博碩士論文 89321012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.145.155.202
姓名 張素華(Su-Hua Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 蛋白質在氣/液界面上的行為研究與其在蛋白質復性上的應用
(Studies of Protein Behavior at Air / Solution Interface and its Applications in Protein Refolding)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
吸附於氣/液界面上的蛋白質分子層可以降低界面的表面張力 g(surface tension),而降低的部分則稱之表面壓力 P(surface pressure)。於是研究人員便發展出一套系統模式來結合表面壓力與蛋白質分子吸附層之吸附密度(adsorption density, G)、分子展開程度(the degree of unfolding)的關係等[van Aken, 1995;van Aken and Merks, 1996]。
蛋白質分子在界面上結構展開的程度與所需的時間和蛋白質分子的自然結構及它結構中所具的極性-非極性之結構特性(polar-nonpolar character)有很大的關聯性[Tanford, 1973]。而蛋白質分子的結構特性主要是由胺基酸的組成所決定的。因此,蛋白質單分子層對於了解蛋白質的自然結構與其穩定性是佔有重要地位的[Andrade, 1992]。
在本研究當中我們嘗試著將5種具有不同結構特性的蛋白質經變性劑溶液變性,利用蛋白質於氣/液界面上的行為來探討變性劑對於蛋白質結構的影響。本研究將蛋白質溶液置放於氣/液界面使其形成蛋白質的單分子層(protein monolayer)並使用Langmuir-Blodgett(LB)Nima-trough系統來量測蛋白質溶液經變性後在氣/液界面上的表面壓與時間的關係圖與表面壓和分子所佔據面積的關係圖。而且我們也試著改變變性劑的濃度與種類以便於我們可以探討變性劑對各種蛋白質的影響。
結果顯示,較具結構性的球型蛋白質溶菌酶(Lysozyme),它在表面壓-時間、表面壓-每分子在氣/液界面佔據的面積之結果中:經32mM DTT+6M Gu-HCl變性後,平衡表面壓達至最高,且分子佔據面積明顯比自然態的蛋白質高出一倍;但經8M Urea變性時,表面壓並無上升且每分子所佔據的面積維持和自然態時相同。因此,不同的變性劑會造成蛋白質有不同程度的結構破壞與展開;這樣的行為可經由簡單的表面壓力的量測即可得知。另一方面,較不具結構性的蛋白質如酪蛋白(β-Casein),由於其本身結構特性的關係,經不同的變性劑將它變性後,其在界面上的界面行為表面並看不出其結構展開變化。
因此,蛋白質經不同變性劑變性後,因其結構展開程度的不同所以在氣/液界面上的界面行為亦不同。不同的界面行為表示不同的變性效果即蛋白質經變性後在氣/液界面上的構型狀態並不相同[周, 2002]。當然,蛋白質的界面行為也和本身的自然結構特質有相當的關係。
不同的蛋白質構型狀態即可提供給一些藉由界面方法如固體或觸手來幫助蛋白質復性的研究一些關於復性時結構狀態的資訊。
摘要(英) Abstract
The presence of an adsorbed protein layer in the interface leads to decreased surface tension and its decrease is called the surface pressureΠ.A model was developed that relates the surface pressure to adsorption density, Γ, and the degree of unfolding , α, of the molecules in the adsorbed layer. The conformational changes of the adsorbed protein molecules proceed relatively slowly and lead to the viscoelastic behavior of protein monolayers.
Proteins at air/liquid interfaces are usually denatured or unfolded because interfacial interactions are generally stronger than cohesive interactions within protein molecules. The degree of unfolding and time taken to unfold at the interface depend on protein structure and on its polar-nonpolar character, which determined by the amino acid composition. Therefore, behaviors of protein monolayer at the interface play an important role in understanding the native conformation and stability of protein.
In this study, we discuss the interfacial behaviors of five native and denatured proteins with different conformational character.
The protein solution is layered and spread along the air/solution interfaces to form protein monolayer. Measurements of equilibrium surface pressure–time (Π-t) and surface pressure-area per molecule (Π-A) by using the Langmuir-Blodgett (LB) balance consisted of a NIMA-trough system. Besides, we also change the kind and concentration of denaturants to discuss the influences of denaturants.
The data suggests that Π-t and Π-A isotherm of proteins with more structural stability (eg: Lysozyme) denatured by 32mM DTT+6M GuHCl are different from those of native protein and become high and large. But, Π-t and Π-A isotherm of proteins with more structural stability denatured by 8M Urea are similar to those of native proteins. Both disulfide and noncovalent bonds apparently restrict the unfolding of globular proteins at the interfaces. Protein denatured by denaturants can relax those restrictions, resulting in more complete interfacial unfolding.
The interfacial behaviors (activity) of β-Casein, a random-coil type protein, is not influenced by denaturants, as it readily and completely unfolds at the interfaces.
Different types of denaturants cause different unfolding degree of protein structure. The variations of equilibrium surface pressure and the area/per molecule of denatured proteins indicate different degree of protein structure changed. The structural unfolding degree of proteins depends on their natural conformational stability and the kinds of denaturants.
The collective interfacial behaviors of the protein in the study to provide protein structure stability and fundamental information for protein refolding process by solid or ligand surface.
關鍵字(中) ★ 界面行為
★ 變性劑
★ 表面壓力
★ 蛋白質
關鍵字(英) ★ surface behaviors
★ denaturant
★ surface pressure
★ protein
論文目次 目錄
摘要 ------------------------------------------------------------------------------------------ I
目錄 ---------------------------------------------------------------------------------------- Ⅵ
圖目錄 ------------------------------------------------------------------------ IX
表目錄 ------------------------------------------------------------------------ XIV
第一章 緒論 ----------------------------------------------------------------------------- 1
第二章 文獻回顧
2-1 蛋白質的結構特性 -------------------------------------------------------------- 3
2-1-1 蛋白質的結構 -------------------------------------------------------- 3
2-1-2 穩定蛋白質結構之因素 ------------------------------------------ 6
2-1-3 不同結構特性蛋白質的介紹 ----------------------------------- 11
2-1-4 蛋白質的變性 -------------------------------------------------------- 15
2-2 蛋白質的界面性質 ------------------------------------------------------ 16
2-2-1 蛋白質於氣/液界面的吸附行為 ----------------------------- 16
2-2-2 蛋白質分子界面吸附行為之定性及定量方法 --------- 21
2-3 界面性質的理論定義 --------------------------------------------------- 25
2-3-1 界面活性劑 ---------------------------------------------------------- 25
2-3-2 表面張力之定義 ---------------------------------------------------- 25
2-3-3 界面活性 --------------------------------------------------------------- 26
2-3-4 表面及界面張力之量測 ------------------------------------------ 27
2-3-5 表面吸附行為理論 ------------------------------------------------- 29
2-4 單分子層 --------------------------------------------------------------------- 30
2-4-1 氣/液界面之單分子層 -------------------------------------------- 30
2-4-2 蛋白質單分子層 ---------------------------------------------------- 32
2-4-3 氣/液界面單分子層行為 ----------------------------------------- 34
第三章 實驗部分 ------------------------------------------------------------------- 37
3-1 實驗藥品 -------------------------------------------------------------------- 37
3-2實驗設備 ---------------------------------------------------------------------- 38
3-3實驗步驟 ---------------------------------------------------------------------- 38
3-3-1 蛋白質溶液之配製 ------------------------------------------------- 38
3-3-1-1 緩衝液的配製 --------------------------------------------------- 38
3-3-1-2 變性劑和/或還原劑的配製 ---------------------------------- 38
3-3-1-3 蛋白質溶液之配製 ---------------------------------------------- 39
3-2-2 Nima-trough的清洗程序與歸零步驟 --------------------- 39
3-2-3 不同蛋白質溶液濃度之平衡表面壓力的測量 --------- 39
3-2-4 蛋白質單分子層於氣/液界面上之表面壓力的量測 --40
3-2-5 蛋白質單分子層之Π-A isotherm的量測 ---------------- 40
第四章 結果與討論 ------------------------------------------------------------------ 42
4-1 蛋白質溶液表面壓力與時間的等溫線 ---------------------------- 42
4-1-1 不同濃度的Lysozyme水溶液吸附至氣/液界面之表面壓與時間的等溫線 ---------------------------------------------------- 43
4-1-2 不同濃度的RNase A水溶液吸附至氣/液界面之表面壓與時間的等溫線 ---------------------------------------------------- 45
4-1-3 不同濃度的Fibrinogen水溶液吸附至氣/液界面之表面壓與時間的等溫線 --------------------------------------------------- 46
4-1-4 不同濃度的Myoglobin水溶液吸附至氣/液界面之表面壓與時間的等溫線 ---------------------------------------------------- 47
4-1-5 不同濃度的β-Casein水溶液吸附至氣/液界面之表面壓與時間的等溫線 ---------------------------------------------------- 48
4-1-6 不同蛋白質溶液於氣/液界面上表面壓與時間的等溫線之比較 ------------------------------------------------------------------ 48
4-2 蛋白質單分子層於氣/液界面上之表面壓與時間的等溫線. 55
4-2-1 自然態蛋白質單分子層與變性劑和/或還原劑單分子層於氣/液界面上之表面壓與時間的等溫線 ----------------- 55
4-2-2 經變性劑和/或還原劑前處理的Lysozyme單分子層在氣/液界面上之表面壓與時間的等溫線 ---------------------- 60
4-2-3 經變性劑和/或還原劑前處理的RNase A單分子層在氣/液界面上之表面壓與時間的等溫線 ---------------------- 67
4-2-4 經變性劑和/或還原劑前處理的Fibrinogen單分子層在氣/液界面上之表面壓與時間的等溫線 ----------------------- 74
4-2-5 經變性劑和/或還原劑前處理的Myoglobin單分子層在氣/液界面上之表面壓與時間的等溫線 ------------------------ 80
4-2-6 經變性劑和/或還原劑前處理的β-Casein單分子層在氣/液界面上之表面壓與時間的等溫線-------------------------- 87
4-3 蛋白質單分子層於氣/液界面上每分子佔據面積 ----------- 92
4-3-1 變性劑於氣/液界面上每分子佔據的面積 ----------------- 93
4-3-2 Lysozyme單分子層於氣/液界面上每分子佔據面積--- 93
4-3-3 RNase A單分子層於氣/液界面上每分子佔據面積 --- 96
4-3-4 Fibrinogen單分子層於氣/液界面上每分子佔據面積-- 99
4-3-5 Myoglobin單分子層於氣/液界面上每分子佔據面積-- 99
4-3-6 β-Casein單分子層於氣/液界面上每分子佔據面積 --101
第五章 結論 --------------------------------------------------------------------------- 108
參考文獻 ---------------------------------------------------------------------------------- 110
圖表索引
圖目錄
一、 文獻回顧部份
圖2-1 三級蛋白質結構靠雙硫鍵及一些非共價鍵的作用力穩定--- 4
圖2-2 蛋白質的四種結構 ---------------------------------------------------------- 4
圖2-3 蛋白質之疏水性中心,是一βαβ loop,此區域主要是穩定蛋白質結構中之疏水作用力 ------------------------------------------ 5
圖2-4 α-helix之分子內電荷作用力圖---------------------------------------- 8
圖2-5 β-sheet之分子內氫鍵示意圖 ------------------------------------------ 8
圖2-6 蛋白質胺基酸之結構 ---------------------------------------------------- 10
圖2-7 Lysozyme的結構圖 ------------------------------------------------------- 13
圖2-8 RNase A的結構圖 --------------------------------------------------------- 13
圖2-9 Fibrinogen的結構圖 ------------------------------------------------------ 14
圖2-10 Myoglobin的結構圖 ------------------------------------------------------ 14
圖2-11 (a)β-Casein在氣/液界面的吸附,其中○是表示表面壓(Π)隨著時間上升,而●是表面濃度(Γ)的改變。(b)Lysozyme在氣/液界面的吸附,其中○是表示表面壓(Π)隨著時間上升,而●是表面濃度(Γ)的改變 ----------------------------------------------- 18
圖2-12 使用式子(2-1)與(2-2)所描繪出的特徵圖形 --------------------- 20
圖2-13 氣/液界面分子間力之平衡圖 ----------------------------------------- 26
圖2-14 表面張力量測原理說明圖 --------------------------------------------- 28
圖2-15 a和b二相之交界面示意圖 --------------------------------------------- 29
圖2-16 不溶性物質分散於氣/液界面之單分子層 ----------------------- 31
圖2-17 蛋白質分子由底溶液吸附至氣/液界面上 ----------------------- 33
圖2-18 單分子層表面壓-每分子佔據等溫線圖 --------------------------- 35
圖2-19 擴展相與液體凝縮相的示意圖 -------------------------------------- 36
二、 實驗部份
圖3-1 Nima-trough單分子模型槽 -------------------------------------------- 41
三、實驗結果部份
圖4-1 於25℃時,不同濃度的Lysozyme水溶液吸附至氣/液界面之表面壓與時間的等溫線 ------------------------------------------------- 50
圖4-2 於25℃時,0.5 mg/ml之Lysozyme水溶液吸附至氣/液界面之表面壓隨著時間的上升趨勢圖 --------------------------------------- 50
圖4-3 於25℃時,不同濃度的RNase A水溶液吸附至氣/液界面之表面壓與時間的等溫線 -------------------------------------------------- 51
圖4-4 於25℃時,不同濃度的Fibrinogen水溶液吸附至氣/液界面之表面壓與時間的等溫線 -------------------------------------------------- 51
圖4-5 於25℃時,不同濃度的Myoglobin水溶液吸附至氣/液界面之表面壓與時間的等溫線 ------------------------------------------------- 52
圖4-6 於25℃時,0.005 mg/ml之Lysozyme與Myoglobin水溶液吸附至氣/液界面之表面壓與時間的等溫線之比較 ------------- 52
圖4-7 於25℃時,不同濃度的β-Casein水溶液吸附至氣/液界面之表面壓與時間的等溫線 ------------------------------------------------- 53
圖4-8 於25℃時,濃度為0.005 mg/ml的不同蛋白質水溶液吸附至氣/液界面之表面壓與時間的等溫線之比較 -------------------- 53
圖4-9 於25℃時,使用類似Trurnit方法,灑佈25μl、10mM的PBS緩衝液至氣/液界面上所進行之表面壓與時間的等溫線 -- 58
圖4-10 於25℃時,灑佈25μl、2 mg/ml之不同蛋白質溶液至氣/液界面上形成蛋白質單分子層之表面壓與時間的等溫線圖--58
圖4-11 於25℃時,灑佈25μl不同變性劑和/或還原劑溶液至氣/液界面上之表面壓與時間的等溫線圖 ----------------------------------- 59
圖4-12 於25℃時,Lysozyme經32mM DTT+6M Gu-HCl變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 ------------------------------------------------------------------------- 64
圖4-13 於25℃時,Lysozyme經32mM DTT+8M Urea變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 ----------------------------------------------------------------------------- 64
圖4-14 於25℃時,Lysozyme經6M Gu-HCl變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖------65
圖4-15 於25℃時,Lysozyme經8M Urea變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖---------65
圖4-16 於25℃時,Lysozyme經32mM DTT變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 ---- 66
圖4-17於25℃時,Lysozyme經不同變性劑和/或還原劑前處理後,各變性劑中之三個變性時間中所能達到之最高平衡表面壓之比較。 ------------------------------------------------------------------------ 66
圖4-18 於25℃時,RNase A經32mM DTT+6M Gu-HCl變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 -------------------------------------------------------------------------- 71
圖4-19 於25℃時,RNase A經32mM DTT+8M Urea變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 ----------------------------------------------------------------------------- 71
圖4-20 於25℃時,RNase A經6M Gu-HCl變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 --- 72
圖4-21 於25℃時,RNase A經8M Urea變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 -----------72
圖4-22 於25℃時RNase A經32mM DTT變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 ------- 73
圖4-23 於25℃時,RNase A經不同變性劑和/或還原劑前處理後,各變性劑中之三個變性時間中所能達到之最高平衡表面壓之比較 ----------------------------------------------------------------------------- 73
圖4-24 於25℃時,Fibrinogen經32mM DTT+6M Gu-HCl變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 ---------------------------------------------------------------------- 77
圖4-25於25℃時,Fibrinogen經32mM DTT+8M Urea變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 ----------------------------------------------------------------------------- 77
圖4-26 於25℃時,Fibrinogen 經32mM DTT變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 -78
圖4-27 於25℃時,Fibrinogen經6M Gu-HCl變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 ---- 78
圖4-28 於25℃時,Fibrinogen經8M Urea變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 ------- 79
圖4-29 於25℃時,Myoglobin經32mM DTT+6M Gu-HCl變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 ---------------------------------------------------------------------- 84
圖4-30 於25℃時,Myoglobin經32mM DTT+8M Urea變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 ----------------------------------------------------------------------------- 84
圖4-31 於25℃時,Myoglobin經6M Gu-HCl變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖-- 85
圖4-32 於25℃時,Myoglobin經8M Urea變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 ------- 85
圖4-33 於25℃時,Myoglobin經32mM DTT變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 -86
圖4-34於25℃時,自然態的Myoglobin溶液放置1、6、12小時後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 ---------------------------------------------------------------------- 86
圖4-35於25℃時,RNase A經不同變性劑和/或還原劑前處理後,各變性劑中之三個變性時間中所能達到之最高平衡表面壓之比較 ----------------------------------------------------------------------------- 87
圖4-36 於25℃時,β-Casein經32mM DTT+6M Gu-HCl變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 -------------------------------------------------------------------------- 88
圖4-37 於25℃時,β-Casein經32mM DTT+8M Urea變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖------------------------------------------------------------------------------- 88
圖4-38 於25℃時,β-Casein經6M Gu-HCl變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 ---- 89
圖4-39 於25℃時,β-Casein經8M Urea變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 ------- 89
圖4-40 於25℃時,β-Casein經32mM DTT變性後分佈於氣/液界面上形成單分子層後所量得之表面壓與時間的等溫線圖 --- 90
圖4-41 蛋白質分子於氣/液界面上每分子所佔據的面積(Å2)之圖示法 ------------------------------------------------------------------------------- 105
圖4-42 於25℃時,25μl的不同變性劑於氣/液面進行表面壓-面積實驗 ------------------------------------------------------------------------------- 105
圖4-43 經32 mM DTT + 6 M Gu-HCl、32 mM DTT + 8 M Urea、6 M Gu-HCl、8 M Urea、32 mM DTT變性後1小時的Lysozyme單分子層經Π-A isotherm量得之每分子在氣/液界面上佔據的面積(Å2) ----------------------------------------------------------------- 106
圖4-44 經32 mM DTT + 6 M Gu-HCl、32 mM DTT + 8 M Urea、6 M Gu-HCl、8 M Urea、32 mM DTT變性後1小時的RNase A單分子層經Π-A isotherm量得之每分子在氣/液界面上佔據的面積(Å2)------------------------------------------------------------------ 106
圖4-45 經32 mM DTT + 6 M Gu-HCl、32 mM DTT + 8 M Urea、6 M Gu-HCl、8 M Urea、32 mM DTT變性後1小時的Fibrinogen單分子層經Π-A isotherm量得之每分子在氣/液界面上佔據的面積(Å2) ----------------------------------------------------------------- 107
圖4-46 經32 mM DTT + 6 M Gu-HCl、32 mM DTT + 8 M Urea、6 M Gu-HCl、8 M Urea、32 mM DTT變性後1小時的Myoglobin單分子層經Π-A isotherm量得之每分子在氣/液界面上佔據的面積(Å2) ----------------------------------------------------------------- 107
圖4-47 經32 mM DTT + 6 M Gu-HCl、32 mM DTT + 8 M Urea、6 M Gu-HCl、8 M Urea、32 mM DTT變性後1小時的β-Casein單分子層經Π-A isotherm量得之每分子在氣/液界面上佔據的面積(Å2)------------------------------------------------------------------ 108
圖4-48 經32 mM DTT + 6 M Gu-HCl、32 mM DTT + 8 M Urea、6 M Gu-HCl、8 M Urea變性後之Lysozyme,其CD變化量與變性時間之關係圖,Near-UV CD於289nm偵測蛋白質三級結構 -------------------------------------------------------------------------------108
圖4-49 經32 mM DTT + 6 M Gu-HCl、32 mM DTT + 8 M Urea、6 M Gu-HCl、8 M Urea變性後之Lysozyme,其CD變化量與變性時間之關係圖,Far-UV CD於222nm偵測蛋白質二級結構 ------------------------------------------------------------------------------------ 109
圖4-50 經32 mM DTT + 6 M Gu-HCl、32 mM DTT + 8 M Urea、6 M Gu-HCl、8 M Urea變性後之Lysozyme,其螢光變化量與變性時間之關係圖,偵測蛋白質三級結構 ------------------------- 109
表目錄
一、 文獻回顧部份:
表2-1 在水溶液中之生化分子的四種弱作用力 ----------------------------- 7
表2-2 蛋白質的疏水性 ----------------------------------------------------------------- 9
表2-3 蛋白質胺基酸的疏水度與其他性質的疏水性 --------------------- 10
表2-4 量測單分子層的儀器、方法及可獲得之資訊 ---------------------- 32
二、實驗結果部份
表4-1 於25℃時,各種不同濃度之蛋白質溶液的平衡表面壓 -------- 54
表4-2 於25℃時,經不同變性劑變性的蛋白質單分子層於氣/液界面上的平衡表面壓 -------------------------------------------------------------- 91
表4-3 經32 mM DTT + 6 M Gu-HCl、32 mM DTT + 8 M Urea、6 M Gu-HCl、8 M Urea、32 mM DTT變性後1小時的各種蛋白質單分子層經Π-A isotherm量得之每分子在氣/液界面上佔據的面積(Å2) ---------------------------------------------------------------------- 110
參考文獻 參考文獻
[1]Alexandridis P., and Hatton, T. A., “Poly (ethylene oxide)–poly (propylen oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces : thermodynamics , structure , dynamics, and modeling”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 96, 1-46 (1995)
[2]Andrade. J. D., Hlady. V., Wei. A. P., Ho. C. H., Lea. A. S., Jeon. S. I., Lin. Y. S., and Stroup. E., Clin. Mater. 11, 67 (1992)
[3]Anfinsen, C. B., “Principles that govern the folding of protein chains”, Science, 181, 223-230 (1973)
[4]Armstrong, and Bradley, F., Biochemistry, 2nd ed., New York: Oxford University Press, 1983.
[5]Baszkin, A., and Lyman, D., “The interaction of plasma proteins with polymers.Ⅰ. Relationship between polymer surface energy and protein adsorption/desorption”, Journal of Biomaterials Research, 14, 393-403 (1980)
[6]Beverung, C. J., Radke, C. J., and Blanch, H. W., “Protein adsorption at the oil/water interface: characterization of adsorption kinetics by dynamic interfacial tension measurements”, Biophysical Chemistry, 81, 59-80 (1999).
[7]Birdi, K. S., Lipid and Biopolymer Monolayers at Liquid Interfaces, New York, 1989
[8]Boyer, P. D., Lardy, H., and Myrbäck, K., “The enzymes, second edition- completely revised”, Chapter 25, 431-503, (1960)
[9]Brash, J. L., and Uniyal, S., Poly. Sci. Poly. Stmp, 66, 377-389 (1979)
[10]Conn, E. E., and Stumpf, P. K., Outlines of Biochemistry, Wiley (1966)
[11]Cho, D., Narsimhan, G., and Franses, E.I., “Adsorption dynamics of native and alkylated derivatives of bovine serum albumin at air-water interfaces”, J. Colloid Interface Sci. 178, 348 (1996)
[12]Chou, T. H., and Chang, C. H., “Thermodynamic behavior and relaxation processes of mixed DPPC/cholesterol monolayers at the air/water interface”, Colloids and Surface B: Biointerface 17, 71 - 79 (2000)
[13]Creighton, T. E., “Intermediates in the refolding of reduced Ribonuclease A”, Journal of Molecular Biology, 129, 411-431 (1979)
[14]Dong. J. M., Lynn. W., and Joseph. D. A., “Behavior of Model Protein, Pretreated in Urea and/or Dithiothreitol, at Air/Solution Interfaces”, J. Colloid Interface Sci. 197, 43-47 (1998)
[15]de Feijter, J. A., Benjamins, J., and in E. Dickinson (Ed.), “Food Emulsions and Foams”, Royal Society of Chemistry, London, 1987, pp. 72-85.
[16]Donohue, M. D., and Aranovich, G. L., “Classification of Gibbs adsorption isotherm”, Advances in Colloid and Interaface Science, 77, 137-152 (1998)
[17]Elwing, H., “Protein absorption and ellipsometry in materials research”, Biomaterials, 19, 397-406 (1998)
[18]Evans, M. T. A., Mitchell, J., Mussellwhite, P. R., and Irons, L., in “Surface chemistry of biological systems”, (M. Blank. Ed.) , p.1, Plenum, New York, 1970.
[19]Fainerman, V. B., Miller, R., and Wustneck, R., “Adsorption of Proteins at Liquid/Fluid Interfaces”, J. of Colloid and Interface, 183, 26-34 (1996)
[20]Gazová, Z., Antalík, M., Bágel’ová, J., and Tomori, Z., “Effect of ionic strength on the interfacial properties of cytochrome c”, Biochimica et Biophysica Acta, 1432, 82-91 (1999)
[21]Georgiou, G. and Bernardez-Clerk, E. D., Protein Refolding, p.1-49 American Chemical Society (1991)
[22]Ghannam, M. M., Mady, M. M., and Khalil, W. A., “Interaction of type-I collage with phospholipid monolayer”, Biophysical Chemistry 80, 31-40, (1999)
[23]Gök, E., Kiremitçi, M., and Serdar, A. I., “Protein adsorption on function hydrophilic polymer beads: role of structural properties and medium conditions”, Reactive Polymers. 24, 41 (1994)
[24]Golander, C. G., Caldwell, K., Hlady, V., and Andrade, J. D., “Absorption of Human Lysozyme and Adsorbate Enzyme-Activity As Quantified by Means of Total Internal-Reflection Fluorescence, I-125 Labeling and ESCA”, Colloids and Surfaces, 50, 113-130 (1990)
[25]Goncalves da Silva, A. M., and Viseu, M. I., “Synergism in mixed monolayers of cationic and anionic surfactants: A thermodynamic analysis of miscibility at the air–water interface”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 144, 191-200, (1998)
[26]Graham, D. E., and Phillips, M. C., in A.L. Smith (Ed), Theory and Practice of Emulsion Technology, Academic Press, London, 75-98 (1974)
[27]Graham, D. E., and Phillips, M. C., J. Colloid Interface Sci., 70, 403-414 (1979)
[28]Holt, S. A., McGillivray, D. J., Poon, S., and White, J. W., “Protein deformation and surfactancy at an interface”, J. Phys. Chem. B., 104, 7431-7438 (2000)
[29]Hunter, J. R., Kilpatrick, P. K., and Carbonell, R. G. “Lysozyme Adsorption At the Air-Water-Interface”, J. Colloids Interface Sci. 137, 462-482 (1990)
[30]Jones, M. N., and Chapman, D., Micells, Bilayers, and Biomembranes, Wiley-Liss, Inc.: New York, 1995, Chapter 4.
[31]Kayushina, R., LvOv, Y., Stepina, N., Belyaev, V., and Khurgin, Yu., “Construction andχ–ray reflectivity study of self-assembled lysozyme/polyion multilayers”, Thin Solid Film, 284-285, 246-248 (1996)
[32]Lehninger, A. L., Nelson, D. L., and Cox, M. M., Principles of Biochemistry, Second Edition, New York, 1993.
[33]Lu, J. R., Su, T. J., and Howin, B. J., “The effect of solution pH on the structural conformation of lysozyme layers adsorbed on the surface of water”, J. Phys. Chem. B., 103, 5903-5909 (1999)
[34]Mitchell, J. R., Irons, L., and Palmer, G. J., Biochim. Biophys. Acta, 200, 138-150 (1970)
[35]MacRitchie, F., Adv. Protein Chem., 32, 283 (1978)
[36]Mamoru, M., N. Daisuke & S. Tomoya, “Difference between guanidinium chloride and urea as denaturants of globular protein: The possibility of application to improved refolding process”, Chemical and Pharmaceutical Bulletin, 40, 550-552 (1992)
[37]Martain, R. L., Washinhton, C., and Davis, S. S., “Evidence for the Formation of Amphotericin B-Phospholipid Complex in Langmuir Monolayers”, Pharmaceutical Research 13, 1008-1014 (1996)
[38]Martin, P. and Szablewski, M., Tensiometers and Langmuir-Blodgett Troughs, Operating manual 5th Edition, Frank Grundfeld Ed, Nima, 1999
[39]Mattjus, P., Bittman,R., and Slotte, J. P.,“Molecular Interaction and Lateral Domain Formation in Monolayers Containing Cholesterol and Phosphatidylcholines with Acyl- or Alky-Linked C16 Chain”, Langmuir 12, 1284-1290 (1996)
[40]McKee, T., “Peptide and protein”, Biochemistry, Wm. C. Brown Publishers, 78-116 (1996)
[41]McNay, J. L., and Fernandez, E. J., “How does a protein unfold on a reversed-phase liquid chromatography”, J. Chromatogr. A, 849, 135-148 (1999)
[42]Mita, T., “Thermotropic behavior of proteins and acylated proteins in monolayers”, Bull. Chem. Soc. Jpn. 62, 2299-2306 (1989)
[43]Murray, B. S., “Adsorption kinetics of nonradiolabeled lysozyme via surface pressure-area isotherm”, Landmuir, 13, 1850-1852 (1997)
[44]Myers, D., Surfaces, Interfaces, and Colloids, VCH ,1991 , Chapter 3.
[45]Neurath, H., J. P. Greenstein, F. W. Putnam, J. O. Erickson, “The chemistry of protein denaturation”, Chemical Reviews, 32, 157-265 (1943)
[46]Niño, M. R. R., Snchez, C. C., and Patino, J. M. R., “Interfacial characteristic of –casein spread films at the air-water interface”, Colloids and Surfaces B:Biointerfaces, 12, 161 (1999)
[47]Niño, M. R. R., Wilde, P. J., Clark, D. C., and Patino, J. M. R., “Surface Dilational Properties of Protein and Lipid Films at the Air-Water Interface”, Langmuir 14, 2160-2166 (1998)
[48]Norde, W., and Favier, J. P., “Structure of Adsorbed and Desorbed Proteins”, Colloids Surfaces, 64, 87-93 (1992)
[49]Nyström, M., Aimar, P., Luque, S., and Kulovaara, M., “Fractionation of model proteins using their physiochemical properties”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 138, 185-205 (1998)
[50]Osserman, E. F., Canfield, R. E., Beychok, S.,(ed) “Lysozyme”, Academic press, 1974.
[51]Oxender, D. L., and Fox, C. F., Protein engineering, Ch 11(1987)
[52]Pace, C.N., CRC Crit. Rev. Biochem. May, 1, 1975.
[53]Patino, J. M. R., and Niño, M. R. R., “Protein adsorption and protein-lipid interactions at the air-aqueous solution interface”, Colloid Surface A: Physicochem. Eng. Aspects, 103, 91-103 (1995)
[54]Phillips. M. C., Chem. lnd. 5,170 (1977)
[55]Pike, A. C. W., and Acharya, K. R., “A Structural Basis for the Interaction of Urea with Lysozyme”, Protein Sci. 3, 706 (1994)
[56]Richards, F. M., H.W. Wyckoff, in: The Enzymes, p.647-, Academic Press, New York(1971)
[57]Rothwarf, D.M., and Scheraga, H.A., “Role of non-native aromatic acid hydrophobic interactions in the folding of hen egg white lysozyme”, Biochemistry, 35, 13797-13807 (1996)
[58]Ross, A. C., Bell, G., and Halling, P. J., “Organic solvent functional group effect on enzyme inactivation by the interfacial mechanism”, Journal of Molecular Catalysis B: Enzymatic 8, 183-192 (2000).
[59]Santoro, J., Gonzalez, C., Bruix, M., Neira, J. L., Nieto, J. L., Herranz, J., and Rico, M., “High-resolution three-dimensional structure of Ribonuclease A in solution by nuclear magnetic resonance spectroscopy”, Journal of Molecular Biology, 229, 722-734 (1993)
[60]Shaw, D. J., 膠體及界面化學入門(introduction to Collid and Surface Chemistry 4/E), 高立書局1997
[61]Shastry, M. C. R., and Eftink, M. R., “ Reversible thermal unfolding of ribonuclease T1 in reverse micelles”, Biochemistry, 35, 4094-4101 (1996)
[62]Shibata, A., Iizuka, Y., Ueno, S., and Yamashita, T., “Effect of water activity on unfolding of adsorbed protein at the interface”, Thin Solid Films, 284-285, 549 (1996)
[63]Sundaram, S., Ferri, J. K., Vollhardt, D., and Stebe, K. J., “Surface Phase Behavior and Surface Tension Evolution for Lysozyme Adsorption onto Clean Interfaces and into DPPC Monolayers: Theory and Experiment”, Langmuir, 14, 1208-1218 (1998)
[64]Suttiprasit, P., Krisdhasima, V., and McGuire, J., J. Colloid Interface Sci. 154, 316-326 (1992)
[65]Suttiprasit, P., and McGuire, J., J. Colloid Interface Sci. 154, 327-336 (1992).
[66]Suzawa, T., and Shirahama, H., “Adsorption of Plasma-Proteins Onto Polymer Lattices”, Adv. Colloid Interface Sci. 35, 139-172 (1991)
[67]Tabak, S. A. and Notter, R. H., “Effect of plasma proteins on the dynamic Π-A characteristics of saturated phospholipid film”, J. Colloid Interface Sci. 59, 293 (1977)
[68]Teale, F. W. and Weber, G., “Ultraviolet fluorescence of the aromatic amino acids”, The Biochemical Journal, 65, 476-482 (1957)
[69]Thanford. C., “The hydrophobic effects: Formation of micelles and biological membranes.” Wiley-Interscience. New York, 1973
[70]Tornberg, J. M., J. Colloid Interface Sci., 64, 391 (1978)
[71]Trurnit, H.J., “A theory and method for the spreading of protein monolayers”, J. Colloid Interface Sci. 15, 1 (1960)
[72]van Aken, G. A., Dickinson, in E., and Lorient, D. (Eds), Food Macromolecules and Colloids, The Royal Society of Chemistry, 43-59 (1995)
[73]van Aken, G. A., and Merks, M. T. E., “Adsorption of soluble proteins to dilating surfaces”, Colloid Surface A: Physicochem. Eng. Aspects, 114, 221-226 (1996)
[74]van de Weert, M., Hoechstetter, J., Hennink, W. E., and Crommrlin, D. J. A., “The effect of a water/organic solvent interface on the structural stability of lysozyme”, Journal of controlled release 68, 351-359 (2000)
[75]Ward. A. J. I., and Regan, L. H., “Pendant Drop Studies of Adsorbed Films of Bovine Serum-Albumin .1. Interfacial-Tensions at the Isooctane-Water Interface”, J. Chem. Phys. 78, 389 (1980)
[76]Ward. A. J. I., and Tordai. L., J. Chem. Phys. 14, 453 (1946)
[77]Walstra, P., “Principles of Emulsion Formation”, Chem. Eng. Sci., 48, 333-349 (1993)
[78]Wetlaufer, D. B., Advances in Protein Chemistry, 17, 303-390 (1962)
[79]Xu, S., and Damodaran, S., “The Role of Chemical Potential in the Adsorption of Lysozyme at the Air-Water Interface”, Langmuir, 8, 2021-2027 (1992)
[80] Xu, S., and Damodaran, S., “Kinetics of Adsorption of Proteins at the Air-Water Interface from a Binary Mixture”, Langmuir, 10, 472-480 (1994)
[81]李松伯,界面活性劑混合增效作用對表面張力及微胞形成的影響,碩士論文,國立成功大學化學工程研究所,1997。
[82]余信德,DPPC/蛋白質混合分子層之界面性質研究,碩士論文,國立成功大學化學工程研究所,1997。
[83]林建基,酵素變性與復性程序之研究,國立台灣大學化學工程研究所,1997。
[84]吳秉杰,球蛋白於氣/液界面吸附機構之探討,碩士論文,國立陽明大學醫學工程研究所,1999。
[85]吳偉崧,球蛋白質吸附於自組吸附性單分子膜之吸附熱力分析,碩士論文,國立陽明大學醫學工程研究所,2000。
[86]李雅雯,Ribonuclease A於逆微胞系統中的復性及其界面現象之研究,碩士論文,國立中央大學化學工程研究所,2001。
[87]何怡瑱,三團聯共聚物(PF-127)和磷脂質間交互作用力量測和磷脂質微脂粒穩定度之探討,碩士論文,國立中央大學化學工程研究所,2001。
[88]周茂村,
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2002-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明