博碩士論文 89321029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.145.191.20
姓名 黃文建(Wen-Jian Hwang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用多塔變壓吸附法回收及濃縮煙道氣中二氧化硫之模擬
(Simultanion of Recovering and Concentrating SO2 from Flue Gas by Multi-bed Pressure Swing Adsorption)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 動力工廠所排放出含硫量過高之氣體是造成酸雨現象的主要原因。使用變壓吸附法濃縮及回收煙道氣中二氧化硫,使之再利用,為解決問題方法之一。近來這方面的研究已成為處理這類工廠廢氣之首要。
本研究主要利用模擬方式,採用三塔六步驟真空變壓吸附程序,處理進料為0.5﹪SO2,17﹪CO2,其餘為N2之煙道氣,吸附劑採用XAD-16(NO-treated)。模擬時所用的氣體分離機構為平衡模式,假設吸附塔內的同一截面積上固、氣兩相瞬間達成平衡,且為非恆溫之變壓吸附模式,因吸附劑顆粒大,故可忽略吸附塔內壓力降。
此一新程序可將濃度為0.5﹪SO2濃縮至12.54%,回收率達100%;本研究並探討各操作參數(諸如:各個步驟操作時間、進料壓力與沖洗比等等)對程序效能的影響,且利用直交表之實驗計畫法對此製程做模擬結果分析,可由結果得到準確的預測模式,其與模擬結果相比較,準確度約98%。
摘要(英) The major cause for acid-rain phenomena is the emission of SO2 from power plants that burn fossil flues. It is all-important that the recovery and concentration of SO2 from flue gas in solving SO2 problem by pressure swing adsorption.
The study is on a three-bed six-step vacuum swing adsorption process using XAD-16 with NO-treated. It was performed simulation for bulk separation of SO2/CO2/N2 (0.5/17/82.5 vol %) system. This study used the equilibrium model and the pressure drop can be neglected. We assumed instantaneous equilibrium between the solid and gas phase with non-isothermal operation.
The 0.5%SO2 in the feed could be concentrated to 12.54% in the product with a recovery of 100% by this study. The effects of three operating variables such as adsorption pressure, P/F ratio, steps time were investigated on the performance of this study.
The design of experiment was used in analysis of simulation process and could get predictive polynomial function of result. The accuracy of function which descries performance of this study is near to 98%.
關鍵字(中) ★ 模擬
★ 二氧化硫
★ 酸雨現象
★ 真空變壓吸附
★ 實驗計畫法
關鍵字(英) ★ vacuum swing adsorption
★ design of experiment
★ acid-rain phenomena
★ sulfur dioxide
★ simulation
論文目次 目 錄
目錄 Ⅰ
表目錄 Ⅳ
圖目錄 Ⅵ
第一章 緒論 1
第二章 簡介及文獻回顧 3
2.1 變壓吸附之簡介 3
2.1.1 變壓吸附基本原理 3
2.1.2吸附劑及其選擇性 5
2.1.3 變壓吸附典型步驟 6
2.2 文獻回顧 8
2.2.1 PSA程序之發展與改進 8
2.2.2 理論之回顧 11
2.2.3 PSA製程在回收氣體污染物的應用 13
第三章 理論 16
3.1 基本假設 17
3.2 統制方程式 18
3.3 吸附平衡關係式 22
3.4 參數推導 29
3.4.1 軸向擴散係數 29
3.4.2 管壁的熱傳係數 30
3.5 起始條件與邊界條件 31
3.6 求解的方法 32
3.6.1 閥公式 32
3.6.2 求解步驟 33
第四章 製程描述 35
4.1 程式驗證 37
4.2 三塔六步驟製程 38
4.3 常數與操作條件 42
第五章 結果討論與數據分析 48
5.1 模擬結果與驗證 48
5.2 三塔六步驟變壓吸附之模擬 51
5.2.1沖洗比的影響 51
5.2.2進料壓力的影響 55
5.2.3 T1時間的影響 58
5.2.4 T2時間的影響 63
5.2.5 T3時間的影響 67
5.3 模擬數據分析 70
5.3.1因子水準選定與直交表之配置 70
5.3.2分析與回歸估計 73
5.4 模擬製程之效率與實驗實驗設計分析總結 83
第六章 未來方向 85
符號說明 86
參考文獻 88
附錄A 流速之估算方法 95
附錄B 利用直交表之實驗設計範例解析 99
附錄C 環保法規 111
附錄D預測模式所得之製程結果 112
表目錄
表4.1吸附塔與吸附劑特性 43
表 4.2 XAD-16(NO-treated)參數....................................................... 44
表4.3氣體分子擴散係數 45
表4.4進料組成與操作狀態 45
表4.5 Skarstrom cycle 與三塔六步驟程序之步驟時間...................46
表4.6三塔操作流程循環順序 …47
表5.1 驗證 49
表5.2 驗證 49
表5.3 沖洗比對SO2濃度與回收率之影響 51
表5.4 進料壓力對SO2濃度與回收率之影響 55
表5.5 T1時間對SO2濃度與回收率之影響 58
表5.6 T2時間對SO2濃度與回收率之影響 63
表5.7 T3時間對SO2濃度與回收率之影響 67
表5.8 因子之水準 70
表5.9 product SO2濃度與回收率之直交表..................................... 71
表5.10 waste SO2回收率之直交表.................................................. 72
表5.11 product SO2濃度之ANOVA表....................................... 73
表5.12 product SO2回收率之ANOVA表..................................... 74
表5.13 waste SO2濃度之ANOVA表.............................................75
表5.14 本研究與文獻上製程結果之比較.........................83
表B-1平方和配適與直交多項式所需公式(無交互).....108
表B-2直交多項式係數..............................................109
表B-3重要因子水準濃度值.......................................109
圖目錄
圖3.1 電腦程式之求解流程圖 34
圖4.1 SO2與CO2在吸附劑 XAD-16(NO-treated)上的吸附平衡
曲線圖.........................................36
圖4.2 Skarstrom Cycle……………………………………..37
圖4.3三塔循環步驟圖 40
圖4.3三塔循環步驟圖(續) 41
圖5.1-1為改變沖洗比之模擬與文獻之結果比較圖(驗證)…...50
圖5.2-1不同沖洗比下,SO2濃度與回收率的變化曲線圖........ 53
圖5.2-2沖洗步驟改變沖洗比後,塔內SO2濃度分佈.............54
圖5.2-3不同進料壓力下,SO2濃度與回收率的變化曲線圖. 56
圖5.2-4改變進料壓力於高壓吸附步驟結束後,塔內SO2濃度分佈.................................................................. 57
圖5.2-5 改變T1時間,SO2濃度與回收率之變化曲線圖..........59
圖5.2-6改變T1時間於高壓吸附步驟結束後,塔內SO2濃度分佈.................................................................. 60
圖5.2-7 改變T1時間於同向減壓步驟結束後,塔內SO2濃度分佈....................................................... 61
圖5.2-8第一階段高壓吸附、第二階段高壓吸附之塔內流量… 62
圖5.2-9 改變T2時間,SO2濃度與回收率之變化曲線圖........64
圖5.2-10改變T2時間於高壓吸附步驟結束後,塔內SO2濃度分佈................................... 65
圖5.2-11 改變T2時間於沖洗步驟結束後,塔內SO2濃度分佈.................................................... 66
圖5.2-12 改變T3時間,SO2濃度與回收率之變化曲線圖.......68
圖5.2-13改變T3時間於沖洗步驟結束後,塔內SO2濃度分佈..69
圖5.2-14 product SO2濃度與進料壓力、沖洗比之3D圖形…..80
圖5.2-15 product SO2回收率與T2、T3之3D圖形..................81
圖5.2-16 waste SO2濃度與進料壓力、T2之3D圖形...............82
參考文獻 參考文獻
1.Berlin, N.H., U.S. Patent 3,280,536, assigned to Esso research and engineering company (1966).
2.Bird, R.B., W.E. Stewart and E. N. Lightfoot, Transport Phenomena, 503, Wiley, New York(1960).
3.Chue, K.T., J.N. Yoo, S.H. Cho and R.T. Yang, “Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 34(2), 591-598 (1995).
4.Diagne D., M. Goto and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes: Application to Carbon Dioxide Removal and Enrichment”, J. Chem. Eng. Jpn., 27(1), 85-89(1994).
5.Diagne D., M. Goto and T. Hirose, “Numerical Analysis of a Dual Refluxed PSA Process During Simultaneous Removal and Concentration of Carbon Dioxide Dilute Gas from Air”, J. Chem. Tech. Biotechnol., 65, 29-38 (1996).
6.Doong, S.J. and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AIChE J., 32, 397 (1986).
7.Doong, S.J., and R.T. Yang,“Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AIChE J., 33, 1045 (1987b).
8.Dong, F., L. Hongmei, K. Akio, G. Motonobu and H. Tsutomu, “The Petlyuk PSA process for the separation of ternary gas mixtures: exemplification by separating a mixture of CO2–CH4–N2”, Separation and Purification Technology, 16, 159-166(1999)
9.Farooq, S. and D. M. Ruthven, “A Comparison of linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., 45, 107 (1990b).
10.Gomes, V. G. and M. M. Hassan “Coalseam methane recovery by vacuum swing adsorption”, Separation and Purification Technology, 24, 189-196 (2001)
11.Guerin de Montgareuil, P. and D. Domine, U.S. Patent 3,155,468, to Societe L, Air Liquide, Paris(1964).
12.Hassan, M.M., D.M. Ruthven and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on A Carbon Molecular Sieve”, Chem. Eng. Sci., 41, 1333 (1986).
13.Hassan, M. M. and N. S. Raghavan, “Pressure Swing Adsorption Air Separation on a Carbon Molecular Seive-II. Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., 42, 2037 (1987).
14.Izumi, J., “Hydrogen Sulfide Removel with Pressure Swing Adsorption from Process Off-Gas” in Fundamentals of Adsorption (Ed. M. Suzuki), Kodan-sha, Tokyo, 293-299(1992a).
15.Izumi, J., “Process Off-Gas Treatment with Pressure Swing Adsorption”,Proceedings of Symposium on Adsorption Processes, Chung-Li, Taiwan, 71-84(1992b).
16.Jee J.,M. Kim and C. Lee,“Adosorption Characteristics of Hydrogen Mixtures in a Layered Bed : Binary, Ternary, and Five-component Mixtures”, Ind. Eng. Chem Res. , 40, 868-878 (2001)
17.Kikkinides, E.S. and R.T. Yang, “Simultaneous SO2/NOx Removel and SO2 Recovery from Flue Gas by Pressure Swing Adsorption ”, Ind. Eng. Chem. Res., 30(8), 1981-1989 (1991).
18.Kikkinides, E.S. and R.T. Yang, “Gas Separation and Purification by Polymeric Adsorbents: Flue Gas Desulfurization and SO2 Recovery with Styrenic Polymers”, Ind. Eng. Chem. Res., 32(10), 2365-2372(1993).
19.Kikkinides, E.S., R.T. Yang and S.H. Cho, “Concentration and Recovery of CO2 from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 32(11), 2714-2720 (1993).
20.Kim, J.N., K.T. Chue, K.I. Kim, S.H. Cho and J.K. Kim, “Non-Isothermal Adsorption of Nitrogen-Carbon Dioxide Mixture in a Fixed Bed of Zeolite-X”, J. Chem. Eng. Japan, 27(1), 45-51 (1994).
21.Kowler, D.E. and R. H. Kadlec, “The Optimal Control of a Periodic Adsorber”, AIChE. J., 18, 1027 (1972).
22.Lee, C., J. Yang and H. Ahn, “Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA for Coke Oven Gas”, AIChE J., Vol.45,No.3 (1999)
23.Li, Z. and R. T. Yang, “Concentration Profile for Linear Driving Force Model for Diffusion in a Particle”, AIChE J., 45(1), 1999.
24.Marsh, W.D., F.S. Pramuk, R.C. Hoke and C.W. Skarstrom, U.S. Patent 3,142,547 to Esso Research and Engineering Company(1964).
25.McCabe, W.L., J.C. smith and P. Harriott, Unit operations of Chemical Engineering, 325, 406-408, Fourth Edition, McGraw-Hill, Inc.(1985)
26.Montgomery, D.C. ,Design & Analysis of experiments, Wiley, New York (1997)
27.Nakao, S. and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Japan, 16, 114(1983).
28.Park, J., J. Kim and S. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds”, AIChE J.,Vol. 46, No.4 (2000)
29.Pugsley T.S., F. Berruti and A. Chakma, “Computer Simulation of a Novel Circulating Fluidized Bed Pressure-Temperature Swing Adsorption for Recovering Carbon Dioxide from Flue Gases”, Chem. Eng. Sci., 49(22), 4465-4481(1994).
30.Rubel,A.M. and J.M.Stencel, The Effect of Low-Coneentration SO2 on the Adsorption of NO from Gas over Activated Carbon. 521-526. Fuel 1997.
31.Ruthven,D.M., Principles of Adsorption & Adsorption Process,209-213,Wiley(1984)
32.Shin, H.S. and K. S. Knabel, “Pressure Swing Adsorption: A Theoretical Study of Diffusion-Induced Separation”, AIChE J., 33, 654 (1987).
33.Sircar, S. and J.W. Zondlo, U.S. Patent 4,013,429 to Air Product and Chemicals, Inc (1977).
34.Siriwardane, R. V., M. Shen, E. P. Fisher and J. A. Poston, “Adsorption of CO2 on Molecular Sieves and Activated Carbon”, Energy & Fuels,15,279-284 (2001)
35.Skarstrom, C.W., “Use of Adsorption Phenomena in Automatic Plant-Type Gas Analysis”, Ann., NY Acad. Sci.,72,751(1959).
36.Skarstrom, C.W.,“Fractionating gas mixtures by adsorption”, U.S. Patent 2,444,627, assigned to Esso research and engineering company (1960).
37.Smith, J.M. and H.C. Van Ness, Introduction to chemical Engineering Thermodynamics, p.109, 4th edith, McGraw-Hill Book Company,(1987)
38.Takamura, Y., S. Narita, J. Aoki, S. Hironaka and S. Uchida “Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas”, Separation and purification Technology 24,519-528(2001).
39.Tamura, T., U.S. Patent 3,797,201, assigned to T. Tamura, Tokoy, Japan(1974).
40.Turnock, P. H. and R. H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., 17, 335 (1971).
41.Welty, J.R.,C.R. Wicks and R.E. Wilson, Fundamentals of Momentum, Heat, and Mass Transfer, AppendixⅠ, John Wiley & Sons, Inc. (1983).
42.Yang, J., C. Lee and J. Chang,“Separation of Hydrogen Mixture by a Two-Bed Pressure Swing Adsorption Process Using Zeolite 5A”, Ind. Eng. Chem. Res. ,36, 2789-2798 (1997)
43.Yang, R.T. and S.J. Doong, “Gas Separation by Pressure Swing Adsorption : A Pore Diffusion Model for Bulk Separation”, AIChE J., 31, 1829 (1985).
44.Zhang, W.X., H. Yahiro, N. Mizuno, M. Iwamoto and J. Izumi, “Silver Ion-Exchanged Zeolites as Highly Effective Adsorbents for Removal of Nox by Pressure Swing Adsorption”, Journal of Materials Science Letters, 12, 1197-1198 (1993a).
45.Zhang, W.X., H. Yahiro, N. Mizuno, J. Izumi and M. Iwamoto, “Removal of Nitrogen Monoxide on Copper Ion-Exchanged Zeolites by Pressure Swing Adsorption”, Langmuir, 9(9), 2337-2343 (1993b).
46.Zhang, W. , M. Jia, J. Yu and T. Wu, “Adsorption properties of Nitrogen Monoxide on Silver Ion-Exchanged Zeolites”, chem. master., 11,920-923 (1999)
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2002-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明