substances. Unfortunately, no specific design criteria such as shape, size, location, etc. have been provided by the competent authority.
  This study presents computer simulation results of silane release and subsequent explosion from the pressure relief device of a Y-cylinder. The Flame Acceleration Simulator is used in this study because of its flexibility in handling plant geometry and fuels. It is assumed that explosion characteristics of the released silane can be described by vapor cloud explosion. Effects of the blast wall’s shapes, dimensions and locations on reducing overpressure of the silane blast wave are studied in detail. To broaden the scope of this study, two silane release rates are employed. It is hoped that results of this study can be used to improve the design and installation of blast walls in bulk silane storage facilities.
關鍵字(中) ★ 蒸氣雲爆炸
★ FLACS
★ 防爆牆
★ Y鋼
★ 矽甲烷
關鍵字(英) ★ Flame Acceleration Simulator
★ Blast Walls
★ Y-cylinder
★ Silane
★ Vapor Cloud Explosion
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 ix
致謝 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究方法及預期成果 4
第二章 矽甲烷火災、爆炸特性與儲存場所安全規範 6
2.1 矽甲烷危害特性 6
2.2 矽甲烷燃燒及爆炸特性 8
2.3 爆炸過壓對建築物影響 10
2.4 國內、外矽甲烷洩漏案例 12
2.4.1 國內太陽能廠矽甲烷漏火災、爆炸案例 12
2.4.2 國外矽甲烷漏案例 13
2.5 矽甲烷洩漏的安全距離 16
2.6 易燃性氣體釋放質量估算 18
2.7 矽甲烷儲存場所設置規範 19
2.8 國內外法規對於儲存場所及防爆牆設置規範 21
第三章 矽甲烷儲存場所火災爆炸後果模擬 24
3.1 蒸氣雲爆炸數值模擬 24
3.1.1 經驗模式 25
3.1.2 現象模型 26
3.1.3 數值模式 27
3.2 FLACS-v9.0電腦模擬軟體 30
3.3 FLACS模擬狀況設定 31
3.3.1 假設條件 33
3.3.2 Y鋼不同內部壓力之模擬設定 34
3.3.3 防爆牆形狀探討之模擬設定 36
3.3.4 矽甲烷洩漏爆炸對建築物影響之假設條件 39
3.3.5 最佳防爆牆面積之假設條件 41
第四章 結果與討論 43
4.1 Y鋼內部壓力與爆炸過壓 43
4.2 防爆牆形狀探討 46
4.2.1 2公尺高度防爆牆,爆炸過壓的影響範圍 47
4.2.2 不同防爆牆高度爆炸消減結果 49
4.2.3 不同防爆牆形狀對爆炸消減結果 53
4.3 矽甲烷洩漏爆炸對建築物影響 58
4.3.1 矽甲烷洩漏爆炸對建築物高度的影響 58
4.3.2 矽甲烷洩漏爆炸對建築物長度的影響 60
4.4 最佳防爆牆面積 63
4.4.1 儲存場所與防爆牆距離為2.5公尺,形狀A所需的最小防爆牆面積 63
4.4.2 儲存場所與防爆牆距離為2.5公尺,形狀B所需的最小防爆牆面積 65
4.4.3 儲存場所與防爆牆距離為5.0公尺,形狀A 66
4.4.4 儲存場所與防爆牆距離為5.0公尺,形狀B 66
第五章 結論與建議 71
5.1 結論 71
5.2 建議 73
參考文獻 75
參考文獻 [1] 行政院勞工委員會,化學品全球調和制度GHS介紹網站。
[2] 劉君毅,矽甲烷(Silane)特性及風險預防措施,經濟部工業局第29期工業安全科技,2002年。
[3] FM Global Property Loss Prevention Data Sheets, 7-42, Guidelines for Evaluating the Effects of Vapor Cloud Explosions Using TNT Equivalency Method, Factory Mutual Insurance Company, May 2008.
[4] 林瑞玉、呂信忠,矽甲烷廠務系統危害辨識與量化風險分析技術手冊,工業技術研究院與環境安全衛生技術發展中心,新竹,2003。
[5] F. Tamanini, J. L. Chaffee, Ignition Characteristics of Releases of 100% Silane, SEMATECH Technology Transfer 96013067A-ENG, March 1996.
[6] ANSI/CGA G-13, Storage and Handling of Silane and Silane Mixtures, 2nd Edition, Compressed Gas Association, Inc., 2006.
[7] 蔡筱雲、沈俊成、陳政任、E. Y. Ngai、黃百平、官嘉明,矽甲烷外洩之危害測試,行政院環境保護署及南區毒災應變諮詢中心簡訊,第27期,23-27頁,2006年6月。
[8] Safetygram-26 Silane, Air Products, 1993.
http://www.airproducts.com/Responsibility/EHS/ProductSafety/ProductSafetyInformation/safetygrams.htm
[9] 行政院勞工委員會,勞工安全設施規則,2007年02月。
[10] M. Visokey, K. Meissner, J. Beasley, M. Viera, N. Chowdhury, Comparative Analysis of a Silane Cylinder Delivery System and a Bulk Silane Installation (ESH B001), SEMATECH Technology Transfer 95092976A-ENG, October 31, 1995.
[11] F. Tamanini, J. L. Chaffee, R. L. Jambor, Reactivity and Ignition Characteristics of Silane/Air Mixtures, Process Safety Progress, Vol. 17, pp. 243–258, 1998.
[12] N. Chowdhury, Silane Safety Study: Compressed Gas Association Performs Large Scale Tests, SSA Journal , Vol. 11, pp. 47 – 57, 1997.
[13] E. Y. Ngai, Silane Safety/Lessons Learned and Accident Prevention.
http://www.bnl.gov/pv/files/pdf/IEEE_May2008_Silane_Tutorial.pdf
[14] D. J. Peng, Y. Y. Chang, H. C. Wu, C. C. Tsaur, J. R. Chen, Failure Analysis of a Silane Gas Cylinder Valve: A Case Study, Engineering Failure Analysis , Vol. 15, pp. 275–280, 2008.
[15] Y. Y. Chang, D. J. Peng, H. C. Wu, C. C. Tsaur, C. C. Shen, H. Y. Tsai, J. R. Chen, Revisiting of a Silane Explosion in a Photovoltaic Fabrication Plant, Process Safety Progress, Vol. 26, pp. 155–158, June 2007.
[16] E. Y. Ngai, K. P. P. Huang, J. R. Chen, C. C. Shen, H. Y. Tsai, S. K. Chen, S. C. Hu, P. Y. Yeh, C. D. Liu, Y. Y. Chang, D. J. Peng, and H. C. Wu, Field Tests of Release, Ignition,and Explosion from Silane Cylinder Valve and Gas Cabinet, Process Safety Progress, Vol. 26, pp. 265–282, December 2007.
[17] J. R. Chen, H. Y. Tsai, S. K. Chen, H. R. Pan, S. C. Hu, C. C. Shen, C. M. Kuan, Y. C. Lee, C. C. Wu, Analysis of a Silane Explosion in a Photovoltaic Fabrication Plant, Process Safety Progress, Vol. 25, pp. 237–244, September 2006.
[18] T. Roigelstad, J. Mosovsky, J. Valdes, C. P. Lichtenwalner, Silane Safety Improvement Project S71 Final Report, SEMATECH Technology Transfer 94062405A-ENG, June 30, 1994.
[19] V. M. Fthenakis, Summary Review of Silane Ignition Studies, Brookhaven National Laboratory, New York.
http://www.bnl.gov/pv/abs/abs_149.asp
[20] T. Hirano, Accidental Explosions of Semiconductor Manufacturing Gases in Japan, Journal of Loss Prevention in the Process Industries, Vol. 17, pp. 29–34, 2004.
[21] Risk Management Program Guidance for Offsite Consequence analysis, Chemical Emergency Preparedness and Prevention Office of the United States Environmental Protection Agency, EPA 550-B-99-009, 1999.
[22] M. Epstein, H. K. Fauske, Total Flammable Mass and Volume Within a Vapor Cloud Produced by a Continuous Fuel-gas or Volatile Liquid-fuel Release, Journal of Hazardous Materials, Vol. 147, pp. 1037–1050, 2007.
[23] SEMI S18-1102, Environmental, Health, and Safety Guideline for Silane Family Gases Handling, Semiconductor Equipment and Materials International, Semiconductor Equipment and Materials International, SEMI, 2002.
[24] 行政院勞工委員會,勞工安全衛生設施規則第185 條之1 第3 款所稱「室內」及「室外」之解釋函。
[25] 葉宇光,事件樹於職業安全風險評估研究,國立中央大學,2009年01月。
[26] R. W. Schefer, M. Groethe, W. G. Houf, G. Evans, Experimental Evaluation of Barrier Walls for Risk Reduction of Unintended Hydrogen Releases, International Journal of Hydrogen Energy, Vol. 34, pp. 1590–1606, 2009.
[27] T. Nozu, R. Tanaka, T. Ogawa, Y. Sakai, Numerical Simulation of Hydrogen Explosion Test with Barrier Wall for Blast Mitigation.
http://conference.ing.unipi.it/ichs2005/Papers/130028.pdf
[28] 諏訪好英、米澤健次、小野佳之,水素ガスの爆発事故対策に関する研究(その1)-水素ステーションの爆発事故に対する障壁設置の効果,大林組技術研究所報,2004。
[29] 小野佳之、諏訪好英、米澤健次,水素爆風圧の伝播特性に関する数値シミュレーション,大林組技術研究所報,2004。
[30] A. M. Remennikov, T. A. Rose, Predicting the Effectiveness of Blast Wall Barriers Using Neural Networks, International Journal of Impact Engineering, Vol. 34, pp. 1907–1923, 2007.
[31] 內政部消防署,公共危險物品及可燃性高壓氣體設置標準暨安全管理辦法,2008年10月。
[32] 內政部消防署,可燃性高壓氣體儲存場所防爆牆設置基準,2005年08月。
[33] X. Q. Zhou, H. Hao, Prediction of Airblast Loads on Structures Behind a Protective Barrier, International Journal of Impact Engineering, Vol. 35 , pp. 363–375, 2008.
[34] J. Jiang, Z. Liu, A. K. Kim, Comparison of Blast Prediction Models for Vapor Cloud Explosion, National Research Council Canada, May 2001.
[35] C.J. Lea, A Review of the State-of–the-Art in Gas Explosion Modelling, Health & Safety Laboratory, February 2002.
[36] 張玉若,液化石油氣事故機理及模擬評價方法,工業安全與環保,2006年03月。
[37] O. R. Hansen, J. Renoult, M. P. Sherman, S. Tieszen, Validation of FLACS-Hydrogen CFD Consequence Prediction Model Against Large Scale H2 Explosion Experiments in the FLAME Facility, Proceedings of 1st International Conference on Hydrogen Safety, Italy, September 2005.
[38] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishers, New York , 1980.
[39] FLACS V8 User’s Guide, GexCon, 2008.
http://www.gexcon.com/
[40] 易逸波、邱奕龍、吳世忎,半導體廠房內可燃性氣體之火災爆炸模擬,國立雲林科技大學環境與安全衛生工程系學刊,第6期,2005年。
指導教授 于樹偉(Shuh-woei Yu) 審核日期 2009-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明