博碩士論文 89321031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.131.13.20
姓名 吳承翰(cheng-han Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 無機奈米粒子對於有機光阻修飾上之應用
(The modification of the organic resist after incorperate inorganic nano particles)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電子束微影系統是近年來積極發展的先進微影技術之一,在本次研究中,首先定義出新正型光阻劑(DSE-1010)在電子束直寫系統的最佳製程條件,諸如曝光劑量為7.38μC/cm2 (for 200nm Trench),軟烤最佳條件為95℃/120sec與曝後烤最佳條件為115℃/120sec。之後探討在Class 10 級無塵室環境下軟烤及硬烤後時間延遲對密集溝溝寬變化的影響,及在顯影過程中所造成密集溝與孤立溝溝寬誤差的原因,並且對在高劑量下,光阻所展現出來的負型光阻性質,以傅立葉轉換紅外線光譜儀探討其化學結構之改變。接著評估是否可以使用熱流的方法以期使此新電子束光阻能有更小之解析能力,影響熱流的參數為熱流烘烤溫度、烘烤時間以及圖案的排列密度,最後在驗證新正型光阻劑(DSE-1010)的抗蝕刻性質,在做完熱流製程後,仍有能力將圖形轉移至晶圓上。
有感於光阻劑解析能力通常因阻劑厚度減少而變高,所以在越微小之積體電路圖形往往會使用越薄之阻劑厚度,但是因阻劑厚度不夠,而使得在圖形轉移時則會產生過蝕刻(over etching)的情形,如在轉移零層光罩之圖形時,往往使用硬罩膜(hard mask)來克服阻劑厚度不足之問題,在之後的實驗中,嘗試在光阻內加入如C60奈米粒子以解決圖形轉移時因厚度不足而產生抗蝕刻方面之問題,並以TEM圖形解釋抗蝕刻力增加之原因,並將經過修飾過之光阻劑在微影特性上重新定義出最佳之製程條件,結果其對比度增加,並且保有原本之微影解析能力,在抗蝕刻能力方面,也有相當程度的提升。
摘要(英) ABSTRACT
In this paper, we characterize DES-1010 E-Beam resist for high-resolution electron beam lithography from low to high dose energy. Results indicate the DSE-1010 is very high sensitive for high throughput E-Beam lithography applications. In general, at optimum condition, the trench-width can be easily down to 80 nm. When the dose increased, the character of DES-1010 had been changed from positive to negative, the change of chemical structure was observed by FTIR. It could get 500 nm trench also. Many factors influence performance of resists such as soft bake, post exposure bake, and exposure dose, which are discussed and optimize.
關鍵字(中) ★ 微影
★ 電子束
★ 奈米
關鍵字(英) ★ E-beam
★ lithography
★ nano
論文目次 摘要 …………………………………………………………………………………Ⅰ
謝誌 …………………………………………………………………………………Ⅱ
總目錄 ……………………………………………………………………………....Ⅲ
表目錄 …………………………………………………………………………..… .Ⅶ
圖目錄 …………………………………………………………………………….. Ⅷ
第一章 緒論………………………………………………………………………….1
1.1半導體產業現況及發展………..…………………………………………………1
1.2 電子束光阻劑線寬變化之討論.............................................................................1
1.3熱流製程於電子束微影製程之應用……………………………………………..2
1.4奈米粒子對光阻劑修飾上的應用………………………………………………..3
1.5 論文架構………………………………………………………………………….3
第二章 文獻回顧…. ………………………………………………………………….6
2.1微影製程技術進展……………………………………………...……………..….6
2.1.1相位移光罩………………………………………………………….………7
2.1.2 阻劑熱流法………………………….…………………………………….....9
2.1.3差式掃描熱量測定法……………………………………………………10
2.2電子束微影系統…………………………………………………........................12
2.2.1.1電子源種類…. ……………………………………....................................12
2.2.1.2電子射束形狀……………………………………………………………..13
2.2.1.3電子射束偏折系統………………………………………………………..14
2.2.1.4電子射束掃描方式………………………………………………….…….14
2.2.1.5晶圓平台移動方式…. …………………………………………………....15
2.2.1.6電子束散射效應…………………………………………………………16
2.3微影製程各步驟目的簡要說明…………………………………………………16
2.3.1上底材…. ……………………………………………………………….17
2.3.2上阻劑………………………………………….……………………..….17
2.3.3軟烤……………………………………………………………………...17
2.3.4曝光……………………………………………………………………...18
2.3.5曝光後烘烤(曝後烤)…. ………………………………………………..18
2.3.6顯影…………………………………….………………………….……..18
2.3.7硬烤…………………………………….………………………………...19
第三章 DSE-1010於電子束微影製程的應用…………………………………....32
3.1 研究動機與目的……………………………………………………………...…32
3.2 實驗藥品與設備………………………………………………………………...33
3.2.1 實驗藥品………………………………………………………………...….33
3.2.2 實驗設備……………………………………………………………………33
3.3實驗步驟……………………………………………………………………..…..35
3.3.1 DSE-1010阻劑厚度對轉速的關西…………………………………………35
3.3.2 DSE-1010阻劑對電子束的敏感度及對比度………………………………35
3.3.3 DSE-1010阻劑應用於電子束微影製程的條件……………………………35
3.3.3.1 最佳曝後烤條件……. ………………………………………………...35
3.3.3.2 最佳軟烤條件……………………………………………………...…..36
3.3.3.3 最佳電子束曝光劑量………………………………………………….36
3.3.3.3 最佳電子束顯影條件………………………………………………….36
3.3.4 DSE-1010阻劑對曝光前後延遲的響應………………………………….36
3.3.4.1 DSE-1010阻劑對曝光前延遲的響應………………………………..36
3.3.4.2 DSE-1010阻劑對曝光後延遲的響應…………………………..……37
 3.3.5 DSE-1010 阻劑經過顯影步驟對線寬的響應……………………………37
 3.3.6DSE-1010 阻劑在高劑量電子束曝光下測試……………………………37
3.3.7 DSE-1010阻劑熱流製程測試……….…………………………………...37
3.3.7.1 DSE-1010阻劑相轉移溫度量測……………………………………38
3.3.7.2 在不同軟烤溫度下對應不同熱流烘烤溫度的洞寬變化情形…….....38
3.3.7.3比較不同熱流烘烤時間的洞寬變化情形及熱流微縮量………….….38
3.3.7.4 比較不同排列比例(Duty Ratio)對洞寬的熱流影響………………38
3.3.8 DSE-1010阻劑蝕刻製程測試………………….. ………………………..38
3.3.8.1 DSE-1010阻劑對熱氧化矽的蝕刻率及蝕刻選擇比的比較………..38
3.3.8.2 比較不同硬烤溫度對DSE-1010阻劑蝕刻率的影響…………...39
3.4 結果與討論……………………………………………………………………...39
3.4.1 DSE-1010阻劑厚度對轉速的關係….. …………………………………….39
3.4.2 DSE-1010阻劑對電子束的敏感度及對比度…………………………….40
3.4.3 DSE-1010阻劑應用於電子束微影製程的條件………………………….41
3.4.3.1 最佳曝後烤條件……………………………………………………41
3.4.3.2 最佳軟烤條件……..………………………………………………….41
3.4.3.3 最佳電子束曝光劑量………………………………………………41
3.4.3.4 最佳電子束顯影條件……………………………………………41
3.4.4 DSE-1010阻劑對曝光前後延遲的響應……………………………………42
3.4.4.1 DSE-1010阻劑對曝光前延遲的響應……………………………….…42
3.4.4.2 DSE-1010阻劑對曝光後延遲的響應………………………………….42
3.4.5 DSE-1010阻劑經過顯影步驟對線寬的響應………………………………42
3.4.6 DSE-1010阻劑在高劑量電子束曝光下變化情形………………………....43
3.4.7 DSE-1010阻劑熱流製程測試……………………………………………....43
3.4.7.1 DSE-1010阻劑熱流溫度量測.. ………………………………………..44
3.4.7.2 在不同軟烤溫度下對應不同熱流烘烤溫度的洞寬變化情形……….44
3.4.7.3比較不同熱流烘烤時間的洞寬變化情形及熱流微縮量……………..44
3.4.8 DSE-1010阻劑蝕刻製程測試….. ………………………………………..45
3.4.8.1 DSE-1010阻劑對熱氧化矽的蝕刻率及蝕刻選擇比的比較………..45
3.4.8.2比較不同硬烤溫度對DSE-1010阻劑蝕刻率的影響…….………46
第四章 奈米粒子在光阻修飾上的應用…………………………………65
4.1 研究動機與目的……………………………………………………………...…65
4.2 實驗藥品與設備………………………………………………………………...65
4.2.1 實驗藥品………………………………………………………………...….65
4.2.2 實驗設備……………………………………………………………………65
4.3實驗步驟……………………………………………………………………..…..67
4.3.1 修飾過DSE-1010阻劑厚度對轉速的關西……………………..…………67
4.3.2 修飾過DSE-1010阻劑對電子束的敏感度及對比度……..………………68
4.3.3修飾過DSE-1010阻劑應用於電子束微影製程的條件……………………68
4.3.3.1 最佳曝後烤條件……. ………………………………………………...68
4.3.3.2 最佳軟烤條件……………………………………………………...…..68
4.3.3.3 最佳電子束曝光劑量………………………………………………….69
4.3.3.4 最佳電子束顯影條件……………………………………………….69
4.3.4 修飾過DSE-1010阻劑經過顯影步驟對線寬的響應……………………69
4.3.5 DSE-1010阻劑與修飾過之DSE-1010阻劑內部結構組成………………69
4.3.6 修飾過DSE-1010阻劑相轉移溫度量測…………………………………69
4.3.7 修飾過DSE-1010阻劑蝕刻製程測試………………….. ………………69
4.3.7.1 修飾過DSE-1010阻劑對熱氧化矽的蝕刻率及蝕刻選擇比的……..69
4.3.7.2比較不同硬烤溫度對修飾過DSE-1010阻劑蝕刻率的影響…....70
4.4 結果與討論 ……………………………………………………………..…….70
4.4.1 修飾過DSE-1010阻劑厚度對轉速的關係………………………………70
4.4.2 修飾過DSE-1010阻劑對電子束的敏感度及對比度…………………….70
4.4.3 修飾過DSE-1010阻劑應用於電子束微影製程的條件…………………..71
4.4.3.1 最佳曝後烤條件………………………………………………………71
4.4.3.2 最佳軟烤條件…………………………………………………………71
4.4.3.3 最佳電子束曝光劑量…………………………………………………71
4.4.4 修飾過DSE-1010阻劑經過顯影步驟對線寬的響應……………………..72
4.4.5 DSE-1010阻劑與修飾過之DSE-1010阻劑內部結構組成……………….72
4.4.6修飾過DSE-1010阻劑相轉移溫度量測……………………………………72
4.4.7修飾過DSE-1010阻劑蝕刻製程測試:…………………………………….72
4.4.7.1修飾過DSE-1010阻劑對熱氧化矽的蝕刻率及蝕刻選擇比的比較..72
4.4.7.2 比較不同硬烤溫度對DSE-1010阻劑蝕刻率的影響 ……………72
第五章 結論……………………………………………………………………….84
5.1實驗結論………………………………………………………………….….…84
5.1.1 DSE-1010於電子束微影製程的應用………………...…………….….84
5.1.2奈米粒子在光阻修飾上的應用…………………………………….…..…84
5.2未來工作與建議………………………………………………………………..84
參考文獻 …………………………………………………….…………………….86
參考文獻 參考文獻
1. C. Y. Chang and S. M. Sze, ULSI Devices, Chapter 1, Wiley-Interscience, New York, 2000.
2. Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Chapter 6, Prentice Hall, New Jersey, 2001.
3. 柯富祥、蔡輝嘉,"積體電路製程用光阻的發展現況",電子月刊,第五卷第一期,1999。
4. 陳學禮、施明昌、謝境峰,"利用多層底部抗反射層解決ArF微影技術之光阻受鹼性污染問題",毫微米通訊,第八卷第四期,38-43,2001。
5. D. A. Kinkead, W. Goodwin and K. Turnquest, "Modeling and Controlling the Effects of Base Contamination in DUV Lithography Resists", Micro, 71-84, October 2000.
6. D. Ruede, M. Ercken and T. Borgers, "The impact of Airborne Molecular Bases on DUV Photoresists", Solid State Tech., 63-70, August 2001.
7. 張俊彥,鄭晃忠,積體電路製程及設備技術手冊,初版,經濟部技術處發行,台北,1997。
8. W. Chen and H. Ahmed,.Appl.Phys. Lett. 62 (13), 1499 (1993).
9. M. Y. Wang, F. H. Ko, T. K. Wang, C. C. Yang and T. Y. Huang, "Characterization and Modeling of Out-diffusion of Manganese and Zinc Impurities from Deep Ultraviolet Photoresist", Journal of the Electrochemical , 146(9) 3455-3460 (1999)
10. C The International Technology Roadmap for Semiconductor (NTRS), Semiconductor Industry Association (SIA), Santa Clara, CA, 2001.
11. T. Terasawa, "Subwavelength Lithography (PSM, OPC)", IEEE Design Automation Conference, 295 -300 (2000)
12. R. M. von Bunau and H. Fukuda, "Printing Isolated Features with k1=0.2 Using Multiple-Pupil Exposure", Jpn. J. Appl. Phys. Vol. 40, 419-425 (2001)
13. M. D. Levenson, N. S. Viswanathan and R. A. Simpson, "Improving Resolution in Photolithography with a Phase-Shifting Mask", IEEE Trans. Electron Devices, Vol. ED-29, 1828-1836 (1982)
14. J. D. Plummer, M. Deal, P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling, Chapter 5, Prentice Hall, New Jersey, 2000.
15. B. J. Lin, "Phase-Shifting Masks Gain in Edge", IEEE Circuits and Devices, Vol. 9, No.2, 28-35 (1993)
16. S. Nakao, A. Nakae, A. Yamaguchi, H. Kimura, Y. Ohno, Y. Matsui and M Hirayama, "0.12μm Hole Pattern Formation by KrF Lithography for Giga Bit DRAM", IEDM Tech. Dig., 61-64 (1996)
17. C. Romeo, P. Canestrari, A. Fiorino, M. Hasegawa, K. Saitoh and A. Suzuki, "IDEAL Double Exposure Method for Poly-level Structures", SPIE Vol. 4000, 240-250 (2000)
18. S. W. Lee, D. H. Chung, I. G. Shin, Y. H. Kim, S. W. Choi, W. S. Han and J. M. Sohn, "Doubly Exposed Patterning Using Mutually One-pitch Shifted Alternating Phase Shift Masks", SPIE Vol. 4346, 762-769 (2001)
19. H. Sewell, V. Bunze, N. Deluca and D. McCafferty, "An Evaluation of the Dual Exposure Technique", SPIE Vol. 4344, 323-333 (2001)
20. S. W. Lee, D. H. Chung, I. G. Shin, Y. H. Kim, S. W. Choi, W. S. Han and J. M. Sohn, "Doubly Exposed Patterning Using Mutually One-pitch Shifted Alternating Phase Shift Masks", SPIE Vol. 4346, 762-769 (2001)
21. 許兼貴,深紫外光光罩抗反射技術及次100奈米世代電子束直寫阻劑特性研究,國立清華大學碩士論文,2001。
22. P. J. Paniez, S. Gally, B. Mortini, C. Rosilio, P. O. Sassoulas, R. Dammel, M. Padmanaban, A. Klauck-Jacobs and J. Oberlander, "Thermal Phenomena in Acrylic 193 nm Resists", SPIE Vol. 3678, 1352-1363 (1999)
23. H. S. Chung, J. H. Jung, Y. S. Kim, K. S. Choi, N. H. You, S. W. Yoon and J. E. Park, "New Development of Cost-effective Sub-0.18μm Lithography with I-line", SPIE Vol. 3999, 499-504 (2000)
24. J. S. Kim, C. W. Koh, G. Lee, J. C. Jung and K. S. Shin, "Novel Routes toward Sub-70 nm Contact Windows by Using New KrF Photoresist", SPIE Vol. 4345, 232-240 (2001)
25. J. H. Chung, S. J. Choi, Y. Kang, S. G. Woo and J. T. Moon,"A Novel Resist Material for Sub-100 nm Contact Hole Pattern", SPIE Vol. 3999, 305-312 (2000).
26. H. L. Chen, C. K. Hsu, B. C. Chen, F. H. Ko, J. Y. Yang, T. Y. Huang and T. C. Chu,"Studies of Chemically Amplified Deep UV Resists for Electron Beam Lithography Applications", SPIE Vol. 4343, 781-788 (2001)
27. Y. Kang, S. G. Woo, S. J. Choi and J. T. Moon, "Development of Resist for Thermal Flow Process Application to Mass Production", SPIE Vol. 4345, 222-231 (2001)
28. J. S. Chun, H. E. Kim, S. Barnett and J. Shin, "Novel Harding Methods of DUV Chemically Amplified Photoresist by Ion Implantation and Its Application to New Organic ARC Material and Bilayer Process", SPIE Vol. 3678, 1364-1370 (1999)
29. Yoshio Nishi, Robert Doering andTim Wooldrige, Handbook of Semiconductor Manufacturing Technology, Marcel Dekker Inc, New York, 2000.
30. 龍文安 著,積體電路微影製程,初版,高立圖書有限公司,台北,1998。
31. Y. Nakayama, S. Okazaki and N. Saitou, "Electron-beam Cell Projection Lithography: A New High-throughput Electro-beam Diret-Writing Technology Using a Specially Tailored Si Aperture", J. Vac. Sci. Technol., 6(6), 1836-1840 (1990)
32. Y. Sakitani, H. Yoda, H. Todokoro, Y. Shibata, T. Yamazaki and K. Ohbitu, "Electron-beam Cell Projection Lithography", J. Vac. Sci. Technol., 10(6), 2759-2763 (1992)
33. 邱燦賓、施敏,"電子束微影技術",科學發展月刊,第28卷第6期,2000。
34. K. Suzuki, S. Matsui and Y. Ochiai, Sub-Half-Micron Lithography for ULSIs, Chapter 4,Cambridge University Press, Cambridge, 1999.
35. L. F. Thompson, C. G. Willson and M. J. Bowden, Introduction to Microlithography, Chapter 2, American Chemical Society, Washington, 1994.
36. 邱燦賓,"電子束微影技術之鄰近效應修正(I)",毫微米通訊,第七卷第三期,2000。
37. T. Yamauchi, T. Matsui, J. Kanamori, Y. Miyakawa, and K. Shimoyama, “0.2μm Hole Pattern Generation by Critical Dimension Biassing Using Resin Overcoat”, Jpn. J. Appl. Phys. Vol. 34, pp. 6615-6621 (1995).
38. T. Kanda, H. Tanaka, and Y. Kinoshita, “Advanced Microlithography Process with Chemical Shrink Technology”, Proc. SPIE 3999, p. 881-889 (2000).
39. J.-S. Chun, S. Bakshi, S. Barnett, J. Shih, and S. Lee, “Contact Hole Size Reducing Methods by using Water-Soluble Organic Over-coating material (WASOOM) as a barrier layer toward 0.15um contact hole; Resist flow technique I”, Proc. SPIE 3999, p. 620-626 (2000).
40. T. Toyoshima, T. Ishibashi, A. Minanide, K. Sugino, K. Katayama, T. Shoya, I. Arimoto, N. Yasuda, H. Adachi, and Y. Matsui, “0.1 pm Level contact hole pattern formation with KrF lithography be resolution enhancement lithography assisted by chemical shrink (RELACS)“, EDM 1998, pp. 333 - 336 (1998).
41. M. Sebald, J. Berthold, M. Beyer, R. Leuschner, C. Noelscher, U. Scheler, R. Sezi, H. Ahne, and S. Birkle, “Application aspects of the Si-CARL bilayer process”, Proc. SPlE 1466, pp. 227 – 236 (1991).
42. S. Hien, G. Czech, W.-D. Domke, H. Raske, M. Sebald, I. Stiebert, “Dual-wavelength photoresist for sub-200 nm lithography”, Proc. SPlE 3333, pp. 154 - 164 (1998)
43. K. Aramaki, T. Hamada, D. K. Lee, H. Okazaki, N. Tsugama, and G. Pawlowski, “Techniques to Print Sub-0.2 μm Contact Holes”, Proc. SPlE 3999, pp. 738 – 749 (1991).
44. T. Ohmi, "Future Trends and Applications of Ultra-Clean Technology," Tech. Dig, IEDM, 49, 1989.
45. M. M. Heyns, "New Wet Cleaning Strategies for Obtaining Highly Reliable Thin Oxides," Mat. Res. Soc. Sym. Pro. 315, p.35, 1993.
46. J. W. Coburn and Harold F. Winters, “Plasma etching – A discussion of mechanisms”, J. Vac. Sci. Technol., Vol. 16, No. 2, Mar./Apr. 1979, p.391.
47. T. Ishii, H. Nozawa, and T. Tamamura, in Abstracts of Int. Conf. On Micro- and Nano- Engineering (Glasgow, UK 1996),p.21
48. T. Ishii, H. Nozawa,, and T. Tamamura, Appl. Phys. Lett. 70 (9),,1110 (1997)
49. A. N. Broers, in Proc. Of 1st Internat’l Conf. On Electron and Ion Beam Science and Technology, edited by R. Bakish (Wiley, New York, 1964), p.191
50. A. N Broers, W. W. Molzen, J. J. Cuomo, and N. D. Wittels, Appl. Phys. Lett. 29 (9), 596 (1997)
指導教授 周正堂(C-T Chou) 審核日期 2002-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明