博碩士論文 89321025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.216.92.5
姓名 許家銘(jia-ming Shu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
(Wetting Study of Lead-free Solder,In-Sn and SnAgCu Alloy,on the bulk Ni and thin film Ni)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 錫鎳覆晶接點之電遷移研究
★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響★ 覆晶凸塊封裝之兩界面反應交互作用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 基於人類健康及環境的考量, 日本與歐盟( European
Union)已經訂定一明確的時間表來禁止使用含鉛銲料。根據日本Ministry of Trade and Industry (MITI)的規定, 2002 年以後,任何含鉛之電子產品禁止銷售至日本, 而歐洲共同體系下的European Commission 則提案在2007 年以後, 歐貿各國不生產任何含鉛電子產品。很明顯地, 使用無鉛銲料在微電子與半導體工業已是一必然趨勢。不幸的是, 直到目前為止, 並沒有任何檯面上的無鉛銲料可以完全取代鉛錫合金。研究發展出適當的無鉛銲料, 已是電子工業現今的當務之急。
近一、二年來,雖然一些board level 的封裝,如BGA(BallGrid Array)及SMT(Surface Mount Technology)在無鉛銲料研發上已有較成功的進展。但在一些重要且關鍵的封裝技術如C4 (Controlled Collapse Chip Connection)和金屬散熱片銲料連接還沒有出現任何解決的方案, 前者是目前off-chipinterconnect 的主導封裝技術, 而後者吸引眾人巨大目光的理由是晶片散熱問題迫切地須要得到改進。
無鉛銲料在這兩個技術上, 其主要問題在於Si chip 與
Organic Substrate 或金屬散熱片( Heat Spreader) 之間的熱膨脹係數差異。熱膨脹係數的差異往往造成巨大的”熱應力”,以致於C4 solder bump 或Si 晶片破裂。目前已被建議之無鉛銲料,難以完全吸收此熱膨脹係數差異所造成的熱應力。因此,找尋一較為compliant, 且可吸收”熱應力”之無鉛銲料吸引人們極大注意。在所有已知的無鉛銲料中, 我們發現銦錫合金符合此一條件。因為銦錫合金延展性高, 而且已被報導具有優良的機械性質。
銲料與金屬墊層界面破裂的問題, 原因往往都是界面金
屬化合物的生成過厚。傳統銲料之金屬墊層(UBM)以銅為主,而目前無鉛銲料大多是Sn-rich 合金, 高量的Sn 含量容易與銅UBM 快速的反應而形成過厚之錫銅介面金屬化合物,甚至可能會有spalling 現象, 進而影響銲接界面之強度, 故與Sn反應緩慢的鎳-based 金屬墊層(UBM)已被廣泛使用。
為了徹底充份地瞭解銦錫、錫銀銅合金在鎳-based 金屬墊層上的濕潤研究, 我們設計一連串的實驗來研究銦錫合金與塊材鎳、銦錫合金與薄膜鎳(2000 Å)、錫銀銅合金與薄膜鎳之濕潤角及所生成之介金屬化合物。實驗條件如下:(1) 250℃ 下, 不同成份銦錫合金在塊材鎳上的反應,反應時間有1 分鐘及10 分鐘;(2)合金熔點以上20℃ 下, 不同成份銦錫合金在塊材鎳上的反應, 反應時間亦分別有1 分鐘及10 分鐘; (3)合金熔點以上20℃ 下, 不同成份銦錫合金在薄膜鎳上的反應, 反應時間仍
然有1 分鐘及10 分鐘;(4)250℃ 下, 不同成份錫銀銅合金與薄膜鎳(2000Å)的反應,反應時間從30Sec 至30 分鐘不等。經由這幾組實驗, 我們可以對SnIn/Ni、SnAg
Cu/Ni 系統是否適用於電子封裝作進一步的檢驗, 所得到的實驗結果對未來無鉛銲料研發或反應式濕潤行為(reactive wetting)的基礎研究往前推進一大步。
摘要(英) Due to the concern of human health and the environment issue, Japan and European Union has set a schedule to ban the usage of lead-bear-
-ed solders. According to the Ministry of Trade and Industry(MITI) regulations, all electronic productions containing lead-beared solders can not
sale in Japan after year of 2002. It has been the trend to use lead-free solders in microelectronics and semiconductor industries. Unfortunately, no lead-free solder that can be fully replace lead-beared solders. So, it is an
urgent issue to study suitable lead-free solders in current electronic Industries.
Some board level’s package, BGA and SMT, have been successfully on the lead-free solder. But some important and key package technologies
, such as C4(Controlled Collapse Chip Connection) and metal heat spreader interconnected with the solder, can not be solved at the moment.
CTE(Coefficient Thermal Expansion) mismatch between Si chip and metal generates the huge thermal stress. So, solder gluing heat spreader
and Si wafer is easily to crack after temperature cycling. Present lead-free solders can not endure the huge thermal stress. So it is important to find a lead-free solder that is compliant and can endure the huge thermal stress.
Having high ductility and well mechanicial property, In-Sn alloys have potential to be used to joint Si chip and metal heat spreader.
To cause the fatigue fracture in solder joint, intermetallic compound plays very important role. If intermetallic compound is too thickness, int-
-erface between the solder and the under bump metallization(UBM) is volunable. Cu is traditional UBM. However, lead-free solders are often Sn--rich alloys, those Sn-rich alloys react easily and rapidly to form Sn-Cu intermetallic compound. After Cu UBM is consumed by soldering reaction, spalling will occur at the interface between the solder and the UBM.Comparing to Cu, Ni reacts slower with Sn-rich alloys. So, here, we select Ni as UBM substrate.
To understand reaction mechanism between In-Sn alloy and bulk-Ni,we designed a experiment to study In-Sn alloy on bulk-Ni, such as wetting angle and intermetallic compound formation. The experimental conditions are: 1.the reflowing time are 10 min&1 min、2.the reflowing temperature are isothermal 250℃ and 20℃ above melting point of alloys.
There are four differential experiment. We can study the wetting reaction between SnIn/Ni 、SnAgCu/Ni systems. Experimental result will have big contribution on lead-free solder or reactive wetting studies.
關鍵字(中) ★ 錫銀銅合金
★ 銦錫合金
★ 濕潤角
關鍵字(英) ★ Wetting Angle
★ Sn-Ag-Cu Alloy
★ In-Sn Alloy
論文目次 中文摘要............... I
英文摘要.............. IV
誌謝 ................. VI
總目錄............... VII
表目錄................ IX
圖目錄................. X
第壹章、簡介........... 1
1-1 無鉛銲錫之發展..... 1
1-2 銲錫金屬墊層....... 2
1-3 潤溼行為........... 2
1-4 銲錫濕潤性的評估與量測............. 3
第貳章、研究背景....................... 7
2-1 研究目的........................... 7
2-2 銦錫、錫銀銅合金的特色............. 9
第參章、文獻回顧...................... 10
3-1 濕潤角............................ 10
3-2 Side Band......................... 10
3-3 介金屬化合物表面形態.................. 11
3-4 介金屬化合物厚度及介金屬化合物成份..... 12
3-5 剝離現象............................... 12
第肆章、實驗方法與步驟......................... 15
4-1 實驗材料與設備.............................. 15
4-2 銦錫合金製備................................ 16
4-3 銲錫合金與鎳塊材及薄膜鎳反應................ 16
4-4 濕潤角量測.................................. 18
4-5 SEM 橫剖面觀察.............................. 18
第伍章、結果與討論.............................. 22
5-1 濕潤角.......................................22
5-2 介面金屬化合物.............................. 24
5-2-1 銦錫合金.................................. 24
5-3-2 錫銀銅合金................................ 26
第六章、結論.................................... 50
參考文獻........................................ 53
參考文獻 1.C. Y. Liu, K. N. Tu,”Morphology of wetting reactions of SnPb on Cu as
a function of alloy composition”,J. Mater. Res.,Vol 13,No. 1,Jan 1998.
2.Y. H. Tseng, M. S. Yeh,and T. H. Chuang,”Interfacial Reactions betwe-
-en Liquid Indium and Nickel Substrate”,Journal of Electronic Materials
,Vol 28,No.2,1999.
3.Kwang-Lung Lin, Chun-Jen Chen,”The interactions between In-Sn sol-
-ders and an electroless Ni-P deposit upon heat treatment”,Journal of
Materials Science Materials in Electronic 7(1996)397-401.
4.Ching-Yu Huang, Sinn-Wen Chen,”Interfacial Reactions in In-Sn/Ni C-
-ouples and Phase Equilibria of the In-Sn-Ni System,Journal of
Electronic Materials,Vol 31,No. 2,2002.
5.C. E. Ho, R. Y. Tsai, Y. L. Lin,and C. R. Kao,”Effect of Cu Concentrat-
-ion on the Reactions between Sn-Ag-Cu Solders and Ni”, Journal of
Electronic Materials, Vol.31, No.6,2002.
6.C. E. Ho, R. Y. Tsai, Y. L. Lin,and C. R. Kao,”Strong Effect of Cu Con-
-centration on the Reaction between Lead-Free Microelectronic Solders
and Ni”, Chem. Mater., Vol. 14, No.3, 2002.
7.劉益銘,電子構裝銦基無鉛銲錫與金厚膜及銀基板之界面反應研究,
國立台灣大學材料科學與工程學研究所,民國八十八年.
8.陳俊仁, 銦錫焊錫與無電鍍鎳銅磷之潤濕行為和界面反應, 國立
成功大學材料科學與工程學研究所, 民國八十四年.
9.P. T. Vianco and D. R. Frear,”Issues in the Replacement of Lead-Bear-
-ing Solders”, JOM, Vol.45, No.7, pp.14-19, July 1993.
10.H. Reid, D. Moynihan, J. Leiberman, and B. Bradley,”Toxic Lead Re-
-duction Act of 1990”, S-2637, 1990.
11.Environmental Protection Agency,”Strategy for Reducing Lead Expo-
-sure”, Feb. 21, 1991.
12.Environmental Protection Agency,”Advanced Notice of Rulemaking”,
May 13, 1991.
13.Environmental Protection Agency,”Comprehensive Review of Lead in
the Environment under TSCA”, 56FR 22096-98, May 13, 1991.
14.S. Jin,”Developing Lead-Free Solders: A Challenge and Opportunity”,
JOM, Vol.45, No.7, p.13, July 1993.
15.J. Vardaman, Surface Mount Technology-Recent Japanese Developm-
-ents, IEEE Press, New York, Part 4, 1993.
16.J. H. Lau, Chip on Board Technologies for Multichip Modules, Van
Nostrand Reinhold, An International Thomson Publishing Company,
New York, Chap.5, 1994.
17.Dr. T. S. Liu, W. R. Rodrigues de Miranda,and P. R. Zipperlin,”A Re-
-view of Wafer Bumping for Tape Automated Bonding”, Solid State Tec-
-hnol., Vol.23, No.3, pp.71-76, Mar. 1980.
18.G. Leonida, Handbook of Printed Circuit Design, Manufacture, Com-
-ponent & Assembly, Electrochemical Publications Limited, Ayr, Scot-
-land, Chap.5-6, 1981.
19.H. H. Manko, Solders and Soldering, Second Edition, McGraw-Hill
Book Company, New York, Chap.2-4, 1979.
指導教授 劉正毓(Chengyi) 審核日期 2002-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明