博碩士論文 88341002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.137.181.69
姓名 黃世敏(Shih-min Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 非極性式水性聚胺基甲酸酯-脲酯之合成、結構與物性
(Synthesis, structure and physical properties of non-polar waterborne poly(urethane-urea)s)
相關論文
★ PU橡膠血液相容性之探討★ PU發泡體的結構與性質
★ POLY IP發泡體結構與性質之探討★ 非極性式poly-ip based PU軟質段末端改質的影響
★ 高韌性環氧樹脂底膠之開發★ 水性PU之流變性質研究
★ 完全相分離PU之完整形態研究★ 含矽膠PU之合成與血液相容性研究
★ 奈米級嵌段式PU之動態機械性質 與微結構型態研究★ Hydroxyl Terminated Polyisoprene(HTIP)陰離子型水性PU合成與性質研究
★ 陰離子型水性PU/有機蒙特納土奈米複合材料之製備與分析★ 非極性式poly-ip based PU 之軟質段末端改質對形態的影響
★ 硬質鏈段不規則性對PU奈米形態之影響(II)★ 苦楝油對於水性PU膨潤效應的性質研究
★ 硬質鏈段不規則性對PU奈米形態之影響★ 尼龍表面親疏水性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在環保意識抬頭的驅使下,工業與學術界開始朝向水性高分子來發展,當中受到矚目的水性樹脂之一,即水性聚胺基甲酸酯-脲酯(waterborne polyurethane-ureas,WPUUs)。雖到目前為止對其物性已有ㄧ定程度的了解,但物性與結構、型態間的關係卻尚未確立,甚至連真實的結構、型態究竟為何都還沒有被清楚地窺探過。這是因為一般以極性polyol所合成的WPUUs (極性式WPUUs) 其軟、硬質段間存在著氫鍵作用力,以致無法達到完全的相分離而複雜了結構與物性間的關係。反觀若以非極性式polyol來合成WPUUs (非極性式WPUUs),便可排除軟、硬質段間氫鍵的影響,預期能夠達到近乎完全的相分離,而有助於了解並釐清結構與物性間的關係。
本研究為了能完整的探討,於是自行合成出700、2050與3400等不同分子量之非極性且可染色的HTPB為polyol,而選用的diisocyanates有H12MDI、HDI與IPDI等三種,離子基為DMPA,中和劑(neutralizer)有TEA、TPA與NaOH等三種,以及EDA作為鏈延長劑(chain extender),進行搭配組合製作出包含不同軟質段分子量、離子基與硬質段含量等眾多的WPUU樣品來。從合成、分散液性質、造膜與熱裂解,以及WAXD、TEM、FTIR、DSC、DMA與Tensile等方面進行測試,針對結構與物性做一嚴謹的研究。
眾多的證據均清楚地指出WPUUs的型態是由節點(nodes)與分支(cords)所組成的連續網狀結構,尺寸僅~ 2 nm寬,明顯不同於過去文獻所認為WPUUs是偏向於離子體(Ionomers)具有離子團簇聚集的型態;而所謂的離子團簇,像是分散且不連續的multiplets與clusters等微域。此一確實存在的連續網狀結構足以完整地說明為何非極性式HTPB-based WPUUs能表現出比非極性式HTPB-based PUs優異許多的機械性質,甚至不輸於傳統極性式PUs;以及能製作出硬質段含量(可達70 wt%)高於傳統PUs而不會脆裂的特殊性質來。
摘要(英) Waterborne poly(urethane-urea)s, WPUUs, based on nonpolar hydroxyl-terminated polybutadiene (HTPB) as the soft segment were successfully synthesized. The influences of the COOH group content and soft-segment molecular weight (Mns) on the dispersion, morphology, tensile and pyrolysis properties were investigated. The variations of the particle size and viscosity with increasing the COOH group content and decreasing the Mns were predominated by the hydrophilicity of the polymer chain first and then by the effect of the water swelling. The measurements of Fourier transfer infrared (FT-IR) and differential scanning calorimetry (DSC) indicated that the phase-separation degree decreased as the COOH group content increased and Mns decreased. It was worthy to note that the hydrogen bonding and phase mixing between the soft and hard segments in this study could not be occurred. Therefore, it implied that the hard segments tended to form the looser packing and smaller domains in the soft phases. In this case, the increases of the interface area and contact opportunity between the soft and hard segments resulted in the present behaviors resembled the phase mixing. Besides, HTPB-based WPUUs exhibited the higher tensile stress, the elongation at break and modulus with decreasing the COOH group content and Mns. In thermal degradation, the introduction of HTPB polyol improved the thermal stability.
關鍵字(中) ★ 相分離
★ 分散
★ 型態
★ 水性聚胺基甲酸酯-脲酯
★ 羥基聚丁二烯
關鍵字(英) ★ Hydroxyl-terminated polybutadiene
★  Waterborne po
論文目次 目錄
中文摘要……………………………………………………….page.i
英文摘要……………………………………………………….page.iii
第一章 文獻回顧……………………………………………….page.1
1.1水性聚胺基甲酸酯之合成、相轉換與分散液性質……….page.3
1.1.1主要製程………………………………………………page.4
(A) Acetone Process………………………………………page.4
(B) Prepolymer Mixing Process…………………….……page.4
(C) Hot-Melt Process…………………………………..…page.5
(D) Ketimine & Ketazine process……………………...…page.5
1.1.2 組成單體………………………………………...……page.6
(A) Polyol…………………………………………………page.6
(B) 二異氰酸鹽………………………………………..…page.7
(C) 親水性單體………………………………………..…page.8
(D) 鏈延長劑……………………………………………..page.9
1.1.3 相轉移機制………………………………………..…..page.9
1.1.4 分散液性質………………………………………..…..page.11
(A) 穩定機制的種類…………………………………..…page.12
(1) 離子型………………………………………………page.12
(2) 非離子型……………………………………………page.12
(3) 離子/非離子型……………………………………page.12
(B) 粒徑大小、分布與分散液黏度……………………page.13
(1) polyol的分子量與種類………………………...…page.13
(2) diisocyanate的含量與種類………………….……page.14
(3) 離子基/中和劑的含量與種類………………....…page.16
(4) 親水性單體的導入…………………….…………page.17
1.2 形態介紹………………………………………………...…page.18
1.2.1 Ionomer之微域形態…………………………………page.19
1.2.2 Segmented PU之微域形態…………………..………page.29
(A) 軟質段的種類……………………………………..…page.29
(B) 二異氫酸鹽的種類………………………………..…page.30
1.2.3 Waterborne PU / PU ionomer之微域形態………….page.32
1.3 WPUU/PUI之相分離程度與物性…………………………page.35
1.3.1 熱性質(DSC) …………………………………………page.36
(A) 軟質相的熱轉變行為…………………………………page.36
(1) 有/無中和與中和度…………………………………page.37
(2) 離子基含量與中和劑種類…………………….……page.38
(3) 軟質段的種類………………………………………page.40
(B) 硬質相的熱轉變行為……………………………...…page.41
1.3.2 動態機械分析(DMA) …………………………………page.43
(A) 中和度…………………………………………………page.43
(B) 離子基含量與中和劑種類……………………………page.44
(C) 軟質段的種類…………………………………………page.45
(D) 硬質段的種類與含量…………………………………page.45
1.3.3 Stress-strain性質…………………………………………page.47
(A) 中和度…………………………………………………page.49
(B) 離子基含量與中和劑種類……………………………page.49
(C) 軟質段的種類…………………………………………page.51
(D) 硬質段的種類與含量…………………………………page.52
1.4 參考文獻………………………………………………….…page.54
第二章 實驗…….……………………….………………………page.81
2.1 化學藥品…….……………………….………………………page.81
2.2 測試儀器與操作條件……………….………………….……page.83
2.3 合成與鑑定………………………….………………….……page.86
2.3.1 HTPB polyol…………………….……………..….……page.86
2.3.2 HTPB-based WPUU…………….……………..….……page.89
2.4 參考文獻…………………………….……..………..….……page.90
第三章 不同軟質段分子量、離子基與硬質段含量對HTPB-based WPUU的影響: Part (I) 合成、分散液與熱裂解性質….…..page.94
3.1 合成………………………………………………………..page.94
(A) 無溶劑聚合………………………………………..…page.95
(B) 溶液聚合…………………………………………..…page.95
3.2 分散液性質…………………………………………..…….page.98
(A)不同軟質段分子量與酸基含量……………………….page.98
(B)不同軟質段分子量與硬質段含量……………………page.101
3.3 WPUU造膜情況……………………………………..…….page.102
3.4 吸水性………………………………………………..…….page.103
3.5 熱裂解性質…………………………………………..…….page.103
(A)不同軟質段分子量與酸基含量……………………….page.104
(B)不同軟質段分子量與硬質段含量…………………….page.106
3.6 參考文獻……………………………………………..…….page.107
第四章 不同軟質段分子量、離子基與硬質段含量對HTPB-based WPUU的影響: Part (II) 型態與物性…………………..…….page.120
4.1 WAXD………………………………………………..…….page.123
(A)不同軟質段分子量與酸基含量………………..….….page.123
(B)不同軟質段分子量與硬質段含量…………………….page.123
4.2 TEM………………………………………………..……….page.123
(A)不同軟質段分子量與酸基含量………………..……...page.124
(B)不同軟質段分子量與硬質段含量……………..……...page.125
4.3 FTIR………………………………………………..……….page.126
(A)不同軟質段分子量與酸基含量………………..………page.128
(a) NH region…………………………………....……….page.129
(b) Amide I region……………………………....……….page.131
(B)不同軟質段分子量與硬質段含量…………....…….….page.132
(a) NH region…………………………………....……….page.133
(b) Amide I region……………………………....……….page.133
4.4 DSC……………………………………..…………..……….page.135
(A)不同軟質段分子量與酸基含量…..…………..…….….page.135
(B)不同軟質段分子量與硬質段含量.…………..…….…..page.137
4.5 DMA…………………………………....…………..……….page.138
(A)不同軟質段分子量與酸基含量....…………..…...…….page.138
(B)不同軟質段分子量與硬質段含量…………..…...…….page.140
4.6 Tensile………………………………....…………..………...page.141
(A)不同軟質段分子量與酸基含量…..…………..……….page.141
(B)不同軟質段分子量與硬質段含量…………..…….......page.143
4.7 參考文獻……………………………....…………..…….….page.143
第五章 不同二異氰酸鹽與中和劑種類,以及硬質段含量對HTPB- based WPUU的影響: Part (I) 合成、分散液與熱裂解性質…page.179
5.1 合成………………………………....…………..……….….page.179
(A)二異氰酸鹽與硬質段含量變化……………..……...….page.180
(B)中和劑與硬質段含量變化…………………..……...….page.181
5.2 分散液性質……. …………………....…………..……...….page.182
(A)二異氰酸鹽與硬質段含量變化...…………..……...…..page.183
(B)中和劑與硬質段含量變化……..…………..……....…..page.184
5.3 WPUU造膜情況……………………....………………...….page.185
5.4 吸水性…….……………………....…………...………...….page.187
5.5 熱裂解性質……………………....…………...………...…..page.188
(A)二異氰酸鹽與硬質段含量變化………...…..……...…..page.188
(B)中和劑與硬質段含量變化……………...…..……...…..page.190
5.6 參考文獻………………………....…………...………...…..page.192
第六章 不同二異氰酸鹽與中和劑種類,以及硬質段含量對HTPB- based WPUU的影響: Part (II) 型態與物性…………...…….page.204
6.1 WAXD……………………………………………………….page.204
(A)二異氰酸鹽與硬質段含量變化…………………….….page.204
(B)中和劑與硬質段含量變化……………………………..page.205
6.2 TEM………………………………………………………....page.206
(A)二異氰酸鹽與硬質段含量變化…………………….….page.206
(B)中和劑與硬質段含量變化……………………………..page.209
6.3 FTIR………………………………………………………....page.211
(A)二異氰酸鹽與硬質段含量變化………………………..page.211
(a) NH region…………………………………………….page.213
(b) Amide I region……………………………………….page.215
(B)中和劑與硬質段含量變化…………………………….page.216
(a) NH region…………………………………………….page.219
(b) Amide I region……………………………………….page.220
6.4 DSC……………………………………...……………….….page.222
(A)二異氰酸鹽與硬質段含量變化…………………….….page.223
(B)中和劑與硬質段含量變化………………………….….page.227
6.5 DMA……………………………………………………...….page.228
(A)二異氰酸鹽與硬質段含量變化……………………….page.226
(B)中和劑與硬質段含量變化…………………………….page.229
6.6 Tensile……………………………………………………….page.232
(A)二異氰酸鹽與硬質段含量變化……………………….page.232
(B)中和劑與硬質段含量變化…………………………….page.234
6.7 參考文獻…………………………………...……………….page.236
第七章 結論…………………………………………………….page.276
圖目錄
Fig.1-1 Typical ionic monomers……………………………….page.63
Fig.1-2 Acetone Process……………………………………….page.64
Fig.1-3 Prepolymer Mixing Process…………………………...page.65
Fig.1-4 Hot-Melt Process………………………………...…….page.66
Fig.1-5 Ketimine & Ketazine process…………………...….….page.67
Fig.1-6(a)~(c) Phase Inversion Mechanism……………...…….page.68
Fig.1-6(e)~(f) Phase Inversion Mechanism……………...…….page.69
Fig.1-7 Core-shell model (top) and corresponding electron density profile (bottom).………………………….……………………...….….page.70
Fig.1-8 Depleted-zone core-shell model (top) and corresponding electron density profile (bottom). ………….…………………….......….page.71
Fig.1-9 Liquid-like model (top) and corresponding electron density profile (bottom) for a single ionic aggregate.……………......….page.72
Fig.1-10……………………….…………………….........….….page.73
Figure 2-1 The synthetic route of HTPB………….........…....….page.94
Figure 2-2 FTIR spectra of cis-PB and HTPB…….........…....….page.95
Fig. 3-1 The (a) particle size, (b) viscosity and (c) zeta potential of dispersions respectively as a function of COOH content with HTPB molecular weight…………………………………….........…….page.112
Fig. 3-2 The (a) particle size, (b) viscosity and (c) zeta potential of dispersions respectively as a function of hard segment content with HTPB molecular weight. …………………………………….......…….page.113
Fig. 3-3 Water swelling of WPUU films as a function of (a) varied COOH content with HTPB molecular weight; of (b) varied hard segment content with HTPB molecular weight……………………….......…..….page.114
Fig. 3-4 The thermal degradation mechanisms of urethane linkage …….
……….……………………………………………….......…….page.115
Fig. 3-5 TGA curves of (a) 700-54-zz, (b) 2050-54-zz and (c) 3400-54-zz series. …………………………………………………......…….page.116
Fig. 3-6 DTG curves of (a) 700-54-zz, (b) 2050-54-zz and (c) 3400-54-zz series. …………………………………………………......…….page.117
Fig. 3-7 TGA curves of (a) 700-yy-2.0, (b) 2050-yy-2.0 and (c) 3400-yy-2.0 series……………………………………......….….page.119
Fig. 3-8 DTG curves of (a) 700-yy-2.0, (b) 2050-yy-2.0 and (c) 3400-yy-2.0 series. ……………………………………........…..page.120
Fig. 4-1 The WAXD curves of (a) 700-54-zz, (b) 2050-54-zz and (c) 3400-54-zz series ……………………………………........….....page.148
Fig. 4-2 The WAXD curves of (a) 700-yy-2.0, (b) 2050-yy-2.0 and (c) 3400-yy-2.0 series……………………………………........….....page.149
Fig. 4-3 The most possible spacial size (2D) of hard segment.....page.150
Fig. 4-4 The TEM micrographs of (a) 2050-54-1.2, (b) 2050-54-2.0 and (c) 2050-54-3.0………………………………………........….....page.151
Fig. 4-5 The TEM micrographs of (a) 3400-54-1.2, (b) 3400-54-2.0 and (c) 3400-54-3.0………………………………………........….....page.152
Fig.4-6 The TEM micrographs of (a) 2050-44-2.0, (b) 2050-54-2.0 and (c) 2050-70-2.0………………………………………..............….....page.154
Fig.4-7 The TEM micrographs of (a) 3400-44-2.0, (b) 3400-54-2.0 and (c) 3400-70-2.0………………………………………..............….....page.155
Fig.4-8 Four morphological model were proposed for HTPB-based WPUUs………………………………………..…..............….....page.157
Fig.4-9 The typical FTIR spectra of (a) HTPB, (b) DMPA, (c) NaOH-neutralized DMPA, (d) bis-urea model compound and (e) 2050-54-2.0……………………………………..............…….....page.158
Fig.4-10 Whole region FTIR spectra of 700-, 2050- and 3400-54-zz series. ………………………………………..….................….....page.159
Fig.4-11 Local expanded FTIR spectra of 700-, 2050- and 3400-54-zz series. ………………………………………..….................….....page.160
Fig.4-12 2nd order differential FTIR spectra in NH region of 700-, 2050- and 3400-54-zz series………………………..….................….....page.162
Fig.4-13 Ion-dipole bonded N-H……………..…................….....page.163
Fig.4-14 2nd order differential FTIR spectra in Amide I region of 700-, 2050- and 3400-54-zz series………………..….................….......page.164
Fig.4-15 Whole region FTIR spectra of 700-, 2050- and 3400-yy-2.0 series……………………………………..….......................….....page.165
Fig.4-16 Local expanded FTIR spectra of 700-, 2050- and 3400- yy-2.0 series……………………………………..….......................….....page.166
Fig.4-17 2nd order differential FTIR spectra in NH region of 700-, 2050- and 3400-yy-2.0 series…………………..….......................…......page.168
Fig.4-18 2nd order differential FTIR spectra in Amide I region of 700-, 2050- and 3400-yy-2.0 series…………..….......................…........page.169
Fig.4-19 The determinations of Tg and △B.................……….page.170
Fig.4-20 Entire range DSC spectra of 700-, 2050- and 3400-54-zz series.
……………………….……………………....................…..…...page.171
Fig.4-21 Low-temperature range DSC spectra of 700-, 2050- and 3400-54-zz series. …….……………………....................…..….page.172
Fig.4-22 Entire range DSC spectra of 700-, 2050- and 3400-yy-2.0 series.
……………………….……………………....................…..…...page.174
Fig.4-23 Low-temperature range DSC spectra of 700-, 2050- and 3400-yy-2.0 series. ….……………………....................…..…...page.175
Fig.4-24 DMA spectra of 700-, 2050- and 3400-54-zz series. ....page.177
Fig.4-25 DMA spectra of 700-, 2050- and 3400-yy-2.0 series.....page.178
Fig.4-26 The stress-strain curves of 700-, 2050- and 3400-54-zz series
……………………….…………………….....................…..…...page.179
Fig.4-27 The stress-strain curves of 700-, 2050- and 3400-yy-2.0 series.
……………………….…………………….....................…..…...page.181
Fig. 5-1 The (a) particle size, (b) viscosity and (c) zeta potential of dispersions respectively as a function of hard-segment content with diisocyanate. ……….…………………….......................…..…...page.197
Fig. 5-2 The (a) particle size, (b) viscosity and (c) zeta potential of dispersions respectively as a function of hard segment content with neutralized agent….………………...…….......................…..…...page.198
Fig. 5-3 Water swelling of WPUU films based on the different types of diisocyanate and of neutralized agent with hard segment content.
……………………….…………………….....................…..…...page.199
Fig. 5-4 TGA curves of WPUUs based different types of diisocyanate in (a) 40, (b) 55 and (c) 70 wt% hard-segment content. .......…..…..page.200
Fig. 5-5 DTG curves of WPUUs based different types of diisocyanate in (a) 40, (b) 55 and (c) 70 wt% hard-segment content. .......…..…..page.201
Fig. 5-7 TGA curves of WPUUs based different types of neutralized agent and diisocyanate in (a) 40, (b) 55 and (c) 70 wt% hard-segment content.
……………………….…………………….....................…..…...page.203
Fig. 5-8 DTG curves of WPUUs based different types of neutralized agent and diisocyanate in (a) 40, (b) 55 and (c) 70 wt% hard-segment content. ……..……….…………………….....................…..…...page.204
Fig. 6-1 The WAXD curves of different diisocyanates (with the same counterion, TEA) in (a) HC=40, (b) HC=55 and (c) HC=70 series……….
……………………….…………………….....................…..…...page.242
Fig. 6-2 The WAXD curves of different counterions with diisocyanates in (a) HC=40, (b) HC=55 and (c) HC=70 series.................…..…....page.243
Fig. 6-3(cont.) The most possible spacial size (2D) of (a) HDI-based, (b) H12MDI-based and (c) IPDI-based hard segment. .......…..……..page.244
Fig. 6-3(cont.) The most possible spacial size (2D) of (a) HDI-based, (b) H12MDI-based and (c) IPDI-based hard segment. .......…..……..page.245
Fig. 6-4 The TEM micrographs of WPUUs based on (a) HDI, (b) H12MDI and (c) IPDI with TEA neutralized agent in 40 wt% hard-segment content. …………………….....................…...…...page.246
Fig. 6-5 The TEM micrographs of WPUUs based on (a) HDI, (b) H12MDI and (c) IPDI with TEA neutralized agent in 55 wt% hard-segment content. …………………….....................…...…...page.247
Fig. 6-6 The TEM micrographs of WPUUs based on (a) HDI, (b) H12MDI and (c) IPDI with TEA neutralized agent in 70 wt% hard-segment content. …………………….....................…...…...page.248
Fig. 6-7 The TEM micrographs of HDI-based WPUUs with (a) NaOH, (b) TEA and (c) TPA neutralized agents in 40 wt% hard-segment content.
……………………………………………......................…...…...page.250
Fig. 6-8 The TEM micrographs of HDI-based WPUUs with (a) NaOH, (b) TEA and (c) TPA neutralized agents in 55 wt% hard-segment content.
……………………………………………......................…...…...page.251
Fig. 6-9 The TEM micrographs of HDI-based WPUUs with (a) NaOH, (b) TEA and (c) TPA neutralized agents in 70 wt% hard-segment content.
……………………………………………......................…...…...page.252
Fig. 6-10 The TEM micrographs of H12MDI-based WPUUs with (a) TEA and (b) TPA neutralized agents in 40 wt% hard-segment content.
……………………………………………......................…...…...page.254
Fig. 6-11 The TEM micrographs of H12MDI-based WPUUs with (a) TEA and (b) TPA neutralized agents in 55 wt% hard-segment content.
……………………………………………......................…...…...page.255
Fig. 6-12 The TEM micrographs of H12MDI-based WPUUs with (a) TEA and (b) TPA neutralized agents in 70 wt% hard-segment content.
……………………………………………......................…...…...page.256
Fig.6-13 Whole region FTIR spectra of WPUUs based on HDI, H12MDI and IPDI with TEA in (a) 40, (b) 55 and (c) 70 wt% hard-segment content (HC). ……………………………………......................…...…...page.258
Fig.6-14 2nd order differential FTIR spectra in N-H region of WPUUs based on HDI, H12MDI and IPDI with TEA in (a) 40, (b) 55 and (c) 70 wt% HC. ………………..………………......................…...…...page.260
Fig.6-15 2nd order differential FTIR spectra in C=O region of WPUUs based on HDI, H12MDI and IPDI with TEA in (a) 40, (b) 55 and (c) 70 wt% HC. ………………..………………......................…...…...page.261
Fig.6-16 Whole region FTIR spectra of WPUUs based on HDI and H12MDI with the different neutralized agents in (a) 40, (b) 55 and (c) 70 wt% HC. ………………..………………......................…...…...page.262
Fig.6-17 2nd order differential FTIR spectra in N-H region of WPUUs based on HDI and H12MDI with the different neutralized agents in (a) 40, (b) 55 and (c) 70 wt% HC. ………………......................…........page.264
Fig.6-18 2nd order differential FTIR spectra in C=O region of WPUUs based on HDI and H12MDI with the different neutralized agents in (a) 40, (b) 55 and (c) 70 wt% HC. …………….......................……...…..page.265
Fig.6-19 Entire range DSC spectra of WPUUs based on HDI, H12MDI and IPDI with TEA in (a) 40, (b) 55 and (c) 70 wt% HC. …..…..page.266
Fig.6-20 Low-temperature range DSC spectra of WPUUs based on HDI, H12MDI and IPDI with TEA in (a) 40, (b) 55 and (c) 70 wt% HC.
……………..................................................................……...…..page.267
Fig.6-21 Entire range DSC spectra of WPUUs based on HDI and H12MDI with the different neutralized agents in (a) 40, (b) 55 and (c) 70 wt% HC.
……………..................................................................……...…..page.269
Fig.6-22 Low-temperature range DSC spectra of WPUUs based on HDI and H12MDI with the different neutralized agents in (a) 40, (b) 55 and (c) 70 wt% HC. ..................................................................……...…..page.270
Fig.6-23 DMA spectra of WPUUs based on HDI, H12MDI and IPDI with TEA in (a) 40, (b) 55 and (c) 70 wt% HC. ......................…….....page.272
Fig.6-24 DMA spectra of WPUUs based on HDI and H12MDI with three different neutralized agents in (a) 40, (b) 55 and (c) 70 wt% HC.
……………..................................................................……...…..page.273
Fig.6-25 The stress-strain curves of WPUUs based on HDI, H12MDI and IPDI with TEA in (a) 40, (b) 55 and (c) 70 wt% HC. ....……......page.274
Fig.6-26 The stress-strain curves of WPUUs based on HDI and H12MDI with three different neutralized agents in (a) 40, (b) 55 and (c) 70 wt% HC. ………..................................................................……...…..page.276
表目錄
Table 3-1 Formulation of HTPB-based Waterborne Polyurethane-ureas (wt%)……………………….……………………...........….….page.111
Table 3-2 The onset temperature and weight loss of HTPB-based WPUU with the varied COOH group content and soft-segment molecular weight.
……………………….……………………....................…..….page.118
Table 3-3 The onset temperature and weight loss of HTPB-based WPUU with the varied hard segment content and soft-segment molecular weight.
……………………….……………………...................……….page.121
Table 4-1 The measured sizes of node and cord in TEM micrographs of 2050-54-zz and 3400-54-zz series…………...................…...….page.153
Table 4-2 The measured sizes of node and cord in TEM micrographs of 2050-yy-2.0 and 3400-yy-2.0 series………...................……….page.156
Table 4-3 The Characteristic Absorptions of xxxx-54-zz series WPUUs
……………………….……………………...................……….page.161
Table 4-4 The Characteristic Absorptions of xxxx-yy-2.0 series WPUUs
……………………….……………………...................……….page.167
Table 4-5 The Glass Transition Behaviors of HTPB Polyols and 700-, 2050- and 3400-54-zz series………………...................……….page.173
Table 4-6 The Glass Transition Behaviors of HTPB Polyols and 700-, 2050- and 3400-yy-2.0 series……………......................……….page.176
Table 4-7 Tensile Properties of 700-, 2050- and 3400-54-zz series
……………………….……………………...................………..page.180
Table 4-8 Tensile Properties of 700-, 2050- and 3400-yy-2.0 series
……………………….……………………...................………..page.182
Table 5-1 Formulation of HTPB-based Waterborne Polyurethane-ureas (wt%)……………….…………………….....................………..page.196
Table 5-2 The onset temperature and weight loss of HTPB-based WPUU with the different types of diisocyanate and hard segment content.
……………………….……………………...................………..page.202
Table 5-3 The onset temperature and weight loss of HTPB-based WPUU with the different types of neutralized agent and hard segment content.
……………………….……………………...................………..page.205
Table 6-1 The measured sizes of node and cord in TEM micrographs of WPUUs based on HDI, H12MDI and IPDI with TEA in the different hard-segment content……………………......................………..page.249
Table 6-2 The measured sizes of node and cord in TEM micrographs of WPUUs based on HDI with different neutralized agents and hard-segment contents……………………......................………..page.253
Table 6-3 The measured sizes of node and cord in TEM micrographs of WPUUs based on H12MDI with the different neutralized agents and hard-segment contents……………………......................………..page.257
Table 6-4 The Characteristic Absorptions of WPUUs based on HDI, H12MDI and IPDI with TEA…………….......................………..page.259
Table 6-5 The Characteristic Absorptions of WPUUs based on HDI and H12MDI with the different neutralized agents.................………..page.263
Table 6-6 The Glass Transition Behaviors of WPUUs based on HDI, H12MDI and IPDI with TEA……………......................…….…..page.268
Table 6-7 The Glass Transition Behaviors of WPUUs based on HDI, and H12MDI combining with the different neutralized agents.….page.271
Table 6-8 Tensile Properties of WPUUs based on HDI, H12MDI and IPDI with TEA………………………………….....................…….…..page.275
Table 6-9 Tensile Properties of WPUUs based on HDI and H12MDI with three different neutralized agents………….....................…....…..page.277
參考文獻 參考文獻
[1] D. Dieterich, W. Keberle, H. Witt, Angew. Chem. Internal. Edit., 9, 40 (1970).
[2] D. Dieterich, Prog. Org. Coat., 9, 281 (1981).
[3] J. W. Rosthauser, K. Nachtkamp, Journal of coated Fabrics, 16, 39 (1986).
[4] F. M. B. Coutinho, M. C. Delpech, L. S. Alves, J. Appl. Polym. Sci., 80, 566 (2001).
[5] M. C. Delpech, F. M. B. Coutinho, Polym. Test., 19, 939 (2000).
[6] M. S. Yen, S. C. Kuo, J. Appl. Polym. Sci., 64, 883 (1997).
[7] M. S. Yen, S. C. Kuo, J. Appl. Polym. Sci., 67, 1301 (1998).
[8] M. S. Yen, S. C. Kuo, J. Appl. Polym. Sci., 61, 1639 (1996).
[9] M. S. Yen, P. Y. Tsai, J. Appl. Polym. Sci., 90, 233 (2003).
[10] M. S. Yen, P. Y. Chen, H. C. Tsai, J. Appl. Polym. Sci., 90, 2824 (2003).
[11] F. M. B. Coutinho, M. C. Delpech, M. E. F. Garcia, Polym. Test., 21, 719 (2002).
[12] T. C. Wen, Y. J. Wang, T. T. Cheng, C. H. Yang, Polymer, 40, 3979 (1999).
[13] T. C. Wen, S. S. Luo, C. H. Yang, Polymer, 41, 6755 (2000).
[14] B. K. Kim, J. W. Seo, H. M. Jeong, Eur. Polym. J., 39, 85 (2003).
[15] C. Z. Yang, T. G. Grasel, J. L. Bell, R. A. Register, S. L. Cooper, J. Polym. Sci., Polym. Phys., 29, 581 (1991).
[16] C. Z. Yang, C. Li, S. L. Cooper, J. Polym. Sci., Polym. Phys., 29, 75 (1991).
[17] C. S. Schllenberger, F. D. Stewart, “Advances in Urethane Science and Technology ”, K. C. Frisch, S. L. Reegen, ed., vol. 1, Technomic Publishing Co., Inc., 1971.
[18] F. M. B. Coutinho, M. C. Delpech, T. L. Alves, A. A. Ferreira, Polym. degradation stab., 81, 19 (2003).
[19] D. J. Hourston, G. Williams, R. Satguru, J. D. Padget, D. Pears, J. Appl. Polym. Sci., 66, 2035 (1997).
[20] C. Hepburn, Polyurethane Elastomers, Applied Science Publishers, New York, 1982.
[21] G.. Oertel, Polyurethane Handbook, Hanser, 2nd ed., New York, 1994.
[22] S. Y. Lee, J. S. Lee, B. K. Kim, Polymer International, 42, 67 (1997).
[23] L. Wu, B. You, D. Li, F. Qian, Polym. Int., 49, 1609 (2000).
[24] Y. S. Ding, R. A. Register, C. Z. Yang, S. L. Cooper, Polymer, 30, 1213 (1989).
[25] S. A. Visser, S. L. Cooper, Macromolecules, 24, 2584 (1991).
[26] D. C. Lee, R. A. Register, C. Z. Yang, S. L. Cooper, Macromolecules, 21, 998 (1988).
[27] R. A. Register, X. H. Yu, S. L. Cooper, Polym. Bull., 22, 565 (1989).
[28] S. A. Visser, S. L. Cooper, Polymer, 33, 3790 (1992).
[29] S. A. Visser, S. L. Cooper, Macromolecules, 24, 2576 (1991).
[30] X. Yu, M. R. Nagarajan, C. Li, P. E. Gibson, S. L. Cooper, J. Polym. Sci., Polym. Phys., 24, 2681 (1986).
[31] X. H. Yu, M. R. Nagarajan, T. G. Grasel, P. E. Gibson, S. L. Cooper, J. Polym. Sci., Polym. Phys. Ed., 23, 2319 (1985).
[32] K. Noll et al., U.S. Patent 4,408,008
[33] O. Lorenz, F. Haulena, D. Kleborn, Angew. Makromol. Chem., 33, 159 (1973).
[34] O. Lorenz, H. Hick, Angew. Makromol. Chem., 72, 115 (1978).
[35] J. S. Hsu, S. A. Chen, Polym. Bull., 26, 429 (1991).
[36] J. S. Hsu, S. A. Chen, Polymer, 34, 2776 (1993).
[37] W. C. Chan, S. A. Chen, Polymer, 29, 1995 (1988).
[38] W. C. Chan, S. A. Chen, J. Polym. Sci., Polym. Phys., 28, 1515 (1990).
[39] R. Satguru, J. McMahon, J.C. Padget, R. G. Coogan, J. Coatings Tech., 66, 47 (1994).
[40] G. L. Flickinger, I. S. Dairanieh, C. F. Zukoski, J. Non-Newton. Fluid Mech., 87, 283 (1999).
[41] Y. M. Lee, J. C. Lee, B. K. Kim, Polymer, 35, 1095 (1994).
[42] B. K. Kim, J. C. Lee, J. Polym. Sci., Polym. Chem., 34, 1095 (1996).
[43] B. K. Kim, J. C. Lee, K. H. Lee, Pure Appl. Chem., A31(9), 1241 (1994).
[44] B. K. Kim, Y. M. Lee, J. Appl. Polym. Sci., 54, 1809 (1994).
[45] C. K. Kim, B. K. Kim, J. Appl. Polym. Sci., 43, 2295 (1991).
[46] C. K. Kim, B. K. Kim, H. M. Jeong, Colloid Polym. Sci., 269, 895 (1991).
[47] P. A. Lovell, M. S. El-Aasser, “Emulsion Polymerization and Emulsion Polymers”, John Wiley & Sons, New York, 1997.
[48] D. Myers, “Surfaces, Interfaces, and Colloids: Principles and Applications”, VCH Publishers, Inc., New York, 1991.
[49] O. Lorenz, V. Budde, W. Wirtz, Angew. Macromol. Chem., 83, 113 (1979).
[50] T. K. Kim, B. K. Kim, Colloid Polym. Sci., 269, 889 (1991).
[51] B. K. Kim, T. K. Kim, J. Appl. Polym. Sci., 43, 393 (1991).
[52] J. C. Lee, B. K. Kim, J. Polym. Sci., Polym. Chem., 32, 1983 (1994).
[53] B. K. Kim, C. K. Kim, Pure Appl. Chem., A32(11), 1903 (1995).
[54] B. K. Kim, Y. M. Lee, Pure Appl. Chem., A29(12), 1207 (1992).
[55] B. K. Kim, T. K. Kim, H. M. Jeong, J. Appl. Polym. Sci., 53, 371 (1994).
[56] B. K. Kim, J. C. Lee, Polymer, 37, 469 (1996).
[57] H. Xiao, H. X. Xiao, K. C. Frisch, N. Malwitz, J. Appl. Polym. Sci., 54, 1643 (1994).
[58] J. S. Lee, B. K. Kim, Prog. Org. Coat., 25, 311 (1995).
[59] D. J. Hourston, G. D. Williams, R. Satguru, J. C. Padget, D. Pears, J. Appl. Polym. Sci., 74, 556 (1999).
[60] Y. Chen, Y. L. Chen, J. Appl. Polym. Sci., 46, 435 (1992).
[61] M. R. Tant, K. A. Mauritz, G. L. Wilkes, Ionomers: Synthesis, Structure, Properties and Applications, Chapman & Hall: 1997.
[62] C. H. Wirguin, J. Membr. Sci., 120, 1 (1996).
[63] E. P. Otocka, D. D. Davis, Macromolecules, 2, 437 (1969).
[64] E. P. Otocka, T. K. Kwei, Macromolecules, 1, 401 (1968).
[65] R. Longworth, D. J. Vaughan, Nature (London), 218, 85 (1968).
[66] A. Eisenberg, Macromolecules, 3, 147 (1970).
[67] C. L. Marx, D. F. Caulfield, S. L. Cooper, Macromolecules, 6, 344 (1973).
[68] W. J. MacKnight, W. P. Taggart, R. S. Stein, J. Polym. Sci., Polym. Symp., 45, 113 (1974).
[69] E. J. Roche, R. S. Stein, T. P. Russell, W. J. MacKnight, J. Polym. Sci., Polym. Phys. Ed., 18, 1497 (1980).
[70] D. J. Yarusso, S. L. Cooper, Macromolecules, 16, 1871 (1983).
[71] W. C. Forsman, Macromolecules, 15, 1032 (1982).
[72] W. C. Forsman, W. J. MacKnight, Macromolecules, 17, 490 (1984).
[73] B. Dreyfus, Macromolecules, 18, 284 (1985).
[74] Y. S. Ding, S. R. Hubbard, K. O. Hodgson, R. A. Register, S. L. Cooper, Macromolecules, 21, 1698 (1988).
[75] A. Eisenberg, B. Hird, R. B. Moore, Macromolecules, 23, 4098 (1990).
[76] R. B. Moore, D. Bittencourt, M. Gauthier, C. E. Williams, A. Eisenberg, Macromolecules, 24, 1376 (1991).
[77] P. Vanhooren, R. Jérôme, P. Teyssié, F. Lauprêtre, Macromolecules, 27, 2548 (1994).
[78] R. S. McLean, M. Doyle, B. B. Sauer, Macromolecules, 33, 6541 (2000).
[79] B. B. Sauer, R. S. McLean, Macromolecules, 33, 7939 (2000).
[80] Y. Ikeda, T. Murakami, Y. Yuguchi, K. Kajiwara, Macromolecules, 31, 1246 (1998).
[81] V. Schädler, V. Kniese, T. T. Albrecht, U. Wiesner, H. W. Spiess, Macromolecules, 31, 4828 (1998).
[82] J. H. Laurer, K. I. Winey, Macromolecules, 31, 9106 (1998).
[83] K. I. Winey, J. H. Laurer, B. P. Kirkmeyer, Macromolecules, 33, 507 (2000).
[84] B. P. Kirkmeyer, A. Taubert, J. S. Kim, K. I. Winey, Macromolecules, 35, 2648 (2002).
[85] S. Kutsumizu, M. Goto, S. Yano, S. Schlick, Macromolecules, 35, 6298 (2002).
[86] S. Kutsumizu, H. Tagawa, Y. Muroga, S. Yano, Macromolecules, 33, 3818 (2000).
[87] M. E. L. Wouters, V. M. Litvinov, F. L. Binsbergen, J. G. P. Goossens, M. V. Duin, H. G. Dikland, Macromolecules, 36, 1147 (2003).
[88] C. H. Y. Chen, R. M. Briber, E. L. Thomas, M. Xu, W. J. MacKnight, Polymer, 24, 1333 (1983).
[89] C. H. Y. Chen-Tsai, E. L. Thomas, W. J. MacKnight, N. S. Schneider, Polymer, 27, 659 (1986).
[90] C. Li, S. L. Goodman, R. M. Albrecht, S. L. Cooper, Macromolecules , 21, 2367 (1988).
[91] E. J. Roche, E. L. Thomas, Polymer, 22, 333 (1981).
[92] J. A. Koutsky, N. V. Hien, S. L. Cooper, J. Polym. Sci., Polym. Lett., 8, 353 (1970).
[93] J. Foks, G. Michler, J. Appl. Polym. Sci., 31, 1281 (1986).
[94] D. L. Handlin, W. J. MacKnight, E. L. Thomas, Macromolecules, 14, 795 (1981).
[95] M. Serrano, W. J. MacKnight, E. L. Thomas, J. M. Ottino, Polymer, 28, 1667 (1987).
[96] J. S. Hsu, S. A. Chen, Polymer, 34, 2769 (1993).
[97] 許仁松, 博士論文, 清華大學, 1991年.
[98] B. K. Kim, S. H. Paik, J. Polym. Sci., Polym. Chem., 37, 2703 (1999).
[99] W. C. Chan, S. A. Chen, J. Polym. Sci., Polym. Phys., 28, 1499 (1990).
[100] Z. S. Petrovic, I. J. Soda-So, J. Polym. Sci., Polym. Phys. Edn., 27, 545 (1989).
[101] J. W. C. Van Bogart, P. E. Gibson, S. L. Cooper, J. Polym. Sci., Polym. Phys. Edn., 21, 65 (1983).
[102] K. Ono, H. Shimada, S. Yanashita, H. Okamoto, Y. Minoura, J. Appl. Polym. Sci., 21, 3323 (1977).
[103] N. S. Schneider, R. W. Matton, Polym. Eng. Sci., 19, 1122 (1979).
[104] C. M. Brunette, S. L. Hsu, W. J. Macknight, N. S. Schneider, Polym. Eng. Sci., 21, 163 (1981).
[105] C. M. Brunette, S. L. Hsu, M. Rossman, W. J. Macknight, N. S. Schneider, Polym. Eng. Sci., 21, 668 (1981).
[106] M. Xu, W. J. Macknight, C. H. Y. Chen, E. L. Thomas, Polymer, 24, 1327 (1983).
[107] C. H. Y. Chen, R. M. Briber, E. L. Thomas, M. Xu, W. J. Macknight, Polymer, 24, 1333 (1983).
[108] B. Bengtson, C. Feger, W. J. Macknight, N. S. Schneider, Polymer, 26, 895 (1985).
[109] C. Li, S. L. Goodman, R. M. Albercht, S. L. Cooper, Macromolecules, 21, 2367 (1988).
[110] D. Cohen, A. Siegmann, Polym. Eng. Sci., 27, 286 (1987)
[111] A. Siegmann, D. Cohen, Polym. Eng. Sci., 27, 1189 (1987).
[112] T. K. Chen, C. J. Hwung, C. C. Hou, Polym. Eng. Sci., 32, 115 (1992).
[113] T. A. Speckhard, G. V. Strate, P. E. Gibson, S. L. Cooper, Polym. Eng. Sci., 23, 337 (1983).
[114] T. A. Speckhard, P. E. Gibson, S. L. Cooper, V. S. C. Chang, J. P. Kennedny, Polymer, 26, 55 (1985).
[115] T. A. Speckhard, K. K. S. Hwang, S. L. Cooper, V. S. C. Chang, J. P. Kennedny, Polymer, 26, 70 (1985).
[116] Y. Xu, M. R. Nagarajan, T. G. Grasel, P. E. Gibson, S. L. Cooper, J. Polym. Sci., Polym. Phys. Edn., 23, 2319 (1985).
[117] R. A. Phillips, J. C. Stevenson, M. R. Nagarajan, S. L. Cooper, J. Macromol. Sci. Phys., B27, 245 (1988).
[118] H. A. Al-Salah, H. X. Xiao, J. A. Mclean, Jr., K. C. Frisch, J. Polym. Sci., Polym. Chem., 26, 1609 (1988).
[119] B. K. Kim, Y. M. Lee, Colloid Polym. Sci., 270, 956 (1992).
[120] S. L. Hsu, H. X. Xiao, H. H. Szmant, K. C. Frisch, J. Appl. Polym. Sci., 29, 2467 (1984).
[121] A. Eisenberg, Macromolecules, 4, 125 (1971).
[122] A. Eisenberg, H. Matsura, J. Polym. Sci., A-2, Polym. Phys., 9, 213 (1971).
[123] H. Matsura, A. Eisenberg, J. Polym. Sci., Polym. Phys. Ed., 14, 1201 (1976).
[124] R. A. Weiss, S. R. Turner, R. D. Lundberg, J. Polym. Sci., Polym. Chem. Ed., 23, 549 (1985).
[125] S. Provencher, Comput. Phys. Commun., 27, 213 (1982).
[126] H. A. Al-Salah, K. C. Frisch, H. X. Xiao, J. A. Jr. Mclean, J. Polym. Sci., Polym. Chem. Ed., 25, 2127 (1987).
[127] C. Z. Yang, K. K. S. Hwang, S. L. Cooper, Macromol. Chem., 184, 651 (1983).
[128] T. A. Speckhard, K. K. S. Hwang, C. Z. Yang, W. R. Laupan, S. L. Cooper, J. Macromol. Sci. Phys., B23, 175 (1984).
[129] J. T. Koberstein, A. F. Galambos, L. M. Leung, Macromolecules, 25, 6195 (1992).
[130] J. T. Koberstein, L. M. Leung, Macromolecules, 25, 6205 (1992).
[131] I. Yilgor, J. S. Rifle, G. L. Wilkes, J. E. McGrath, Polym. Bull., 8, 535 (1982).
[132] Y. Gamberlin, J. P. Pascault, J. M. Letoffe, P. Glaudy, J. Polym. Sci., Polym. Chem. Edn., 20, 383 (1980).
[133] Y. Gamberlin, J. P. Pascault, J. M. Letoffe, P. Glaudy, J. Polym. Sci., Polym. Phys. Edn., 20, 1445 (1982).
[134] Y. Li, T. Gao, J. Liu, K. Linliu, C. R. Desper, B. Chu, Macromolecules, 25, 7365 (1992).
[135] J. T. Koberstein, A. F. Galambos, Macromolecules, 25, 5618 (1992).
[136] 陳俊宏, 碩士論文, 中央大學, 1997年.
[137] T. A. Speckhard, S. L. Cooper, Rubber Chem. Technol., 59, 405 (1986).
[138] T. L. Smith, J. Polym. Sci., Polym. Phys. Ed., 12, 1825 (1974).
[139] T. L. Smith, Polym. Eng. Sci, 17, 129 (1977).
[140] C. H. Y. Chen, E. L. Thomas, Polymer, 27, 659 (1986).
指導教授 陳登科(Teng-ko Chen) 審核日期 2009-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明