博碩士論文 89341010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.145.105.91
姓名 陳慶國(Ching-Kuo Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討光對深層培養Aspergillus ficuum的影響暨以Microbacterium sp.去除二甲基硫之研究
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究分兩大部分,其一探討光對深層培養無花果曲霉菌Aspergillus ficuum的影響;其二為Microbacterium sp.去除二甲基硫Dimethyl sulfide之研究。
其一探討光對深層培養無花果曲霉菌Aspergillus ficuum的影響:文獻證實Bacillus subtilis,其蛋白質基因具有光接收器,會對光源產生反應。本實驗室先期研究已證實白光強度對納豆菌產生Nattokinase活性有影響;並證實光強度與波長對無花果曲霉菌Aspergillus ficuum產生phytase活性有影響。 本論文觀察到光的波長以不同的方式影響發育和生理作用,提出光強度與波長對Aspergillus ficuum影響生理週期與代謝物之相關性,並透過代謝產物LC圖譜分析,研究光對無花果曲霉菌Aspergillus ficuum代謝物產出的影響,這些發現表示無花果曲霉菌Aspergillus ficuum擁有因應不同光線進行反應和調節的系統。
其二為Microbacterium sp.去除二甲基硫之研究:二甲基硫是工業排放氣體中,優先要被去除的對象,因為只要很少量的二甲基硫就能夠察覺到異味,而且跟其他還原態的硫化物相比,二甲基硫是較難被生物降解的。有多種利用二甲基硫作為碳源或能量來源的菌株已經被研究,而且說明了降解途徑。然而截至目前為止,在工業應用上,使用這類菌株接種至生物反應器,以處理二甲基硫的報告很少。這類系統有個問題是: 中間代謝產物的累積,這會嚴重影響微生物對二甲基硫的去除。在此報告中我們得到的結果是,將降解硫化氫的假單胞菌屬菌株Pseudomonas putida 以及降解二甲基硫的微細菌屬菌株 Microbacterium sp. NTUT26 接種至生物反應器,可以促進中間代謝產物以及二甲基硫的去除。並且根據表觀動力學(apparent kinetics)以及最大去除能力的評估,此生物反應器去除二甲基硫的效能良好(1.71 g-S/day/kg-乾填充材料)。在各種條件下 (不論是開工、進流負荷(inlet loading)、停工或是重新啟動的改變),同時接種了 Microbacterium sp. NTUT26 以及 P. putida 的生物反應器可提升高濃度的二甲基硫的去除能力。我們的研究結果推薦這一型的生物反應器系統,在處理(工業的)二甲基硫氣體,具有很大的應用潛力。
摘要(英) This research study consists of two major parts. The first part studies the effect of light on the submerged culture of Aspergillus ficcum, and the second part investigates the role of Microbacterium sp. in the removal of dimethyl sulfide.
The first part studies on the effect of light on the submerged culture of Aspergillus ficuum confirm that Bacillus subtilis is equipped with photoreceptor protein genes that react to light sources. Prior research conducted by this laboratory verifies that the intensity of white light affects the activity of Nattokinase, while light intensity and wavelength affects the phytase activity of Aspergillus ficuum. By observing that light wavelength influences growth and physiological activity in various ways, this thesis addresses the relevance of light intensity and wavelength on the physiological cycle and metabolite of Aspergillus ficuum and examines light-induced behavior in thees production of metabolites with LC analysis. Results indicate that Aspergillus ficuum possess a response and regulatory system that adapts to different light sources.
The second part of this thesis investigates the role of Microbacterium sp. in the removal of dimethyl sulfide. The removal of dimethyl sulfide (DMS) from industrial gas streams has received a high priority due to its very low odorous threshold value and relatively low biodegradability compared to other reduced sulfur compounds. A variety of bacteria that utilize DMS as a carbon/energy source have been studied and the degradation pathway elucidated. However, to date, there have been few reports on the industrial application of such bacteria inoculated into a bioreactor for DMS treatment. An additional problem of such systems is the accumulation of intermediate metabolites that strongly impact on DMS removal by the microbe. The results reported here were obtained using a bioreactor inoculated with the H2S-degrader Pseudomonas putida and the DMS-degrader Microbacterium sp. NTUT26 to facilitate removal of metabolic intermediates and DMS. This bioreactor performed well (1.71 g-S/day/ kg-dry packing material) in terms of DMS gas removal, based on an evaluation of the apparent kinetics and maximal removal capacity of the system. Under varying conditions (changes in start-up, inlet loading, shutdown, and re-start), the bioreactor inoculated with Microbacterium sp. NTUT26 and Pseudomonas putida enhanced removal of high concentrations of DMS. Our results suggest that this type of bioreactor system has significant potential applications in treating (industrial) DMS gas streams.
關鍵字(中) ★ 無花果曲霉菌
★ 二甲基硫
關鍵字(英) ★ Microbacterium sp.
★ Aspergillus ficuum
論文目次 摘 要 i
Abstract iii
誌 謝 v
目 錄 vi
圖 目 錄 viii
表 目 錄 x
符 號 說 明 xi
第一部分:探討光對深層培養Aspergillus ficuum的影響
第一章 前言 - 1 -
1-1 研究動機 - 1 -
1-2 研究目的 - 1 -
第二章 文獻回顧 - 2 -
2-1 代謝作用 - 2 -
2-2 真菌二次代謝產物的種類 - 2 -
2-3 影響麴菌屬菌株的黴菌毒素產量以及生長發育的環境因子 - 3 -
2-4 光照作用在麴菌上的調控機制 - 4 -
2-5 光照作用對麴菌代謝物的影響 - 9 -
2-6 使用HPLC分析代謝物的優勢 - 12 -
2-7 使用二次代謝物特徵進行絲狀真菌生化分類與辨識 - 13 -
第三章 實驗設計﹑材料與方法 - 15 -
3-1 實驗設計 - 15 -
3-2 實驗材料 - 15 -
3-3 實驗方法 - 20 -
第四章 實驗結果與討論 - 27 -
4-1 固態平面培養實驗 - 27 -
4-2 不同照度LED 藍、綠、紅光氣舉式發酵的影響比較 - 32 -
4-3 1000 Lux照度LED 藍、綠、紅光對發酵的代謝產物HPLC分析 - 38 -
第五章 結論與建議 - 50 -
5-1 結論 - 50 -
5-2 建議 - 51 -
第二部分:以Microbacterium sp.去除二甲基硫之研究
第六章 前言 - 53 -
6-1 研究動機 - 53 -
6-2 研究目的 - 53 -
第七章 文獻回顧 - 54 -
7-1 二甲基硫來源與重要性 - 54 -
7-2 臭氣處理技術之比較 - 54 -
7-3 降解二甲基硫之菌種 - 55 -
7-4 二甲基硫微生物分解機制 - 55 -
第八章 實驗方法與設備 - 57 -
8-1 實驗規劃 - 57 -
8-2 實驗方法與設備 - 58 -
第九章 實驗結果與討論: - 68 -
9-1 在批次反應中去除DMS的特性: - 68 -
9-2 接種M.sp.NTUT26的生物反應器在連續式操作時,對DMS的去除研究 - 70 -
9-3 影響DMS去除效率之重要的操作參數 - 72 -
9-4 接種M.sp.NTUT26與P.Putida於生物反應促進DMS移除 - 74 -
9-5 表觀動力分析和生物反應器增大化的設計規範 - 76 -
第十章 結論與建議 - 79 -
第十一章 參考文獻 - 80 -
附錄 - 93 -
附錄一 - 93 -
附錄二 - 95 -
附錄三 - 96 -
附錄四 - 99 -
附錄五 - 101 -
附錄六 - 102 -
附錄七 - 103 -
附錄八 論文著作-1 - 104 -
附錄九 論文著作-2 - 114 -
參考文獻 第一部分 探討光對深層培養Aspergillus ficuum的影響
余程偉 探討光照對Aspergillus ficuum NRRL3135在液態發酵中生產phytase之影響 國立中央大學化學工程與材料工程研究所 碩士論文 (2008)
劉英俊等 最新微生物應用工業 第四版p159 (1998)
曾雅秀 Penicillium simplicissimum W46所產植酸酶之生產、純化、特性探討及基因之選殖。國立中興大學食品科學系 博士論文 (2000)
黃賜源 靈芝液態培養及氣舉式生化反應器應用之研究 私立東海大學化學工程研究所 碩士論文 (1996)
Adams TH, Yu JH, Coordinate control of secondary metabolite production and asexual sporulation in Aspergillus nidulans. Current Opinion in Microbiology 1:674-677 (1998)
Bayram Ö, Valerius O, Susanna B, Kwon NJ, Keller NP, Yu JH, Gerhard HB, VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism, Science 320:1504~1506 (2008)
Betina V, Differentiation and secondary metabolism in some prokaryotes and fungi. Folia Microbiol, 40:51-67 (1995)
Bennett JW, From molecular genetics and secondary metabolism to molecular metabolites and secondary genetics. Can J Bot, 73:8917-8924 (1995)
Bennett JW, Secondary metabolism and differentiation in fungi. In Secondary Metabolism and Differentiation in Fungi, New York: Marcel Dekker, 1983:1-32 (1983)
Bennett JW, Dunn JJ, Goldsman CI, Influence of white light on production of aflatoxins and anthraquinones in Aspergillus parasiticus, Appl Environ Microbiol 488-491 (1981)
Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R, The Aspergillus nidulans phytochrome FphA represses sexual development in red light, Current Biology, 15:1833–1838 (2005)
Bok JW, Balajee SA, Marr KA, Andes D, Frisvad JC, Keller1 NP, LaeA, a regulator of morphogenetic fungal virulence factors, Eukaryotic Cell, 4( 9) :1574–1582 (2005)
Bo ID, Heyman J, Vincke J, Verstraete W, Van Langenhove H, Dimethyl sulfide removal from synthetic waste gas using a flat poly(dimethylsiloxane) -coated composite membranebioreactor. Environ Sci Technol 37:4228–4234 (2003)
Butler WH, Mycotoxins, The filamentous fungi, Industrial mycology. 1:320-329. Edward Arnold Press, London, and HaLsted Press, New York. (1975)
Calvo AM, Wilson RA, Bok JW, Keller NP, Relationship between secondary metabolism and fungal development, Microbiology and Mol Biology Review, 447–459 (2002)
Cary JW, The aflatoxin biosynthesis cluster gene, aflX, encodes an oxidoreductase involved in conversion of Versicolorin A to demethylsterigmatocystin, Appl Environ Microbiol 72( 2):1096–1101 (2006)
Corrochano LM, Fungal photoreceptors: sensory molecules for fungal development and Behaviour, Photochem. Photobiol Sci, 6:725-736 (2007)
Demain AL, Regulation of secondary metabolism. In Biotechnology of Filamentous Fungi - Technology and Products. 89-112. (1991)
Demain AL, Microbial secondary metabolism: a new theoretical frontier for academia, a new opportunity for industry. In Secondary Metabofites: Their Function and Evolution. Chinchester: Wiley, 3-23. (1992)
Frisvad1 JC, Andersen B, Thrane U, The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi, Mycological Research 112: 231-240 (2008)
Frisvad1 JC, Larsen1 TO, Vries Rde, Meijer M, Houbraken J, Cabañes FJ, Ehrlich K, Samson RA, Secondary metabolite profiling, growth profiles and other tools for species recognition and important Aspergillus mycotoxins, Studies in Mycology, 59: 31–37. (2007)
Fox EM, Howlett BJ, Secondary metabolism: regulation and role in fungal biology, Current Opinion in Microbiology, 11:481–487 (2008)
Haggblom P, Unestam T, Blue light inhibits mycotoxin production and increases total lipids and pigmentation in Alternaria alternate. Appl Environ Microbiol 38:1074–1077 (1979)
Idnurm A, Heitman J, Light controls growth and development via a conserved pathway in the fungal kingdom, PLoS Biology 3(4): 0615-0626 (2005)
Kato N, Brooks W, Calvo AM, The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot Cell 2:1178–1186 (2003)
Linden H, Circadian rhythms-A white collar protein senses blue light. Science 297:777–778 (2002)
Liu Y, Molecular mechanisms of entrainment in the Neurospora circadian clock. J Biol Rhythms 18:195–205 (2003)
Murray DB, Beckmann M, Kitano H, Regulation of yeast oscillatory dynamics, PNAS 13(104): 7 2241–2246 (2007)
Morovján G, Monitoring of selected metabolites and biotransformation products from fermentation broths by high-performance liquid chromatography, J Chromatography A 763:165-172 (1997)
Maggon KK, Gupta SK, Venkitasubramania TA, Biosynthesis of Aflatoxmns, Bacteriological Reviews, 822-855 American Society for Microbiology (1977)
Nielson PV, Beuchat L, Fristvad JC, Growth of and fumitremorgin production by Neosartorya fischeri as affected by temperature, light, and water Activity, Appl Environ Microbiol 54(6): 1504-1510 (1988)
Shwab EK, Keller NP, Regulation of secondary metabolite production in filamentous ascomycetes, mycological research 112 :225– 230 (2008)
Stanley C, Holt SF, Conti RC, Effect of light intensity on the formationof the photochemical apparatus in the green bacterium Chloropseudo- monasethylicum. J Bacteriology, 91(1): 349-335 (1965)
Tsuyoshi M , Akira M , Toshie K,Tadashi O , Yasuaki U , Fumihiro S,Hiroyuki Sammoto, Akira W,Masahiro K, Light effects on cell development and secondary metabolism in Monascus, J Ind Microbiol Biotechnol 32: 103-108 (2005)
Turner WB, Commercially important secondary metabolites, The filamentous fungi, vol. 1, Industrial mycology. p. 122-139. In J. E. Smith and D. R. Berry (ed.), Edward Arnold Press, London, and Halsted Press, New York. (1975)
Wilson B J, Hayes AW, In Toxicants occuring naturally in foods. Microbial toxins (in foods), p. 372-423, National Academy of Sciences, Washington, D.C (1973)
.
Weinberg ED, Secondary metabolism: raison d'etre. Perspect. Biol. Med. 14:565-577. (1971)
Weinberg ED, Secondary metabolism control by temperature and inorganic phosphate. Dev. Ind. Microbiol. 15:70-81. (1974)
第二部分 以Microbacterium sp.去除二甲基硫之研究
溫奕杰 利用活性污泥去除光電產業廢水中的DMSO,中華大學土木研究所 碩士論文 (2004)
行政院環境保護署,水中陰離子檢測方法-離子層析法,(92)環署檢字第0920061769號公告,NIEA W415.51B。
American Public Health Association, American Water Works Association & Water Pollution Control Federation. Standard Methods for the Examination of Water and Wastewater, 20th ed. Method 4110B, pp.4-2~4-6. APHA, Washington, D.C., USA, (1998).
Andreae MO, Ocean–atmosphere interactions in the global biogeochemical sulfur cycle. Mar Chem 30:1–29 (1990).
Avigad GA, Simple spectrophotometric determination of formaldehyde and other aldehydes: application to periodate-oxidized glycol system. Anal Biochem 134:499–504 (1983).
Bentley R, Chasteen TG, Environmental VOSCs-formation and degradation of dimethyl sulfide, methanethiol and related materials. Chemosphere 55:291–317 (2004).
Bo ID, Heyman J, Vincke J, Verstraete W, Van Langenhove H, Dimethyl sulfide removal from synthetic waste gas using a flat poly(dimethylsiloxane)- coated composite membrane bioreactor. Environ Sci Technol 37:4228–4234 (2003).
Cha JM, Cha JS, Lee JH, Removal of organo-sulphur odour compounds by Thiobacillus novellus SRM, sulphur-oxidizing microorganisms. Process Biochem 34:659–665 (1999).
Chan AA, Attempted biofiltration of reduced sulphur compounds from a pulp and paper mill in Northern Sweden. Environ Prog 25:152–160 (2006).
Cheng X, Peterkin E, Burlingame GA, A study on volatile organic sulfide causes of odors at Philadelphia’s Northeast Water Pollution Control Plant. Water Res 39:3781–3790 (2005).
Cho KS, Hirai M, Shoda M, Degradation characteristics of hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide by Thiobacillus thioparus DW44 isolated from peat biofilter. J Ferment Bioeng 71:384–389 (1991).
Chung YC, Huang C, Tseng CP, Removal of hydrogen sulphide by immobilized Thiobacillus sp. strain CH11 in a biofilter. J Chem Technol Biotechnol 68:58-62. (1997)
Chung YC, Evaluation of gas removal and bacterial community diversity in a biofilter developed to treat composting exhaust gases. J Hazard Mater 144:377–385 (2007).
Chung YC, Ho KK, Tseng CP, Two-stage biofilter for effective NH3 removal from waste gases containing high H2S concentration. J Air Waste Manage Assoc 57:337–347 (2007)
De B,JAM,Dijiken,JP,and Harder W. Dimethyl Sulfoxide and Dimethyl sulfide as a carbon ,sulfur and energy sourse for growth of Hyphomicrobium S.J.of General Microbiology 127:315~323 (1981)
De ZJ, Nelisse PN, Kuenen JG Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiol Lett 20:261– 270 (1996)
Fuse H, Ohta M, Takimura O, Murakami K, Inoue H, Yamaoka Y, Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci Biotechnol Biochem 62:1925–1931 (1998).
Fuse H, Takimura O, Murakami K, Yamaoka Y, Omori T, Utilization of dimethyl sulfide as a sulfur source with the aid of light by Marinobacterium sp. strain DMS-S1. Appl Environ Microbiol 66:5527–5532 (2000).
Geng AL, Chen XG, Gould WD, Ng YL, Yan R, Lee CC, Removal of odorous sulphur-containing gases by a new isolate from activated sludge. Water Sci Technol 50:291–297(2004)
Hanlon SP, Holt RA, Moore GR, McEwan AG, Isolation and characterization of a strain of Rhodobacter sulfidophilus: a bacterium which grows autotrophically with dimethylsulphide as electron donor. Microbiol 140:1953–1958 (1994)
Hirai M, Ohtake M, Shoda M, Removal kinetic of hydrogen sulphide, methanethiol and dimethyl sulphide by peat biofilters. J Ferment Bioeng 70:334–339 (1990).
Hirano H, Yoshida T, Fuse H, Endo T, Habe H, Nojiri H, Marinobacterium sp. strain DMS-S1 uses dimethylsulphide as a sulphur source after light-dependent transformation by excreted flavins. Environ Microbiol 5:503–509 (2003).
Horinouchi M, Kasuga K, Nojiri H, Yamane H, Omori T, Cloning and characterization of genes encoding an enzyme which oxidizes dimethyl sulfide in Acinetobacter sp. strain 20B. FEMS Microbiol Lett 155:99–105 (1997).
Ito T, Miyaji T, Nakagawa T, Tomizuka N, Degradation of dimethyl disulfide by Pseudomonas fluorescens strain 76. Biosci Biotechnol Biochem 71:366–370 (2007).
Juliette LY, Hyman MR, Arp DJ, Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds: thioethers are oxidized to sulfoxides by ammonia monooxygenase. Appl Environ Microbiol 59:3718–3727 (1993)
Kim JY, Kim BW, Removal of dimethyl sulfide in ceramic biofilters immobilized with Thiobacillus thioparus TK-m. J Microbiol Biotechnol 13:866–871 (2003)
Laidler KJ, The chemical kinetics of enzyme action. Oxford University Press, Oxford J Ind Microbiol Biotechnol 36:95–104 103 (2009)
Park SJ, Cho KS, Hirai M, Shoda M, Removability of malodorous gases from a night soil treatment plant by a pilotscale peat biofilter inoculated with Thiobacillus thioparus DW44. J Ferment Bioeng 76:55–59 (1993).
Phae CG, Shoda M, A new fungus which degrades hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide. Biotechnol Lett 13:375–380 (1991).
Pol A, Op den Camp HJ, Mees SG, Kersten MA, van der Drift C, Isolation of a dimethylsulfide-utilizing Hyphomicrobium species and its application in biofiltration of polluted air. Biodegradation 5:105–112 (1994).
Ruokojarvi A, Ruuskanen J, Martikainen PJ, Olkkonen M, Oxidation of gas mixtures containing dimethyl sulfide, hydrogen sulfide, and methanethiol using a two-stage biotrickling filter. J Air Waste Manage Assoc 51:11–16 (2001)
Sandaa RA, Enger O, Torsvik V, Abundance and diversity of Archaea in heavy-metal-contaminated soils. Appl Environ Microbiol 65:3293–3297 (1999)
Sercu B, Nunez D, Van-Langenhove H, Aroca G, Verstraete W, Operational and microbiological aspects of a bioaugmented two-stage biotrickling filter removing hydrogen sulfide and dimethyl sulfide. Biotechnol Bioeng 90:259–269 (2005).
Smet E, Chasaya G, Van Langenhove H, Verstraete W The effect of inoculation and the type of carrier material used on the biofiltration of methyl sulphides. Appl Microbiol Biotechnol 45:293–298 (1996).
Tiwaree RS, Cho KS, Hirai M, Shoda M, Biological deodorization of dimethyl sulfide using different fabrics as the carriers of microorganisms. Appl Biochem Biotechnol 32:135– 148 (1992).
Tsai CH, Huang YJ, Chen JC, Liao WT Deodorization of dimethyl sulfide using a discharge approach at room temperature. J Air Waste Manage Assoc 53:1225–1232 (2003)
Visscher PT, Taylor BF, A new mechanism for the aerobic catabolism of dimethyl sulfide. Appl Environ Microbiol 59:3784– 3789 (1993)
Visscher PT, van Gemerden H, Photo-autotrophic growth of Thiocapsa roseopersicina on dimethyl sulfide. FEMS Microbiol Lett 81:247–250(1991).
Wani AH, Lau AK, Branion MR Biofiltration control of pulping odors-hydrogen sulfide: performance, microkinetics and coexistence effects of organo-sulfur species. J Chem Technol Biotechnol 74:9–16 (1999).
Welsh DT, Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290 (2000).
Zhang L, Hirai M, Shoda M, Removal characteristics of dimethyl sulfide, methanethiol and hydrogen sulfide by Hyphomicrobium sp. I55 isolated from peat biofilter. J Ferment Bioeng 72:392–396 (1991).
Zhang L, Kuniyoshi I, Hirai M, Shoda M, Oxidation of dimethyl sulfide by Pseudomonas acidovorans DMR-11 isolated from peat biofilter. Biotechnol Lett 13:223–228 (1991).
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2009-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明