博碩士論文 89341002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.21.231.245
姓名 趙恩中(An-Chong Chao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以酪胺酸酵素修飾幾丁聚醣 應用於化工程序之研究
(The fabrication of tyrosinase on chitosan using in chemical engineering process. )
相關論文
★ 幾丁聚醣摻合PU基材之物性及抑菌研究★ 幾丁聚醣/硫酸軟骨素製成多孔性複合膜之物化性質探討與研究
★ 聚多醣體於組織工程材料應用之研究★ PDMS在NMRI顯影劑上之應用(I)流變性質之探討
★ 環氧樹脂/聚氧化二甲苯摻合體反應性、相行為及機械性質之研究★ 幾丁聚醣於薄膜製程發展及物性之研究
★ 氰酸酯/聚氧化二甲苯摻合體反應性及相行為研究★ 聚二甲基矽氧高分子膠體溶液之研究:NMR顯影劑、NMR訊號及流變性質等探討
★ 聚乳酸(PLA)及乳酸/羥基乙酸共聚合物(PLGA) 於抗癌藥物傳輸系統之研究★ 以電漿處理聚四乙烯表面改質之研究
★ 幾丁聚醣與海藻膠複合被覆薄膜之相關物性與細胞貼覆★ 不同分子量之幾丁聚醣與纖維素摻合於薄膜製程及物性之研究
★ 幾丁質摻合聚乳酸酯微粒於藥物釋放系統之研究★ 多面體寡體矽石/甲基丙烯酸脂系之奈米結構 混成材料之研究
★ 酪胺酸酵素改質幾丁聚醣在化工廢水處理程序上之應用★ 幾丁聚醣接枝半乳糖簇之材料性質及其肝靶向性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
本研究以酪胺酸酵素改質幾丁聚醣,賦予幾丁聚醣新的官能基,或直接將酪胺酸酵素與幾丁聚醣複合成固定化酪胺酸酵素,探討此諸經酪胺酸酵素修飾之幾丁聚醣在化工程序中的應用。利用酪胺酸酵素之催化能力將3,4二羥基苯甲酸、3,4二羥基苯乙酸及3,4二羥基苯丙酸分別接枝於幾丁聚醣之胺基上,而後探討此三種羧基改質幾丁聚醣對於水中所含鹼性染料crystal violet及bismarck brown Y之吸附移除效率,結果發現以3,4二羥基苯丙酸改質之幾丁聚醣吸附移除效率最佳。在酪胺酸酵素去除水中所含酚之反應中,發現未經改質之幾丁聚醣,亦會吸附蛋白質;經羧基改質之幾丁聚醣可作為酪胺酸酵素之親合吸附劑,其吸附行為遵循Langmuir 等溫吸付及二次動力吸附模式,其中以3,4二羥基苯甲酸改質之幾丁聚醣對酪胺酸酵素溶液中蛋白質之吸附效率最佳。以epichlorohydrin、ethylene glycol diglycidyl ether、及gluteraldehyde為交聯劑,分別將酪胺酸酵素化學鍵結於幾丁聚醣,用於將酪胺酸轉化為多巴,固定化後酪胺酸酵素之溫度穩定性明顯提高,幾丁聚醣上殘留之胺基經遮蔽後,並不會提昇固定化酪胺酸酵素之溫度穩定性,但有助於生產多巴時之操作穩定性。以凝膠包埋、三明治式包埋或化學鍵結之方式,將幾丁聚醣/酪胺酸酵素固著於玻璃石墨電極之表面,製作出可用以偵測出水中酚類化合物濃度之生物電極,凝膠包埋方式可以得到最大應答電流,使用交聯劑增加了偵測穩定性但降低了靈敏度以及延長了應答時間;以epichlorohydrin為交聯劑之凝膠包埋生物電極總體表現最佳。
摘要(英) Abstract
In this study chitosan was modified to posses carboxyl group via the enzymatical grafting reaction of tyrosinase, or was used to immobilize tyrosinase. The purpose of this thesis was to find applications of these fabricated chitosans using in chemical process. In chapter three, 3,4-dihydroxybenzoic acid, 3,4- dihydroxyphenylacetic acid, and hydrocaffeic acid were used individually as substrates of tyrosinase to graft onto chitosan. The grafting amounts of these phenol derivatives onto chitosan were examined and the modified chitosan were used in experiments on uptake of the cationic dyes crystal violet and bismarck brown Y by a batch adsorption technique. In chapter four, tyrosinase was used to convert phenol to polyquinone, then polyquinone was removed by chitosan beads and tyrosinase was adsorbed by those carboxylly modified chitosan beads. The thermodynamic and kinetic models of tyrosinase adsorbed by modified chitosan were investigated. In chapter five, Chitosan was activated with glutaraldehyde, epichlorohydrin and ethylene glycol diglycidyl ether respectively in order to immobilize tyrosinase for the production of L-dopa from L-tyrosine. The effects of coupling agents and amine capping agents on the operation stability of immobilized tyrosinase were studied. A practical route to immobilize tyrosinase on chitosan for producing L-dopa from L-tyrosine was found. Finally in chapter six, chitosan was used to prepared tyrosinase-based biosensor on glassy carbon electrode for detecting the concentration of phenols. The effect of immobilizing methods, including chitosan gel mixed with enzyme, sandwich entrapped enzyme between two pieces of chitosan films, and covalently bonded enzyme on chitosan films, upon the apparent response of biosensor were studied. A highly stable biosensor was fabricated.
關鍵字(中) ★ 生物電極
★ 多巴
★ 蛋白質吸附
★ 鹼性染料吸附
★ 幾丁聚醣
★ 酪胺酸酵素
關鍵字(英) ★ protein adsorption
★ cationic dye adsorption
★ chitosan
★ tyrosinase
★ DOPA
★ biosensor
論文目次 目 錄
第一章 緒論 ---------------------------------------- 1
第二章 文獻回顧 --------------------------------------- 8
2.1 前言 --------------------------------------- 8
2.2 去除水中之染料 ------------------------------ 9
2.2-1 提高對陽離子染料之吸附力 --------------- 9
2.2-2 等溫吸附模式 -------------------------- 10
2.3 去酚反應 ------------------------------------ 12
2.3.1 過氧化酵素用於去酚反應 ---------------- 12
2.3.2酪胺酸酵素用於去酚反應 ---------------- 13
2.4 檢測酚濃度之生物傳感器 -------------------- 16
2.4.1 以過氧化酵素為生物元件 --------------- 16
2.4.2 以酪胺酸酵素為生物元件 --------------- 17
2.4.3 加入介體之影響 ------------------------ 19
2.4.4 生物元件之酵素支撐材料 ---------------- 20
2.5 酵素固定化 -------------------------------- 20
2.6 左多巴(L-DOPA)之製備 ----------------------- 22
第三章 改質幾丁聚醣用於鹼性染料之吸附 ----------------- 23
3.1 前言 --------------------------------------- 24
3.2藥品與器材 ---------------------------------- 24
3.2.1 實驗藥品 ------------------------------- 24
3.2.2 實驗器材 ------------------------------- 26
3.3 實驗步驟 ------------------------------------ 27
3.3.1 幾丁聚醣膜與微小球製備----------------- 27
3.3.2 酪胺酸酵素之萃取 ---------------------- 27
3.3.3 酪胺酸酵素活性測定 -------------------- 29
3.3.4 幾丁聚醣膜及微小球的改質 -------------- 29
3.3.5 掃瞄式電子顯微鏡表面結構分析 ---------- 30
3.3.6 傅立葉紅外線光譜分析 ------------------ 30
3.3.7 鹼性染料的吸附 ---------------------- 30
3.4 結果與討論 --------------------------------- 31
3.4.1幾丁聚醣膜與微小球改質結果 ------------- 31
3.4.2 掃瞄式電子顯微鏡(SEM)表面結構分析 -- 33
3.4.3 傅立葉紅外線光譜儀(FTIR)分析 -------- 34
3.4.4幾丁聚醣微小球上羧基接枝量 ------------- 36
3.4.5鹼性染料吸附 --------------------------- 39
3.5結論 ------------------------------------- 48
第四章 去酚反應之應用-改質幾丁聚醣吸附酪胺酸酵素 ------- 49
4.1 前言 ------------------------------------ 49
4.2藥品與器材 ---------------------------------- 52
4.2.1 實驗藥品 ------------------------------ 52
4.2.2 實驗器材 ------------------------------ 53
4.3 實驗步驟 ------------------------------------ 54
4.3.1幾丁聚醣微小球之製備 --------------------- 54
4.3.2 酪胺酸酵素之萃取 ---------------------- 54
4.3.3 酪胺酸酵素活性測定 ---------------------- 55
4.3.4 幾丁聚醣微小球的改質 -------------------- 55
4.3.5 去除水溶液中之酚 ------------------------ 56
4.3.6蛋白質之吸附 ----------------------------- 56
4.3.7蛋白質之脫附 ----------------------------- 56
4.3.8蛋白質之吸附模式 ------------------------ 57
4.4 結果與討論 --------------------------------- 57
4.4.1 幾丁聚醣微小球對去除酚之影響 ----------- 57
4.4.2去酚後之殘留液再去除蛋白質實驗結果 ------ 60
4.4.3幾丁聚醣微小球再吸附實驗結果-------------- 84
4.5、結論 --------------------------------- 84
第五章 酪胺酸酵素固定於幾丁聚醣用以製備左多巴之研究 ---- 86
5.1 前言 -------------------------------------- 87
5.2藥品與器材 ----------------------------------- 87
5.2.1 實驗藥品 ------------------------------ 87
5.2.2 實驗器材 ----------------------------- 89
5.3 實驗步驟 ---------------------------------- 90
5.3.1 幾丁聚醣膜與微小球製備 ----------------- 90
5.3.2 幾丁聚醣以偶合劑活化 ----------------- 91
5.3.3 活化後幾丁聚醣殘留胺基之遮蔽 ---------- 91
5.3.4觀察幾丁聚醣膜被左多巴醌攻擊之現象 ----- 91
5.3.5 酪胺酸酵素固定於幾丁聚醣 --------------- 91
5.3.6 掃瞄式電子顯微鏡(SEM)表面結構分析 ---- 92
5.3.7 酵素活性測定 ---------------------------- 92
5.3.8蛋白質量測定 ---------------------------- 92
5.3.9 pH及溫度對酵素活性之影響 --------------- 92
5.3.10 由左酪胺酸製備左多巴 ------------------ 93
5.3.11 固定化酵素操作之穩定性 ---------------- 93
5.4 結果與討論 ---------------------------------- 93
5.4.1 觀察幾丁聚醣膜被左多巴醌攻擊之現象 ----- 93
5.4.2酪胺酸酵素固定於幾丁聚醣 ----------------- 98
5.4.3掃瞄式電子顯微鏡(SEM)表面結構分析 ---- 99
5.4.4 酪胺酸酵素最適pH值之測試 --------------102
5.4.5 酪胺酸酵素最適溫度及溫度穩定性之測試 --- 104
5.4.6 以固定化酪胺酸酵素製備左多巴
5.4.7 最佳固定化酪胺酸酵素於幾丁聚醣之方式(以製備左多巴) ------------------------------- 123
5.5 結論 ------------------------------- 127
第六章 以幾丁聚醣為基材製備酵素電極用於水溶液中酚類濃度之偵測 ------------------------------- 128
6.1 前言 ------------------------------- 128
6.2藥品與器材 ------------------------------- 129
6.2.1 實驗藥品 ------------------------------- 130
6.2.2 實驗器材 ------------------------------- 130
6.3 實驗步驟 ------------------------------- 130
6.3.1玻璃石墨電極清洗 ----------------------- 130
6.3.2幾丁聚醣電極之製備---------------------- 131
6.3.3幾丁聚醣電極活化 ---------------------- 131
6.3.4幾丁聚醣電極化學鍵結酪胺酸酵素 -------- 131
6.3.5幾丁聚醣電極包埋酪胺酸酵素 ------------ 131
6.3.6酵素電極活性之測定 -------------------- 132
6.3.7酵素電極對甲基酚濃度之測試 ------------- 132
6.4 結果與討論 ------------------------------- 132
6.5 結論 ------------------------------- 137
第七章 總結論 ------------------------------- 150
參考文獻 ------------------------------- 152
參考文獻 參考文獻
1. C.W.G. van Gelder, (1997) Sequence and structure features of plant and fungal tyrosinases. Phytochemistry 45, 1309-1323.
2. K.I. Miller, (1998) Sequence of the Octopus dofleini hemocyanin subunit: structure and evolutionary implications. J. Mol. Biol. 278, 827-841.
3. T. Kawabata, (1995) Molecular cloning of insect pro-phenol oxidase: a copper-containing protein homologous to arthropod hemocyanin. Proc. Natl. Acad. Sci. U.S.A. 92, 7774-7778.
4. K. Fujimoto, (1995) Nucleotide sequence of the cDNA encoding the proenzyme of phenoloxidase A 1 of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 92, 7769-7773.
5. T. Burmester, K. Scheller, (1996) Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hemocyanin,and dipteran arylphorin recepter. J. Mol. Evol. 42, 713-728.
6. G. Durstewitz, N.B. Terwillger, (1997) cDNA cloning of a developmentally regulated hemocyanin subunit in the crustacean Cancer magister and phylogenetic analysis of the hemocyanin gene family. Mol. Biol. Evol. 14, 266-276.
7. A.L. Hugfes, (1999) Evolution of the arthropod prophenoloxidase/ hexamerin protein family. Immunogenetics 49, 106-114.
8. P.A. Riley, (1997) Melanin. Int. J. Biochem. Cell. Biol. 29, 1235-1239.
9. J.P. Gillespie, et al. (1997) Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611-643.
10. K.Söderhäll, L. Cerenius, (1998) Role of the prophenoloxidase - activating system in invertebrate immunity. Curr. Opin. Immunol. 10, 23-28.
11. A. Gemant, (1977) Polyphenol oxidase as a factor in aging. Gerontol. 23, 350-354.
12. A. Sanchez-Ferrer, J.N. Rodriguez-Lopez, F. Garcìa-Canovas, F. Garcìa-Carmona, (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim. Biophys. Acta 1247, 1-11.
13. M. Jiménez, F. Garcìa-Carmona, (1996) Hydrogen peroxide- dependent 4-t-butylphenol hydroxylation by tyrosinase - a new catalytic activity. Biochim Biophys Acta 1297, 33-39.
14. D.A. Robb, S. Gutteridge, (1981) Polypeptide composition of two fungal tyrosinase. Phytochemistry 20, 1481-1485.
15. J.P. Gillespie, M.J. Bidochka, G.G. Khachatourians, (1991) Separation and characterization of grasshopper hemolymph phenoloxidases by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Comp. Biochem. Physiol. 98C, 351-358.
16. J.N. Rodriguez-Lopez, et al. (1991) A continuous sepectro- photometric method for the determination of diphenolase activity of tyrosinase using 3,4-dihydroxymandelic acid. Anal. Biochem. 195, 369-374.
17. J. Dec, and J.-M. Bollag, (1995) Effect of various factors on dehalogenation of chlorinated phenols and anilines during oxidative coupling. Environ. Sci. Technol., 29, 657-663.
18. S.C. Atlow, L. Bonadonna-Aparo, A.M. Klibanov, (1984) Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase, Biotech. Bioeng. 26, 599-604.
19. A.M. Klibanov, K.P. Scott, (1983) Regioselective oxidation of phenols from coal-conversion waste water. Sci. 221, 259-265.
20. S. Liu, J. Yu, H. Ju, (2003) Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carnon paste electrode. J. electroanal. chem. 540, 61-67.
21. H.L. Chu, D.B. Yeh, J.F. Shaw, (1993) Production of L-DOPA by banana leaf polyphenol oxidase. Bot. Bull. Acad. Sinica, 34, 57-62.
22. M. Morpurgo, O. Schiavon, P. Caliceti, F.M. Veronese, (1996) Covalent modification of mushroom tryosinase with different amphiphic polymers for pharmaceutical biocatalysis applications. Appl. Biochem. Biotechnol., 56, 59-64.
23. J. Dec, J.-M. Bollag, (1995) Effect of various factors on dehalogenation of chlorinated phenols and anilines during oxidative coupling, Environ. Sci. Technol. 29, 657-664.
24. M. Weltrowski, B. Martel, M. Morcellet, (1996) Chitosan N-benzyl sulfonate derivatives as sorbents for removal of metal ions in an acidic medium. J. Appl. Polym. Sci. 59, 647-654.
25. J. Dec, K. Haider, J.M. Boolag, (2003) Release of substituents from phenolic compounds during oxidative coupling reactions. Chemosphere, 52, 549-556.
26. W.B. Weber, (1992) Physicochemical Process for Wastewater Control, Wiley, New York.
27. Ravi Kumar MNV. (2000) A review of chitin and chitosan applications. Reactive & Functional Polymers 46, 1-27.
28. 徐世昌,(2001) 生物性高分子—「幾丁質及幾丁聚醣」之介紹與應用,化工資訊,36-45.
29. K. Kurita, (1998) Chemistry and application of chitin and chitosan. Polymer Degradation and Stability. 59,117-120.
30. R. J. Nordtveit, K. M. Vårum, O. Smidsrød, (1996) Degradation of partially N-acetylated chitosans with hen egg white and human lysozyme. Carbohydrate Polymers. 29, 163-167.
31. T.D. Rathke, S.M. Hodson, (1994) Review of chitin and chitosan as fiber and film formers, J.M.S.-Rev. Macromol. Chem. C34, 375-380.
32. R.A.A. Muzzarelli, (1997) Human enzymatic activities related to the therapeutical administration of chitin derivatives, Cell Mol. Biol. Life Sci. 53, 131-136.
33. H.F. Mark, N.M. Bikales, C.G. Overberger, G. Menges (Eds.), (1986) Encyclopedia of polymer Science and Engineering, Vol. 1, Wiley, New York, P. 435.
34. Y.Le, S.C. Anand, A.R. Horrocks, (1996) Development of antibacterial polysaccharide fibres abd their performance, in: European Conference on Advances in Wound Management, Amsterdam, Netherlands, October.
35. R.Olsen, D. Schwartzmiller, W. Weppner, R. Winandy, (1989) in: G. Skjak-Brack, T. Anthonsen, P.A. Sandford (eds.), Chitin and Chitosan: Source, Chemistry, Biochemistry, Physical Properties and Applications, Elsevier Applied Science, New York.
36. D.A. Sandford, A. Stinnes (Eds.), (1991) Biomedical Applications of High Purity Chitosad-Physical, Chemical and Bioactive Properties, ACS Symposium Series, 467, 430-435.
37. K.A. Spreen, J.P. Zikakis, P.R. Austin, (1984) in: J.P. Zikakis (Ed.), Chitin, Chitosan and Related Enzymes, Academic Press, Orlando, p. 57.
38. J.P. Zikakis, W.W. Saylor, P.R. Austin (eds.), (1982) Chitin and Chitosan, The Japanese Society of Chitin and Chitosan, Tottori, P. 233.
39. M.L. Markey, M.L. Bowman, M.V.W. Bergamini (Eds.), (1989) Chitin and Chitosan, Elsevier Applied Science, London, P. 713.
40. K.G.R. Nair, P. Madhavan, (1984) Chitosan for removal of mercury from water, Fishery Tech. 21, 109-114.
41. C. Peniche-covas, L.W. Alwarez, W.Arguelles-Monal, (1987) The adsorption of mercuric ions by chitosan, J. Appl. Polym. Sci. 46, 1147-1152.
42. N. Jha, I. Leela, A.V.S. Prabhakar Rao, (1988) Removal of cadmium using chitosan, J. Environ. Eng. 114, 962-969.
43. S. Harry, (1989) The theory of coloration of textiles, in A. Johnson (Ed.), Thermodynamics of Dye sorption, 2nd Edition, Society of Dyers and Colorists, West Yorkshire, UK, p.255.
44. P.K. Dutta, M.N.V. Ravi Kumar, (1998) Textile industries: safety, health and environment in: R.K. Trivedy (Ed.), Advances in Wastewater Trement Technologies, Global Science, India, p, 229.
45. G.Allan, G.D. Crospy, J.H. Lee, M.L. Miller, W.M. Reif, (1972) in: Proceedings of a Symposium on Man-made Polymers in Paper Making, Helsinki, Finland.
46. L. Arof, R.H.Y. Subban, S. Radhakrishna, in: P.N. Prasad (Ed.), (1995) Polymer and Other Advanced Materials: Emerging Technologies and Business, Plenum Press, New York, p. 539.
47. S. Miyazaki, (1998) Chitin and chitosan as vehicle for drug delivery, Zairyo Gijutsu 16, 276-281.
48. G.C. Ritthidej, P. Chomto, S. Pummangura, P. Menasveta, (1994) Chitin and chitosan as disintigrants in paracetamol tablets, Drug Dev. Ind. Pharm. 20, 2019-2024.
49. S.I. Pather, I. Russell, J.A. Syee, S.H. Neau, (1998) Sustained release theophylline tablets by direct compression. Part I: Formulation and in vitro testing, Int. J. Pharm. 164, 1-6.
50. F.L. Mi, N.L. Her, C.Y. Kaun, T.Wong, S.S. Shyu, (1997) Chitosan tablets for controlled drug release of theophylline: effect of polymer drug wet or dry blend and anionic-cationic inter polymer, J. Appl. Polym. Sci. 66, 2495-2502.
51. S. Seshadri, P.L. Bishop, A.M. Agha, (1994) Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manage. 15, 127-137.
52. C.A. Fewson, (1988) Biodegradation of xenobiotic and other persistent compounds: the causes of recalcitrance. Trends Biotechnol. 6, 148-153.
53. G. Mishra, M. Tripathy, (1993) A critical review of the treatment for decolorization of textile effluent. Colourage 40, 35-38.
54. U. Meyer, (1981) Biodegradation of synthetic oraganic colorants. In: Leisinger, T.A. Cook, M.R. Hutter, J. Nuesch (Eds.) Microbial Degradation of Xenobiotic and Recalcitrant Compounds, FEMS Symposium 12. Academic Press, London, UK, pp. 371-385.
55. H. Zollinger, (1987) Azo dyes and pigments. In colour chemistry synthesis, Properties and Applications of Organic Dyes and Pigments. VCH, New York, USA, pp. 92-100.
56. M.N.V. Ravi Kumar, T. Rajakala Sridhari, K. Durga Bhavani, P.K. Dutta, (1998) Trends in color removal from textile mill effluents. Colorage Aug. 25.
57. G. Mckay, (1982) Adsorption of dyestuffs from aqueous solution with activated carbon: I-equilibrium and Batch contact time studies. J. Chem. Tech. Biotechnol. 32, 759-772.
58. S.D. Lambert, N.J.D. Graham, (1989) Adsorption methods for treating organically coloured and water. Environ. Technol. Lett. 10, 785-798.
59. M.S. El-Geundi, (1997) Adsorbents for industrial pollution control. Adsorp. Sci. Technol. 15, 777-787.
60. K.R. Ramakrishna, T. Viraraghavan, (1997) Dye removal using low cost adsorbents. Water Sci. Tech. 36, 189-196.
61. G.S. Gupta, S.P. Shukla, G. Paarsad, V.N. Singh, (1992) China clay as an adsorbent for dye house wastewater . Environ. Technol. 13, 925-936.
62. M.N. Ahemed, R.N. Ram, (1992) Removal of basic dye from wastewater using silica as adsorbent. Environ. Pollut. 77, 79-86.
63. M.S. El-Geundi, (1991) Colour removal from textile effluents by adsorption techniques. Water Res. 25, 271-273.
64. S.I. Abo-Elela, M.A. El-Dib, (1987) Color removal via adsorption on wood shaving. The Sci. Total Environ. 66, 267-273.
65. K.K. Sunil, K.P. Kamala, R.M. Srivastava, V.N. Sing, (1987) Removal of Victoria blue from aqueous solution by fly ash. J. Chem. Tech. Biotechnol. 38, 99-104
66. M.S. Chiou, H.Y. Li, (2003) Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50, 1095-1105.
67. M.S. Chiou, H.Y. Li, (2002) Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. J. Hazard. Mater. B 93, 233-248.
68. R.S. Juang, R.L. Tseng, F.C. Wu, S.H. Lee, (1997) Adsorption behavior of reactive dyes from aqueous solutions on chitosan. J. Chem. Technol. Biotechnol. 70, 391-399.
69. F.C. Wu, R.L. Tseng, R.S. Juang, (2001) Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Wat. Res. 35, 613-618.
70. F.C. Wu, R.L. Tseng, R.S. Juang, (2001) Enhanced abilities of highly swollen chitosan beads for color removal and tyrosinase immobilization. J. Hazard. Mater. 81, 167-177.
71. R.S. Juang, F.C. Wu, R.L. Tseng, (2001) Solute adsorption and enzyme immobilization on chitosan beads prepared from shrimp shell wastes. Bioresource Technol. 80, 187-193.
72. F.C. Wu, R.L. Tseng, R.S. Juang, (2000) Comparative adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes. J. Hazard. Mater. 73, 63-75.
73. Y. Hiroyuki, T. Takeshi, (1997) Adsorption of direct dye on cross-linked chitosan fiber: breakthrough curve. Water sci. technol. 35, 29-37.
74. S.Doherty, R. G. J. Edyvean, (1996) Removal of Colour from Industrial Dyehouse Effluent Using Biosorption. International Biodeterioration & Biodegradation 37, 243-248.
75. H. Yoshida, S. Okamota, T. Kataoka, (1991) Recovery of direct dye and acid dye by adsorption on chitosan fiber equilibria. Water Sci. Tech. 13, 1667-1676.
76. K.R. Benak, L.E. Dominguez, J. Economy, C.L. Mangun, (2002) Sulfonation of pyropolymeric fibers derived from aldehyde resins.Carbon 40, 2323-2332.
77. K. Kishi, T. Ishimaru, M. Ozono, I. Tomita, T. Endo, (2000) Development and application of latent hydrosilylation catalysts.: 3. Control of activity of platinum catalysts by poly(vinyl ether) having propargyl moieties. Reactive and Functional Polymers. 45, 131-136.
78. S. Duran, D. Şolpan, O. Gűven, (1999) Synthesis and characterization of acrylamide-acrylic acid hydrogels and adsorption of some textile dyes. Nucl. Instr. and Meth. in Phys. Res. B 151, 196-199.
79. E. Karadaĝ, D. Saraydin, O. Gűven, (1998) Removal of some cationic dyes from aqueous solutions by acrylamide/itaconic acid hydrogels. Water Air Soil Pollut. 106, 369-378.
80. D. Saraydin, E. Karadaĝ, (1996) Adsorption of some basic dyes by acrylamide -maleic acid hydrogels. Sep. Sci. Technol. 31, 423-434.
81. X. Zeng, E. Ruckenstein, (1999) Membrane chromatography: Preparation and application to protein separation. Biotechnol. Prog. 15, 1003-1019.
82. H. Zou, Q. Luo, D. Zhou, (2001) Affinity membrane chromatography for the analysis and purification of proteins. J. Biochem. Biophys. Methods. 49, 199-240.
83. I. Langmuir, (1918) Adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361-1403.
84. H. Freundlich, (1906) Adsorption in solution. Phys. Chemie. 57, 384-410.
85. B. Al-Duri, (1996) Adsorption modeling and mass transfer. In: G. McKay, (Ed.), Use of adsorbents for the removal pollutants from wastewaters. CRC Press, Boca Raton, pp. 59-97.
86. H. Moon, W.K. Lee, (1983) Intraparticle diffusion in liquid phase adsorption of phenols with activated carbon in a finite batch adsorber. J. Colloid. Interface Sci. 96 (1), 162-170.
87. G. McKay, (1980) Kinetics of colour removal from effluent using activated carbon. JSDC 96, 576-579.
88. O. Redlich, D.L. Peterson, (1959) A useful adsorption isotherm. J. Phys. Chem. 63, 1024-1026.
89. A.P. Matthews, W.J. Weber Jr., (1976) Effects of external mass transfer and intraparticle diffusion on adsorption rates in slurry reactors. AIChE Symp. Ser. 73, 91-98.
90. Van der Zee, S.E.A.T.M, and W.H. Van Riemsdijk. (1988) Model for long-term phosphate reaction kinetics. J. Environ. Qual.. 17, 35-41.
91. J. Toth, (1971) State equations of the solid gas interface layer. Acta Chem. Acad. Hung. 69, 311-317.
92. Y. Ku,; K.C. Lee, (2000) Removal of phenols from aqueous solution by XAD-4 resin. J. hazard. mater. 80, 59-68.
93. F.A. Banat, B. Al-Bashir, S. Al-Asheh, O. Hayajneh, (2000) Adsorption of phenol by bentonite. Environ. pollut. 107, 391-398.
94. B.Tryba, A.W. Morawski, M. Inagaki, (2003) Application of TiO2 -mounted activated carbon to the removal of phenol from water. Appl. catal. B, Environmental 41, 427-433.
95. A.A. Sameer, B. Fawzi, A.A. Leena, (2003) Adsorption of phenol using different types of activated bentonites. Separation and Purification Technology 33, 1-10.
96. A. A. M. Daifullah, B. S. Girgis, (1998) Removal of some substituted phenols by activated carbon obtained from agricultural waste. Water Res. 32, 1169-1177.
97. L. J. Alemany, (1997) Removal of phenol from aqueous solution by adsorption on to coal fly ash. Fuel energy abstr. 38, 157.
98. Y.H. Shen, (2002) Removal of phenol from water by adsorption– flocculation using organobentonite. Water Res. 36, 1107-1114.
99. I.T. Ivana, D. Bozo, T. Zagorka, K. Elvira, (1998) Reuse of biologically regenerated activated carbon for phenol removal. Water Res. 32, 1085-1094.
100. S. K. Srivastava, R. Tyagi, (1995) Competitive adsorption of substituted phenols by activated carbon developed from the fertilizer waste slurry. Water Res. 29, 483-488.
101. Y.S. Wang, M. A. Barlaz, (1998) Anaerobic biodegradability of alkylbenzenes and phenol by landfill derived microorganisms. FEMS microbiol. ecol. 25, 405-418.
102. C. Kauffmann, B.R. Petersen, M.J. Bjerrum, (1999) Enzymatic removal of phenols from aqueous solutions by Coprinus cinereus peroxidase and hydrogen peroxide. J. biotechnol. 73, 71 – 74.
103. P. Kanekar, S. Sarnaik, A. Kelkar, (1996) Microbial technology for management of phenol bearing dyestuff wastewater. Water sci. technol. 33, 47-51.
104. G. González, G. Herrera, Ma.T. García, M. Peña, (2001) Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. Bioresource Technology 80, 137-142.
105. I. G. García, J. L. B. Venceslada, P. R. J. Peña, et. al. (1997) Biodegradation of phenol compounds in vinasse using Aspergillus terreus and Geotrichum candidum. Water Res. 31, 2005-2011.
106. C.C. Wang, C.M. Lee, C. J. Lu, M. S. Chuang, C. Z. Huang, (2000) Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 41, 1873-1879.
107. K.H. Lanouette, (1977) Treatment of phenolic wastes. Chem. Eng. 84, 99-106.
108. M. Sitting, (1977) How to remove pollutants and toxic polluents from air and water. Noyes Data Corp: N.J. Park Ridge, 430-433.
109. W. Gernjak, T. Krutzler, A. Glaser, S. Malato, J. Caceres, R. Bauer, (2003) Photo-Fenton treatment of water containing natural phenolic pollutants. Chemophere 50, 71-78.
110.M.H. Zareie, B.K. Körbahti, A. Tanyolaç, (2001) Non-passivating polymeric structures in electrochemical conversion of phenol in the presence of NaCl. J. hazard. mater. 87, 199-212.
111.G.C.C. Yang,; Y.W. Long, (1999) Removal and degradation of phenol in a saturated flow by in-situ electrokinetic remediation and Fenton-like process. J. hazard. mater. 69, 259-271.
112. J. Iniesta, J. Gonzía, E. Expósito, V. Montiel, A. Aldaz, (2001) Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes Water Res. 35, 3291-3300.
113. J.L. Rizzo, A.R. Shepherd, (1977) Activated carbon. Chem. Eng. 84, 99-100.
114. J.A. Klein and D.D. Lee, (1978) Biological treatment of aqueous wastes from coal conversion processes. Biotechnol. Bioeng. Symp. 8, 379-390.
115. J. Karam, J.A. Nicell, (1997) Potential application of enzymes in waste treatment, J. Chem. Technol. Biotechnol. 69, 141.
116. N. Durán, in: E. Esposito (Ed.), (1997) Oxidative enzymes applied to bioremediation, Proceedings of the first National Meeting of Environmental Applied Microbiology, Vol. 1, Campinas, S.P., Brazil, 1997, p. 183. Chem. Abstr. 127, 310976.
117. N. Durán, (1997) The impact of biotechnology in the pulp and paper industry: state of art, in: M.T. Martins, et. al. (Eds.), Progress in Ecology, Soc. Brazil Microbiol./ICOME Publishers, S.P. Brazil, p. 543.
118. N. Durán, (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl. catal. B, Environmental 28, 83-99.
119. H.B. Dunford, (1991)Horseradish peroxidase: Structure and kinetic properties. In: Peroxidase in Chemistry and Biology Vol. 2 ( J. Everse, K.E. Everse, and M.B. Grisham, Eds.). CRC Press Boca Raton, FL 1-25, 225-227.
120. J.Z. Liu, H.Y. Song, L.P. Weng, L.N. Ji, (2002) Increased thermostability and phenol removal efficiency by chemical modified horseradish peroxidase. J. molec. catal. B: Enzymatic 18, 225-232.
121. T. Zhang, Q. Zhao, H. Huang, Q. Li, Y. Zhang, (1997) Removal of toxic phenol and 4-chlorophenol from waste water by horseradish peroxidase. Chemosphere 34, 893-903.
122. V. A. Cooper, J. A. Nicell, (1996) Removal of phenols from a foundry wastewater using horseradish peroxidase. Water Res. 30, 954-964.
123. J. Wu, K. Rudy, J. Spark, (2000) Oxidation of aqueous phenol by ozone and peroxidase. Advances in Envir. Res. 4, 339-346.
124. M. Ghioureliotis, J.A. Nicell, (1999) Assessment of soluble products of peroxidase-catalyzed polymerization of aqueous phenol. Enzyme microb. technol. 25, 185-193.
125. T. Zhang, Q. Zhao, H. Huang, Q. Li, Y. Zhang, M. Qi, (1998) Kinetic study on the removal of toxic phenol and chlorophenol from waste water by horseradish peroxidase. Chemosphere 37, 1998, 1571-1577.
126. N.Caza, J.K.Bewtra, N.Biswas, K.E.Taylor, (1999) Removal of phenolic compounds from synthetic wastewater using soybean peroxidase Water Res. 33, 3012-3018
127. J.L. Lenhart, W.Q. Sun, G.F. Payne, (1997) Coupling enzymatic reaction with chemisorption for the selective removal of substituted phenolic isomers. Chem. Eng. Sci. 52, 645-648.
128. D.M. Munnecke, (1976) Enzymatic hydrolysis of organo- phosphate insecticides, a possible pesticide disposal method. Appl. Environ. Microbiol. 32, 7-13.
129. A.M. Klibanov, B.N. Alberti, E.D. Morris, L.M. Felshin, (1980) Enzymatic removal of toxic phenols and anilines from wastewaters. J. Appl. Biochem. 2, 414-421.
130. S.C. Altow, L. Bonadonna-Aparo, A.M. Klibanov, (1983) Dephenolization of industrial wastewater catalyzed by polyphenol oxidase. Biotechnol. bioeng. 26, 599-603.
131. S. Wada, H. Ichikawa, K. Tatsumi, (1993) Removal of phenols from wastewater by soluble and immobilized tyrosinase. Biotechnol. bioeng. 42, 854-858.
132. S.G. Lee, S.P. Hong, M.H. Sung, (1996) Removal and bioconversion of phenol in wastewater by a thermostable β-tyrosinase. Enzyme microb. technol.19, 374-377.
133. K. Ikehata, J.A. Nicell, (2000) Characterization of tyrosinase for the treatment of aqueous phenols. Bioresource Technology 74, 191-199.
134. N. Durán, E. Esposito, (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl. catal. B: Environmental 28, 83-99.
135. G. Toscano, M.L. Colarieti, G. Greco Jr, (2003) Oxidative polymerisation of phenols by a phenol oxidase from green olives. Enzyme microb. technol. 33, 47-54.
136. M.T. Huang, C.-T. Ho, C.Y. Lee (Eds.), (1992) Phenolic compounds in food and their effects on health II. Antioxidants and cancer prevention, ACS Symposium Series 507, American Chemical Society, Washington, DC.
137. A.V. Krishnan, P. Starhis, S.F. Permuth, L.Tokes, D. Feldman, (1993) Bisphenol-A: An estrogenic substance is relased from polycarbonate flasks during autoclaving. Endocrinology 132, 2279-2286.
138. J.M. Gottswinter, S. Korth-Schutz, R. Ziegler, (1984) Gynecomastia caused by estrogen containing homone hair lotion. J. Endocrinol. Invest. 7, 383-386.
139. G. Vincent, in G. Angeletti and A. Bjorseth (Eds.), (1991) Organic Micropollutans in the Aquatic Environment, Kluwer, Dordrecht, pp. 285-288.
140. L.H. Keith and W. A. Telliard, (1979) Priority pollutants I - a perspective view. Environ. Sci. Technol. 13, 416-423.
141. EPA Method 604. Phenols in Federal Register, October 26, 1984, Environmental Protection Agency, Part VIII, 40 CFR Part 136, pp. 58-66.
142. EPA method 625. Base / neutrals and acids in Federal Register, October 26, 1984, Environmental Protection Agency, Part VIII, 40 CFR Part 136, pp. 153-174.
143. J. Poerschmann, Z. Zhang, F.D. Kopinke, T. Pawliszyn, (1997) Solid phase microextraction for determining the distribution of chemicals in aqueous matrices. Anal. Chem. 69, 597-600.
144. C.D. Chriswell, R.C. Chang, J.S. Fritz, (1975) Chromatographic determination of phenols in water. Anal. Chem. 47, 1325-1329.
145. A.D. Corsia, S. Marchese, R. Samperi, (1993) Selective determination of phenols in water by a two-trap tandem extraction system followed by liquid chromatography. J. Chromatogr. 642, 175-184.
146. G. Marco-Varga, D. Barceló, (1992) Liquid chromatographic retention and separation of phenols and related aromatic compounds on reversed phase columns. Chromatographia 34, 146-154.
147. E. Nieminen, P. Heikkilä, Simultaneous determination of phenol, cresols and xylenols in workplace air, using a polystyrene - divinylbenzene column and electrochemical detection. (1986) J. Chromatogr. 360, 271-278.
148. W.P. King, K.T. Joseph, P.T. Kissinger, (1980) Liquid chromatography with amperometric detection for determining phenolic preservatives. J. Assoc. Off. Anal. Chem. 63, 137-142.
149. L.C. Jr. Clark, C. Lyons, (1962) Electrode system for continuous monitoring in cardiovascular surgery. Ann. NY Acad. Sci. 102, 29-45.
150. A.P.F. Turner, I. Karube, G.S. Wilson (Eds.), (1987) Biosensors fundamentals and Applications. Oxford University Press, Oxford, UK.
151. J.M. Kauffmann, G.G. Guilbault, (1992) Enzyme electrode biosensors: Theory and applications. In: Bioanalytical Applications of Enzymes, vol. 36. Wiley.
152. L.J. Blum, P.R. Coulet (Eds.), (1991) Biosensor Principles and Applications. Marcel Dekker, New York.
153. D. Ivnitski, A.H. Ihab, A. Plamen, W. Ebtisam, (1999) Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 14, 599-624.
154. D. Nikolelis, U. Krull, J. wang, M. Mascini (Eds.), (1998) Biosensors for direct monitoring of environmental pollutants in field. Kluwer Academic, London.
155. G. Ramsay (Ed.), (1998) Commercial Biosensors: Applications to Clinical, Bioprocess and Environmental Samples. Wiley, Chichester, UK.
156. A. Mulchandani, K.R. Rogers (Eds.), (1998) Enzyme and Microbial Biosensors: Techniques and Protocols. Humanae Press, Totowa, NJ.
157. K.R. Rogers, A. Mulchandani, (1998) Affinity Biosensors: Techniques and Protocols. Humanae Press, Totowa, NJ.
158. S.F. D’Souza, (2001) Review: Microbial biosensors. Biosens. Bioelectron. 16, 337-353.
159. S. Saini, A.P.F. (1995) Multi-phase bioelectrochemical sensors. TrAC, Trends anal. chem. 14, 304-310.
160. V.A. Bogdanovskaya, M.R. Tarasevich, R. Hintsche and F. Scheller, (1988) Bioelectrochem. Bioenerg. 19, 581-586.
161. E. Csöregi, G. Jonsson-Pettersson and L. Gorton, (1993) Mediatorless electrocatalytic reduction of hydrogen peroxide at graphite electrodes chemically modified with peroxidases. J. Biotechnol. 30, 315-337.
162. W.O. Ho, D. Athey, C.J. McNeil, (1993) Mediatorless horseradish peroxidase enzyme electrodes based on activated carbon: potential application to specific binding assay. J. Electroanal. Chem. 351, 185-197.
163. L. Gorton, G. Jönsson-Pettersson, E. Csöregi, K. Johansson, E. Domínguez and G. Marko-Varga, (1992) Amperometric biosensors based on an apparent direct electron transfer between electrodes and immobilized peroxidases. Analyst 117, 1235-1241.
164. H.B. Dunford and A.J. Adeniran, (1986) Hammett ρσ correlation for reactions of horseradish peroxidase compound II with phenols. Arch. Biochem. Biophys. 251, 536-542.
165. C. Ruan, Y. Li, (2001) Detection of zetamolar concentrations of alkaline phosphatase based on a tyrosinase and horseradish peroxidase bienzyme biosensor. Talanta 54, 1095-1103.
166. S.S. Rosatto, L.T. Kubota, G. de Oliveira Neto, (1999) Biosensor for phenol based on the direct electron transfer blocking of peroxidase immobilising on silica–titanium. Anal. chim. acta. 390, 65-72.
167. S.S. Rosatto, P.T. Sotomayor, L.T. Kubota, Y. Gushikem, (2002) SiO2/Nb2O5 sol–gel as a support for HRP immobilization in biosensor preparation for phenol detection. Electrochim. acta. 47, 4451 – 4458.
168. S.C. Chang, K. Rawson, C.J. McNeil, (2002) Disposable tyrosinase-peroxidase bi-enzyme sensor for amperometric detection of phenols. Biosens. bioelectron. 17, 1015 – 1023.
169. S. Cosnier, C.I. Popescu, (1996) Poly(amphiphilic pyrrole)- tyrosinase-peroxidase electrode for amplified flow injection- amperometric detection of phenol. Anal. chim. acta. 319, 145-151.
170. T. Ruzgas, J. Emnéus, L.Gorton, G. Marko-Varga, (1995) The development of a peroxidase biosensor for monitoring phenol and related aromatic compounds. Anal. chim. acta. 311, 245-253.
171. Mottola, (1989) Bioampero- metric sensor for phenol based on carbon paste electrodes. J. Electroanal. Chem. 266, 47-55.
172. S. Liu, J. Yu, H. Ju, (2003) Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode. J. electroanal. chem. 540, 61 – 67.
173. Z. Liu, J. Deng, D. Li, (2000) A new tyrosinase biosensor based on tailoring the porosity of Al2O3 sol–gel to co-immobilize tyrosinase and the mediator. Anal. chim. acta. 407, 87-96.
174. C. Nistor, J. Emnéus, L. Gorton, A. Ciucu, (1999) Improved stability and altered selectivity of tyrosinase based graphite electrodes for detection of phenolic compounds. Anal. chim. acta. 387, 309-326.
175. S. Naish-Byfield, P.A. Riley, (1992) Oxidation of monohydric phenol substrates by tyrosinase. Biochem. J. 288, 63-67.
176. S. Canofeni, S. Di Sario, J. Mela, R. Pilloton, (1994) Comparision of immobilization procedures for development of an electrochemical PPO-based biosensor for on-line monitoring of a depuration process. Anal. Lett. 27, 1659-1669.
177. L. Campanela, T. Beone, M.P. Sammartino, M. Tomassetti, (1993) Determination of phenol in wastes and water using an enzyme sensor. Analyst. 118, 979-986.
178. L. Campanela, A. Fortuney, M.P. Sammartino, M. Tomassetti, (1994) Tyrosinase biosensor response as a function of physical properties of organic solvents. Talanta 41, 1397-1404.
179. L. Campanela, M.P. Sammartino, M. Tomassetti, (1992) New enzyme sensor for phenol determination in non-aqueous and aqueous medium. Sens. Actuators B7, 383-388.
180. L. Campanela, Y. Su, M. Tomassetti, G. Crescentini, M.P. Sammartino, (1994) Kinetic behavior and analytical properties of a tyrosinase biosensor in the analysis of phenol. Analusis 22, 58-62.
181. M. Hedenmo, A. Narvádez, E. Domínguez, I. Katakis, (1997) Improved mediated tyrosinase amperometric enzyme electrode. J. Electroanal. Chem. 425, 1-11.
182. J. Parellada, A. Narvádez, M.A. López, E. Domínguez, J.J. Fernández, V. Pavlov, I. Katakis, (1998) Amperometric immunosensors and enzyme electrodes for environmental applications. Anal. Chim. Acta 362, 47-57.
183. J. Kulys, R.D. Schmid, (1990) A sensitive enxzyme electrode for phenol monitoring. Anal. Lett. 23, 589-597.
184. S. Uchiyama, Y. Hasebe, H. Shimitzu, H. Ishihara, (1993) Enzyme-based catechol sensor based on the cyclic reaction between catchol and 1,2-benzoquinone, using L-ascorbate and tyrosinase. Anal. Chim. Acta 276, 341-345.
185. R.S. Brown, K.B. Male, J.H.T. Luong, (1994) A substrate recycling assay for phenolic compounds using tyrosinase and NADH. Anal. Biochem. 222, 131-139.
186. J.G. Schiller, A.K. Chen, C.C. Liu, (1978) Determination of phenol concentrations by an electrochemical system with immobilized tyrosinase. Anal. Biochem. 85, 25-33.
187. M. Bonakdar, J.L. Vilchez, H.A.lumina sol-gel derived tyrosinase biosensor. Anal. Chem. 72, 4701-4712.
188. K. Zachariah, H.A. Mottola, (1989) Continuous-flow determination of phenol with chemically immobilized polyphenoloxidase (tyrosinase). Anal. Lett. 22, 1145-1158.
189. C.E. Hall, D. Datta, E.A.H. Hall, (1996) Parameters which influence the optimal immobilization of oxidase type enzymes on methacrylate co-polymers as demonstrated for amperometric biosensors. Anal. chim. acta. 323, 87-96.
190. B. Wang, J. Zhang, S. Dong, (2000) Silica sol–gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor. Biosens. bioelectron. 15, 397 – 402.
191. H. Shirikawa, (1982) Polyacetylene: a typical semiconducting and metallic polymer. Jpn. J. Appl. Phys. Supp. 22-1, 473-478.
192. H. Naarmann, N. Theophilou, (1987) New process for the production of metal-like, stable polyacetylene. Synth. Met. 22, 1-8.
193. M. Kobayashi, J. Chen, T.C. Chung, F. Moraes, A.J. Heeger, F. Wudl, (1984) Synthesis and properties of chemically coupled poly(thiophene). Synth. Met. 9, 77-86.
194. Z. Koochaki, I.M. Christie, P. Vadgama, (1991) Electrode responses to phenolic species through cellulosic membranes. J. Membrane Sci. 57, 83-94.
195. S.J. Churchouse, C.M. Battersby, W.H. Mullen, P.M. Vadgama, (1986) Needle enzyme electrodes for biological studies. Biosensors 2, 325-342.
196. I.M. Christie, M. Rosenberg, P. Vadgama, (1991) Sensor devices. US Patent No. 9105406.4.
197. I.M. Christie, P.H. Treloar, P. Vadgama, (1992) Plasticized poly(vinyl chloride) as a permselective barrier membrane for high-selectivity amperometric sensors and biosensors. Anal. Chim. Acta, 269, 65-73.
198. I.M. Christie, S. Floyd, P. Vadgama, (1993) Modification of electrode surfaces with oxidized phenols to confer selectivity to amperometric biosensors for glucose determination. Anal. Chim. Acta 274, 191-199.
199. P.N. Bartlett, P.R. Birkin, J.H. Wang, (1998) An enzyme switch employing direct electrochemical communication between horseradish peroxidase and a poly(aniline) film. Anal. Chem. 70, 3685-3694.
200. W. Schuhmann, (1995) Conducting polymer based amperometric enzyme electrodes. Mikrochim. Acta 121, 1-29.
201. M. Trojanowicz, O. Geschke, T. Krawczynski vel Krawczyk, K. Cammann, (1995) Biosensors based on oxidases immobilized in various conducting polymers. Sensors and Acutuators B 28, 191-199.
202. M. Trojanowicz, T. Krawczynski vel Krawczyk, (1995) Electrochemical biosensors based on enzymes immobilized in electropolymerized films. Mikrochim. Acta 121, 167-181.
203. S. Cosnier, (1997) Electropolymerization of amphiphilic monomers for designing amperometric biosensors. Electroanalysis 9, 894-902.
204. E.Ohashi, T. Koriyama, (1992) Simple and mild preparation of an enzyme-immobilized membrane for a biosensor using β-type crystalline chitin. Anal.Chim. Acta. 262, 19-25.
205. G. Wang, J.J. Xu, H.Y. Chen, Z.H. Lu, (2003) Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix. Biosens. bioelectron. 18, 335-343.
206. Y. Kurauchi, T. Yanai, N. Egashira, K. Ohga, (1994) Fiber-optic sensor with a chitosan/poly(vinyl alcohol) cladding for the determination of ethanol in alcoholic beverages. Anal. Sci. 10, 213-217.
207. J.M.C.S. Magalhães, A.A.S.C. Machado, (1993) Enzyme immobilization on chitin and chitosan for the construction of enzymatic sensors, in: G. Guilbault, M. Mascini (Eds.), Uses of Immobilized Biological Compounds for Detection, Medical, Food and Environmental Analysis, Kluer, Dordrecht, pp. 191.
208. J.M.C.S. Magalhães, A.A.S.C. Machado, (1998) Urea potentiometric biosensor based on urease immobilized on chitosan membrane. Talanta 47, 183-191.
209. J.G. Schiller, C.C. Liu, (1976) Immobilization of tyrosinase within polyacrylamide gels. Biotechnol. Bioeng. 18, 1405-1412.
210. W.Q. Sun, G.F. Payne, M.S.G.L. Moas, J.H. Chu, K.K. Wallace, (1992) Tyrosinase reaction/chitosan adsorption for removal phenol from wastewater. Biotechnol. Prog. 8, 179-186.
211. F. Daigle, F. Trudeau, G. Robinson, M.R. Smyth, D. Leech, (1998) Mediated reagentless enzyme inhibition electrodes. Biosens Bioelectron 13, 417-425.
212. C. Crecchio, P. Ruggiero, M.D.R. Pizzigallo, M. Curci, (1997) Potential utilization of phenoloxidases immobilized in organic gels for decontamination of polluted sites. Dev. Plant Soil Sci. 71, 545-552.
213. A. Dashevsky, (1998) Protein loss by the microencapsulation of an enzyme (lactase) in alginate beads. Int. j. pharm. 161, 1-5.
214. K.H. Hyung, W. Shin, (1999) Characterization of immobilized laccase and its catalytic activities. J. Korean Electrochem. Soc. 2, 31-37.
215. A. Lante, A. Crapisi, G. Pasini, A. Zamorani, P. Spettoli, (1992) Immobilized laccase for must wine processing. Ann. N. Y. Acad. Sci. 672, 558-562.
216. A. Zamorani, P. Spettoli, A. Lante, A. Crapisi, G. Pasini, (1993) Immobilized laccase and tyrosinase: an approach for wine stabilization. Ital. J. Food Sci. 5, 409-414.
217. Smith III, N. L., Lenhoff, H. M., (1974) Covalent binding of proteins and glucose-6-phosphate dehydrogenase to cellulosic carriers activated with s-triazine trichloride. Anal. Biochem. 61, 392-415.
218. Mateo, C., Abian, O., Fernandez-Lafuente, R., Guisan, J. M. (2000) Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment.. Enzyme Microb. Technol. 26, 509-515
219. Y. Li, M. Guo, Q. Guo, (1988) Immobilization of laccase. IV. Preparation of ‘‘super lacquer film’’ from outmoded Chinese lacquer by revival with immobilized laccase. Linchan Huaxue Yu Gongye 8, 39-44.[(1997) Chem Abst 110:131336].
220. Y. Li, M. Guo, (1988) Immobilization of laccase. II. Studies on immobilization of laccase by covalent coupling on p-aminobenzene-sulfonylethyl (ABSE)-(ECD)-agar. Linchan Huaxue Yu Gongye 8, 45-48.
221. Y. Li, M. Guo, (1988) Immobilization of laccase. I. Catalytic oxidation of green tea tannin by immobilized laccases and native laccase. Linchan Huaxue Yu Gongye 8, 33-38. [(1997) Chem Abst 111: 53253].
222. A. D’Annibale, S.R. Stazi, V. Vinciguerra, E. Di Mattia, G.G. Sermanni, (1999) Characterization of immobilized laccase from Lentinula edodes and its use in olive mill wastewater treatment. Process Biochem. 34, 697-706.
223. X. F. Zeng, E. Ruckenstein, (1998) Trypsin purification by p-aminobenzamidine immobilized on macroporous chitosan membrane. Ind. Eng. Chem. Res. 37, 159-165.
224. G.T. Hermansor, A.K. Mallia, P.K. Smith, (1992) Immobilized Affinity Ligand Techniques. Academic Press: San Diego.
225. O. Reif, V. Nier, U. Bahr, R. Freitag, (1994) Immobilized metal affinity membrane adsorbers as stationary phases for metal interaction protein seperation. J. Chromatogr. 664, 13-25.
226. C.R. Carrara, A. C.Rubiolo, (1994) Immobilization of β-galactosidase on Chitosan. Bitechnol. Prog. 10, 220-224.
227. G. Spagna, F. Andreani, E. Salatelli, D. Romagnoli, P.G. Pifferi, (1998) Immobilization of α-1-arabinofuranosidase on chitin and chitosan. Proc. Biochem. 33, 57-62.
228. Ş. A. Çetinus, H. N. Őztop, 2000. Immobilization of catalase on chitosan film. Enzyme Microb. Technol. 26, 497-501.
229. B. Krajewska, W. I. Zaborska, L.M. Awa, (2001) Inhibition of chitosan-immobilized urease by slow-binding inhibitors:Ni 2+, F and acetohydroxamic acid. J. Molecular Catalysis. B: Enzymatic. 14, 101-109.
230. G. Spagna, R. N. Barbagallo, D. Casarini, P. G. Pifferi, (2001) A novel chitosan derivative to immobilize α-L-rhamnopyranosidase from Aspergillus niger for application in beversge technologies. Enzyme Microb. Technol. 28, 427-438.
231. F. Foor, N. Morin, K. A. Bostian, (1993) Production of L-dihydroxyphenylalanine in Escherichia coli with the tyrosine phenollyasegene cloned from Erwinia herbicola. Appl. Environ.Microbiol. 59, 3070-3075.
232. S. Chattopadhyay, S. K. Datta, S.B. Mahato, (1994) Production of L-dopa from cell suspension culture of Mucuna pruriens. f. pruriens. Plant Cell Rep. 13, 519-522.
233. S. Y. Huang, S. Y. Chen, K. L. Wu, W. T. Taung, (1995) Strategy for inducing pertinent cell line and optimization of the medium for Stizolobium hassjoo producing L-DOPA. J. Fermen. Bioeng. 79, 342-347.
234. E. Vilanova, A. Manjon, J. L. Iborra, (1984) Tyrosine hydroxylase activity of immobilized tyrosinase on enzacryl-AA and CPG-AA supports: Stabilization and properties. Biotechnol. Bioeng. 26, 1306-1312.
235. P. Pialis, M.C. Jimenez Hamann, B.A. Saville, (1996) L-dopa production from tyrosinase immobilized on Nylon 6,6. Biotechnol. Bioeng. 51, 141-147.
236. G.M.J. Carvalho, T.L.M. Alves, D.M.G. Freire (2000) L-DOPA production by immobilized tyrosinase. Appl. Biochem. Biotechnol. 84, 791-800
237. G. Seetharam, B.A. Saville, (2002) L-DOPA production from tyrosinase immobilized on zeolite. Enzyme microb. technol. 31, 747-753.
238. A. Sánchez-Ferrer, J. N. Rodríguez-López, F. García-Cánovas, F. García-Carmona, (1995) Tyrosinase: A comprehensive review of its mechanism. Biochimica et. Biophysica Acta 1247, 1-11.
239. J.L. Iborra, E. Vilanova, R. Blanes, (1982) Immobilized frog tyrosinase. Stabilization on Nylon supports. Biotechnol. Lett. 4, 341-346.
240. S.Wada, H. Ichikawa, K. Tatsumi, (1992) Removal of phenols with tyrosinase immobilized on magnetite. Water Sci. Technol. 26, 2057-2059.
241. S.Wada, H. Ichikawa, K. Tatsumi, (1993) Removal of phenols from wastewater by soluble and immobilized tyrosinase. Biotechnol. Bioeng. 42, 854-858.
242. M.N.V. Ravi Kumar, (2000) A review of chitin and chitosan application. Reactive and Functional Polymers 46, 1-27.
243. G.A.F. Roberts, G.K. Moore, (1989) Chitosan gels. 3a. The formation of gels by reaction of chitosan with glutaraldehyde. Makromol. Chem. 190, 951-960.
244. Y.C. Wei, S.M. Hudson, J.M. Mayer, D.L. Kaplan, (1992) The crosslinking of chitosan fibers. J. Polym. Sci. Pt A: Polm. Chem. 30, 2187-2193.
245. X. Zeng, E. Ruckenstein, (1999) Membrane chromatography: Preparation and application to protein separation. Biotechnol. Prog. 15, 1003-1019.
246. T. Chen, G. Kumar, M.T. Harris, P.J. Smith, G.F. Payne, (2000) Ezymatic Grafting of hexyloxyphenol onto chitosan to alter surface and rheological properties. Biotechnol. Bioeng. 70, 565-573.
247. G.F. Payne, M.V. Chaubal, T.A. Barbari, (1996) Enzyme-catalyzed polymer midification: reaction of phenolic compounds with chitosan films. Polymer 37, 4643-4648.
248. L.Q. Wu, T. Chen, K.K. Wallace, R. Vazquez-Duhalt, G.F. Payne, (2001) Enzymatic coupling of phenol vapors onto chitosan. Biotechnol. Bioeng. 76, 325-332.
249. G. Kumar, P.J. Smith, G.F. Payne, (1999) Enzymatic grafting of a natural product onto chitosan to confer water solubility under basic conditions. Biotechnol. Bioeng. 63, 154-165.
250. G. Kumar, J.F. Bristow, P.J. Smith, G.F. Payne, (2000) Enzymatic gelation of the natural polymer chitosan. Polymer 41, 2157-2168.
251. J.L. Lenhart, W.Q. Sun, G.Y. Payne, (1997) Coupling enzymatic reaction with chemisorption for the selective removal of substituted phenolic isomers. Chem. Eng. Sci. 52, 645-648.
252. R.A.A. Muzzarelli, P. Ilari, W. Xia, M. Tomasetti, (1994) Tyrosinase-mediated quinone tanning of chitinuous materials. Carbohydra. Polym. 24, 295-300.
253. L. Shao, G. Kumar, J.L. Lenhart, P.J. Smith, G.Y. Payne, (1999) Enzymatic modification of the synthetic polymer polyhydrostyrene. Enzyme. Microb. Technol. 25, 660-668.
254. T. Chen, R. Vazquez-Duhalt, C.F. Wu, W.E.B. Bentley, G.F. Payne, (2001) Combinatorial Screening for enzyme-mediated coupling. Tyrosinase- catalyzed coupling to create protein-chitosan conjugates. Biomacro- molecules 2, 456-462.
255. S. Ito, T. Kato, K. Shinpo, K. Fujita, (1984) Oxidation of tyrosine residues in proteins by tyrosinase. Biochem. J. 222, 407-411.
256. K. Marumo, J.H. Waite, (1986) Optimization of hydroxylation of tyrosine and tyrosine-containing peptides by mushroom tyrosinase. Biochim. Biophys. Acta. 872, 98-103.
257. H.W. Duckworth, J. E. Coleman, (1970) Physiochemical and kinetic properties of mushroom tyrosinase. J. Biol. Chem. 245, 1613-1625.
258. G.G. Maghami, G.A.F. Roberts, (1988) Studies on the adsorption of anionic dyes on the chitosan. Makromol. Chem. 189, 2239-2243.
259. Streffer, K., Kaatz, H., Bauer, C.G., A. Makower, T. Schulmeiser, F.W. Scheller, M.G. Peter, U.Wollenberger, 1998. Application of a sensitive catechol detector for determination of tyrosinase inhibitors. Anal. chim. acta. 362, 81-90.
260. J.R.L. Walker, L. Wilson, (1974) Studies on the enzumic browning of apples. Inhibition of apple o-diphenol oxidase by phenolic acids. J. Sci. Fd. Agric. 26, 1825-1831.
261. D.E. Wilcox, A.G. Porras, Y.t. Hwang, K. lerch, M.E. Winkler, E.I. Solomon, (1985) Substrate analogue binding to the coupled binuclear copper active site in tyrosinase. J. Amer. Chem. Soc. 107, 4015-4027.
262. J.L. Ib rra, E. Cortes, A. Manjon, J. Ferragut, F. Llorca, (1976) Affinity chromatography of frog epidermins dopa-oxidase. J. Solid-Phase Biochem. 1, 91-100.
263. A. Rompel, H. Fischer, D. Meiwes, K. Büldt-Karentzopoulos, A. Magrini, C. Eicken, C. gerdemann, B. Krebs, (1999) Substrate specificity of catechol oxidase from Lycopus europaeus and characterization of the bioproducts of enzymic caffeic acid oxidation. FEBS Letters 445, 103-110.
264. K. Ikehata, J.A. Nicell, (2000) Characterization of tyrosinase for the treatment of aqueous phenols, Bioresource Technology, 74: 191-199.
265.APHA, AWWA, WEF, (1998) In: Eaton, A.D., Clescer, L.S. Green- berg, L.S. (Eds.), Standard Methods for the examination of Water and Wastewater, 20th edition. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC, pp 5-39.
266. S. Wada, H. Ichikawa, K. Tatsumi, (1995) Removal of phenols and aromatic amines from wastewater by a combination treatment with tyrosinase and a coagulant. Biotechnol. Bioeng. 45, 304-309.
267. C.J. Cooksey, P.J. Garratt, E.J. Land, S. Pavel, C.A. Ramsden, P.A. Riley, N.P.M. Smit, (1997) Evidence of the indirect formation of catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase. J. Biol. Chem. 272 (42), 26226-26235.
268. L.A. Burzio, V.A. Burzio, J.Pardo, L.O. Burzio, (2000) In vitro polymerization of mussel polyphenolic proteins catalyzed by mushroom tyrosinase. Comp. biochem. physiol. B 126, 383-389.
269.G.M.S. Finette, Q.M. Mao, M.T.W. Hearn, (1997) Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilized metal ion ahhinity and dye affinity matrices with different ionic strength and temperature conditions. J. Chromatogr. A 763, 71-90.
270.G. Bayramoglu, M.Y. Arica, (2002) Procion Green H-4G immobilized on a new IPN hydrogel membrane composed of poly(2- hydroxyethylmethacrylate)/chitosan: preparation and its application to the adsorption of lysozyme. Colloids and Surfaces A: Physicochem. Eng. Aspects 202, 41-52.
271. T. Yang, R.R. Zall, (1984) Chitosan membranes for reverse osmosis application. J. Food Sci. 49, 91-93.
272. B. Conti, T. Modena, I. Genta, P. Perugini, F. Pavanetto, (1998) A proposed new method for the crosslinking of chitosan microspheres. Drug Delivery 5, 87-93.
273. C. Mateo, O. Abian, R. Fernandez-Lafuente, J.M. Guisan, (2000) Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzyme Microb. Technol. 26, 509-515.
274. H. Yamamoto, S. Kuno, A. Nagai, A. Nishida, S. Yamauchi, K. Ikeda, (1990) Insolubilizing and adhesive studies of water-soluble synthetic model proteins. J. Biol. Macromol. 12, 305-310.
275. J.C. Espin, M. Morales, R. Varon, J. Tudela, F. Garcia-Canovas, (1997) Monophenolase activity of polyphenol oxidase from Blanquilla pear. Phytochemistry 44 (1), 17-22.
276. J.C. Espin, M.F. Trujano, J. Tudela, F. Garcia-Canovas, (1997) Monophenolase activity of polyphenol oxidase from Haas avocado. J. Agric. Food Chem. 47 (4), 1091-1096.
277. E.I. Solomon, U.M. Sundaram, T.E. Machonkin, (1996) Multicopper oxidases and oxygenases. Chem. Rev. 96, 2563-2605.
278. M.Y. Arica, V. Hasirci, (1993) Immobilization of glucose oxidase: a comparison of entrapment and covalent bonding, J. Chem. Technol. Biotechnol. 58, 287-292.
279. S.B. Lamb, D.C. Stuckey, (2000) Enzyme immobilization on colloidal liquid aphrons (CLAs): the influence of system parameters on activity. Enzyme Microb. Technol. 26, 574-581.
280. S.W. Park, S.Y. Choi, K.H. Chung, S.I. Hong, S.W. Kim, (2002) Characteristics of GL-7-ACA acylase immobilized on silica gel through silanization. Biochemical Engineering Journal 11, 87-93.
281. S. DeCordt, K. Vanhoof, J. Hu, G. Maesmans, M. Hendrickx, P. Tobback, (1992) Thermostability of soluble and immobilized α-amylase from Bacillus licheniformis. Biotechnol. Bioeng. 40, 396-402.
282. F.H. Isgrove, R.J.H. Williams, G.W. Niven, A.T. Andrews, (2001) Enzyme immobilization on nylon-optimization and the steps used to prevent enzyme leakage from support. Enzyme Microb. Technol. 28, 225-232.
283. D. Bianchi, P. Golini, R. Bortolo, P. Cesti, (1996) Immobilization of penicillin G acylase on aminoalkylated polyacrylic supports. Enzyme Microb. Technol. 18, 592-596.
指導教授 徐新興(Shin-Shing Shyu) 審核日期 2004-1-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明