博碩士論文 88341016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.19.56.45
姓名 曾致堯(Chi-Yao Tseng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 碎形聚集體中擴散主導反應速率的研究
(Diffusion-limited reaction in fractal aggregates)
相關論文
★ 反離子的凝聚作用和釋放於界劑溶液中添加鹽類的影響之研究★ 以離子型界劑溶解微脂粒之研究
★ 奈米添加物對微乳液滴靜電特性的影響–蒙地卡羅模擬法★ W/O型微乳液液滴之電荷分佈量測
★ 溫度和PEG-脂質對磷脂醯膽鹼與離子型界面活性劑間作用的影響之研究★ 明膠的溶膠-凝膠相變化與微乳液-有機凝膠相變化
★ 膽固醇與膽鹽對微脂粒穩定度的影響★ 電解質溶液的表面張力-蒙地卡羅模擬法
★ 稀薄聚電解質溶液中的反離子凝聚現象★ 溫度不敏感性之電動力學行為於毛細管區域電泳
★ 以熱力學性質定義帶電粒子的電荷重正化現象★ 聚乙二醇與界面活性劑的作用
★ 聚電解質溶液中的反離子凝聚現象★ 聚電解質在中性高分子溶液中的泳動行為
★ 在聚電解質溶液中的有效電荷★ 以分散粒子動力學法模擬雙性團聯共聚物微胞之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 擴散主導反應在相當多的化學, 物理, 生物的動態系統中扮演了極為重要的角色。
先前有相當多的學者針對雙粒子系統, 得到各式各樣精確分析式, 半經驗式, 數值歸納式.. 等等的研究結果。但是在實際化學反應及生物環境中, 多數的系統卻是多體擴散反應, 存在著相當複雜及困難的交互現象. 如果利用兩粒子關係式來進行多體系統的數學解析運算, 這將是一個艱鉅且耗時的任務。
本論文目標將著重在單一粒徑分布之碎形結構內, 擴散主導的反應在聚集體內的研究, 希冀找出一個簡潔的有限規模尺度式來描述擴散反應的有效反應速率因子及其他細節。
本研究利用 multi-pole expansion 的數值方法, 來描述結構內粒子間因相對位置而產生的彼此影響擴散交互作用(diffusive interactions), 並佐以蒙地卡羅法來驗證 di-pole level 比 mono-pole level 有相當可靠的準確度及解算省時性。利用解矩陣特徵向量的加速技巧, 本研究方法能相當精確快速有效的得到收斂解算結果, 在可預估時間下的計算出一個數量內之反應性顆粒聚集體的平均單顆粒反應速率. 本研究方法可推及至內含10^5個組成顆粒的大規模之聚集體。
針對簡單對稱的結構, 如一維(1D)線形, 二維(2D)平面, 三維(3D)立方體, 及各種碎形維度的定規(deterministic)或是隨機(random)碎形, 吾人進行從小到大尺度的電腦數值實驗。依照K-R平均近似式(pre-averaging Kirkwood-Riseman approximation)的分析程序, 吾人推導得到, 聚集體的無因次化有效平均反應速率因子(effectiveness factor)會遵守與結構顆粒數目跟碎形維度的指數尺度式(power scaling laws). 在越大尺度的聚集體中也發現到, 當維度大於1, 外圍結構的屏蔽效應(screening effect)越明顯, 對有效反應速率因子的影響重大。當維度小於1時, 屏蔽效應的影響就有其限制。在維度為1時, 產生了從強烈屏蔽效應到有限屏蔽效應的轉折現象。
不僅在擴散反應上發現這種規則, 吾人也將此研究方法應用在多體聚集物在終端速度沈降的問題上, 也得到相當簡潔類似的尺度式來陳述平均沈降係數(mean drag coefficient)。因此本研究的結果可推廣到各式的輸送現象中, 如熱量傳導甚至到生物擴散系統中等等。
摘要(英) Diffusion-limited reactions play a major role in many chemical, physical processes and biological systems.
The fundamental solution (as known as Smoluchowski theory) of diffusion includes reactions within homogeneous and isolated spherical sinks. Various systems with two-particle interaction have been widely studied, and successfully developed approximations with different analytical, numerical and experimental methods. On the contrary, in realistic systems, diffusion in many-body systems is the most complex problem found in engineering, science and nature. Therefore, this study intended to focus on the reaction rate for an aggregated cluster with immovable, reactive spherical sinks in a medium including diffusive reactants.
The effectiveness factor, h, defined as the ratio of the total reaction rate of the cluster to that of without diffusional interactions in a diffusion- limited reaction system, is evaluated for small clusters and fractals aggregated by mono-dispersed reactive spherical sinks in this thesis.
The method of multi-pole expansion involving dipole level is effective for a finite system constructed by reactive sinks. The numerical method is proven to be an accurate result within 1% deviation by comparing with the exact data from Monte Carlo simulations and computationally time-saving approximation. Matrix elimination and eigen-value solving technique are used to accelerate the computing speed to obtain an excellent semi-analytical agreement for potential matrix in dipole expansion.
Those conformations included structures in 1D (regular polygons and linear chains), 2D (squares), 3D (cubic arrays) and specified aggregates in fractal dimensions, each of which was considered and evaluated for effectiveness factor h from D<1 to D=3 . The number of fractal assembly can be as high as O(105). The scaling behavior of h is derived based on the generalized Kirkwood-Riseman pre-averaging approach. The asymptotic scaling behavior of the effectiveness factor with particle numbers N is h~N(1/D-1) for D>1, h~(lnN)-1 for D=1, and h~N 0 for D<1. The crossover behavior indicates 2 regimes. In the regime of D>1, the screening effect of diffusive interactions grows with size. In the regime of D<1, it is limited in a finite range and decays with decreasing D.
The asymptotic behavior for deterministic fractals was confirmed as it followed the similar scaling laws for the translation drag coefficient in the low Reynolds number flow regime. This approximation is applicable to other transport phenomena like heat conduction, and even biological diffusion systems.
關鍵字(中) ★ 有限尺度率
★ 碎形維度
★ 擴散反應
關鍵字(英) ★ finite size scaling law
★ fractal dimension
★ diffusion-limited reaction
論文目次 ABSTRACT IN CHINESE…………………………………………… i
ABSTRACT IN ENGLISH…………………………………………… iii
ACKNOWLEDGMENTS ………………………………………………… v
CONTENTS…………………………………………………………… vi
FIGURES……………………………………………………………… viii
TABLES ……………………………………………………………… x
Chapter 1 Review of diffusion-reaction processes
1-1 Introduction………………………………………………… 1
1-2 Previous work………………………………………………… 2
1-2-1 The two-particle system ………………………………… 3
1-2-2 The many-particle system ………………………………… 5
1-3 Fractals and fractal dimension ………………………… 7
1-4 Objective of research……………………………………… 9
Chapter 2 Rate of diffusion-limited reactions in a small cluster
2-1 Introduction…………………………………………………… 17
2-2 Simulation technique and multipole expansions……… 20
2-2-1 Monte Carlo diffusion and first passage lgorithm… 21
2-2-2 Multipole expansions ……………………………………… 24
2-3 Results and discussion …………………………………… 27
2-3-1 Three spheres ……………………………………………… 28
2-3-2 Four spheres………………………………………………… 29
2-3-3 Linear chain and Regular polygon ……………………… 30
2-3-4 Square and cubic array …………………………………… 32
2-4 Conclusion……………………………………………………… 33
Chapter 3 Rate of diffusion-limited reactions for a fractal aggregate
3-1 Introduction…………………………………………………… 45
3-2 Multipole expansion ………………………………………… 48
3-3 Scaling analysis …………………………………………… 51
3-4 Results and discussion …………………………………… 55
3-5 Conclusion……………………………………………………… 59
Chapter 4 Sedimentation of a fractal aggregate
4-1 Introduction…………………………………………………… 67
4-2 Method to approach and computer experiment…………… 68
4-3 Results and discussion …………………………………… 71
4-4 Conclusion……………………………………………………… 75
Chapter 5 Concluding Remarks
………………………………………………………………83
參考文獻 === CH2
[1] S. B. Lee, I. C. Kim, C. A. Miller, and S. Torquator, Phys. Rev. B 39, 11833 (1989).
[2] S. D. Traytak, J. Chem. Phys. 105, 10860 (1996).
[3] M. V. Smoluchowski, Phys. Z. 17, 557 (1916).
[4] R. T. Bonnecaze and J. F. Brady, J. Chem. Phys. 94, 537 (1991).
[5] R. I. Cukier, J. Chem. Phys. 82, 5457 (1985).
[6] B. U. Felderhof and J. M. Deutch, J. Chem. Phys. 64, 4551 (1976).
[7] J. Rubinstein and S. Torquato, J. Chem. Phys. 88, 6372 (1988).
[8] S. Torquato, J. Stat. Phys. 65, 1173 (1991).
[9] B. U. Felderhof, Physica A 130, 34 (1985).
[10] K. Mattern and B. U. Felderhof, Physica A 143, 1 (1987).
[11] P. Venema and D. Bedeaux, Physica A 156, 835 (1989).
[12] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (Wiley, New York, 1960).
[13] J. M. Deutch, B. U. Felderhof, and M. J. Saxton, J. Chem. Phys. 64, 4559 (1976).
[14] S. D. Traytak, Chem. Phys. Lett. 197, 247 (1992).
[15] R. Samson and J. M. Deutch, J. Chem. Phys. 67, 847 (1977).
[16] P. M. Richards, J. Chem. Phys. 85, 3520 (1986).
[17] P. M. Richards, Phys. Rev. B 35, 248 (1987).
[18] L. H. Zheng and Y. C. Chiew, J. Chem. Phys. 90, 322 (1989).
[19] B. A. Luty, J. A. McCammon, and H.-X. Zhou, J. Chem. Phys. 97, 5682 (1992).
[20] H. X. Zhou, A. Szabo, J. F. Douglas, and J. B. Hubbard, J. Chem. Phys. 100, 3821 (1994).
[21] J. A. Given, J. B. Hubbard, and J. F. Douglas, J. Chem. Phys. 106, 3761 (1997).
[22] H. K. Tsao, J. Chem. Phys. 114, 10247 (2001).
[23] R. T. Bonnecaze and J. F. Brady, Proc. R. Soc. London, Ser. A 432, 445 (1991).
[24] B. Cichocki, B. U. Felderhof, K. Hinsen, E. Wajnryb, and J. Blawzdz- iewicz, J. Chem. Phys. 100, 3780 (1994).
=== CH3
[1] The Fractal Approach to Heterogeneous Chemistry: Surface, Colloids, Polymers, edited by D. Avnir (Wiley, Chichester, 1989).
[2] M. Sheintuch and S. Brandon, Chem. Eng. Sci. 44, 69 (1989).
[3] S. W. Hermanowicz, U. Schindler, and P. Wilderer, Water Res. 30, 753 (1996).
[4] S. Tang, Y. Ma, and I. M. Sebastine, Colloids Surf., B 20, 211 (2001).
[5] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (Wiley, New York, 1960).
[6] J. M. Deutch, B. U. Felderhof, and M. J. Saxton, J. Chem. Phys. 64, 4559 (1976).
[7] S. D. Traytak, J. Chem. Phys. 105, 10860 (1996).
[8] S. D. Traytak, Chem. Phys. Lett. 197, 247 (1992).
[9] H. K. Tsao, S. Y. Lu, and C. Y. Tseng, J. Chem. Phys. 115, 3827 (2001).
[10] R. T. Bonnecaze and J. F. Brady, J. Chem. Phys. 94, 537 (1991).
[11] R. T. Bonnecaze and J. F. Brady, Proc. R. Soc. London, Ser. A 430, 285 (1990).
[12] H. K. Tsao, J. Chem. Phys. 114, 10247 (2001).
[13] P. Dommersnes, S. Straumsnes, E. G. Flekkoy, T. Nicolai, and S. Roux, Eur. Phys. J. B 9, 669 (1999).
[14] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford, New York, 1986)
[15] L. Niemeyer, L. Pietronero, and H. J. Wiesmann, Phys. Rev. Lett. 52, 1033 (1984).
[16] C. Y. Tseng, H. K. Tsao, and S. B. Chen, Phys. Rev. Lett. 86, 5494 (2001).
[17] C. L. Yang, Z. Y. Chen, and M. A. El-Sayed, J. Phys. Chem. 91, 3002 (1987).
=== CH4
[1] J. Kirkwood and J. Riseman, J. Chem. Phys. 16, 565 (1948).
[2] S. Q. Wang, J. F. Douglas, and K. F. Freed, J. Chem. Phys.85, 3674 (1986).
[3] T. Vicsek, Fractal Growth Phenomena (World Scientific, Singapore, 1992).
[4] Z. Y. Chen and J. M. Deutch, J. Chem. Phys. 80, 2982 (1984).
[5] P. Meakin, Z. Y. Chen, and J. M. Deutch, J. Chem. Phys.82, 3786 (1985).
[6] P. Wiltzius, Phys. Rev. Lett. 58, 710 (1987).
[7] Z. Y. Chen, P. Meakin, and J. M. Deutch, Phys. Rev. Lett.59, 2121 (1987).
[8] P. N. Pusey, J. G. Rarity, R. Klein, and D. A. Weitz, Phys.Rev. Lett. 59, 2122 (1987).
[9] P. Wiltzius and W. van Saarloos, Phys. Rev. Lett. 59, 2123 (1987).
[10] J. Rotne and S. Prager, J. Chem. Phys. 50, 4831 (1969).
[11] H. Yamakawa, J. Chem. Phys. 53, 436 (1970).
[12] L. Durlofsky, J. F. Brady, and G. Bossis, J. Fluid Mech.180, 21 (1987).
[13] J. F. Brady, R. J. Phillips, J. C. Lester, and G. Bossis,J. Fluid Mech. 195, 257 (1988).
[14] G. Bossis, A. Meunier, and J. F. Brady, J. Chem. Phys. 94,5064 (1991).
[15] B. Cichocki, B. U. Felderhof, K. Hinsen, E. Wajnryb, andJ. Blawzdziewicz, J. Chem. Phys. 100, 3780 (1994).
[16] B. Cichocki and K. Hinsen, Phys. Fluids 7, 285 (1995).
[17] J. Riseman and J. G. Kirkwood, J. Chem. Phys. 18, 512 (1950).
[18] P. Dommersnes, S. Straumsnes, E. G. Flekkoy, T. Nicolai,and S. Roux, Eur. Phys. J. B 9, 669 (1999).
[19] P. N. Segrè, E. Herbolzheimer, and P. M. Chaikin, Phys.Rev. Lett. 79, 2574 (1997).
指導教授 曹恒光(Tsao Heng-Kwong) 審核日期 2008-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明