以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:52 、訪客IP:18.116.12.7
姓名 吳於貝(Yu-Bey Wu) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 聚多醣體於組織工程材料應用之研究
(Based on polysaccharide materials for tissue engineering application)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本研究目的是利用幾丁聚醣與海藻膠、硫酸軟骨素及肝素等聚醣體來形成人工細胞外基質之支架,以利於組織培養與傷口修復。硫酸軟骨素與肝素於生物體內具有調控生長因子活性的能力;海藻膠則是海洋中源源不絕的產物。兩類型態的陰電性多醣體的差異性在於:硫酸軟骨素與肝素擁有調控生長因子活性的磺酸官能基,而海藻膠則是便宜量多等優點。但由於聚陰電性多醣體因電荷性質排斥效應,無法自身形成穩定架構體。所以研究希望利用帶正電荷幾丁聚醣與海藻膠、硫酸軟骨素及肝素陰電性聚醣體產生聚電荷反應,並探討此電荷複合反應機制之架構體是否可以藉由三種不同型態的交聯機制之交聯劑(戊二醛、EDC(1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide)、鈣離子)利用共價鍵與離子鍵來產生更穩定的架構體。
過程中此複合聚醣體之水膠體利用相分離技術製造出立體孔洞狀之聚醣體複合膜。進一步,此孔洞膜材利用電荷反應與可誘導血管增生及促進細胞分化生長因子(上皮生長因子,IP=4.6、鹼性纖維母細胞生長因子,IP=9.6)結合,來瞭解聚醣體複合膜對於不同等電點生長因子之吸附與釋放之控制能力。此結合生長因子聚醣體複合膜經由人類纖維母細胞增生程度測試來確定其生長因子之活性,最後將結合生長因子聚醣體複合膜移植至老鼠體內,經由60天修復過程,來觀察複合膜孔洞內部之誘導組織再生的能力。
相關的物性結果呈現,藉由冷凍乾燥所得到的聚醣體複合膜型態為孔洞交錯之結構體,且孔洞大小分佈介於100~200μm。由穩定性結果分析,發現未經交聯處理的聚醣體複合膜,其重量損失隨著官能基莫爾數比例的趨近1,而損失率降低。經一週的穩定度測試結果分析:幾丁聚醣/肝素(重量比2:1)與幾丁聚醣/海藻膠複合膜之重量損失可維持40%以下,而幾丁聚醣/肝素(重量比1:1)與幾丁聚醣/ 硫酸軟骨素呈現不穩定型態(重量損失高達80%)。隨著胺基質子化程度的增加雖然可與陰電性聚醣體增加電荷反應性質,但是由於複合鹽類的殘留,使的損失加速提升,而無法達到原有調控穩定的效果。另一方面,藉由酸鹼調控質子化的胺基或是離子化的羧基與磺酸基還原,來增加材料穩定,重量損失結果發現藉由還原質子化胺基的重量損失可降至30%以下,而還原離子化羧基穩定性質的重量損失依舊維持60%以上。
聚醣體複合膜經戊二醛交聯後,隨著交聯時間的增加而陰電性多醣體流失明顯增加,且材料性質隨交聯程度的提升而材質變的硬脆,這是因為戊二醛醛基與幾丁聚醣胺基反應形成半穿網結構(semi-IPN),而釋出陰電性多醣體。所以隨交聯時間的增加而有較高的重量損失率。EDC交聯的結果雖然為互穿網模式,但交聯的過程中易會造成材料的不穩定性,而於初期會造成材料的流失。且隨時間增加而重量損失增加,顯示EDC交聯劑於聚醣體複合膜系統中,反應速率過慢以致反應不完全而造成流失。但此系列條件的優點為可保有較高比例的負電荷聚醣體,優於調控帶正電荷的生長因子。鈣離子交聯可有效控制負電荷聚醣體的穩定,相對於幾丁聚醣多醣體,可能會因鈣離子競爭反應的條件下而造成流失。交聯與未交聯系列的穩定多醣體複合膜藉由溶菌酵素的加入而增加其降解效率,顯示複合膜生物可降解性之特色。
未經交聯處理的多醣體複合膜,整體上吸附生長因子含量(EGF、Basic-FGF)相較於經交聯處理實驗組有較高的吸收。原因是交聯會消耗電荷官能基,間接導致吸附率下降。經由戊二醛交聯系列之聚醣體複合膜隨交聯改質時間增加而生長因子吸附降低。藉由EDC交聯系列多醣體複合膜,隨著交聯時間的增加,Basic-FGF吸附增加;而EGF卻是隨交聯提升而降低吸附量。鈣離子交聯系列多醣體複合膜,如幾丁聚醣/海藻膠與幾丁聚醣/硫酸軟骨素就有大致上相同的模式,隨鈣離子交聯時間的增加,而降低Basic-FGF與EGF吸附。而幾丁聚醣/肝素卻是隨交聯時間增加而Basic-FGF與EGF吸附增加,這是因為幾丁聚醣/肝素可形成較穩定材料,而保有兩者多醣體官能基性質所致。
生長因子控制釋放方面,EGF(1~12%)的整體釋放量都低於Basic-FGF(5~20%)釋放,顯示多醣體複合膜會因生長因子電荷性質而吸附有所不同。生長因子釋放量依據吸附量與材料穩定性調控,且於體外細胞實驗得知:生長因子(EGF、Basic-FGF)與多醣體複合膜經由電荷吸附結合確實能保有其活性。
由動物實驗30天結果呈現,包覆mEGF與Basic-FGF生長因子之多聚醣架構體可以促進微血管的增生,與加速膠原蛋白束與細胞外基質的形成。相較於控制組60天發炎反應的結果,包覆生長因子的實驗組可以加速細胞的遷入以增進多聚醣架構體的分解而形成新生的組織。摘要(英) In the present study, a novel method was designed to prepare chitosan-alginate, chondroitin sulfate and heparin complex based artificial extracellular matrix (scaffolds) for wound repairing. Tissue engineering is a newly developed specialty involves the construction of temporary scaffolds to serve as a three-dimensional (3-D) template for initial cell attachment and subsequent tissue formation. Ideally, a scaffold should be fabricated from biocompatible and bioresorbable materials conducive to cell attachment, proliferation, and differentiation. It should also be high porosity with an interconnected pore network for cell growth and transport of nutrients/metabolic waste. However, even if cells are distributed throughout a scaffold, there is a need for a vascular supply to nourish the cells in the interior of the scaffold. Thus, stimulation of blood vessel ingrowth into the scaffold would assure tissue survival and function. It was reported that basic fibroblast growth factors (bFGF) played an important role for angiogenesis. The vascularization could be promoted by bFGF to provide sufficient nutrient transport for the transplanted cells. One promising way to enhance in vivo efficacy of growth factors is the controlled release at the site of action over an extended time period by incorporating the growth factor into an appropriate bFGF-binding material.
Heparin and chondroitin sulfate, the sulfated glycosaminoglycans, can stabilize an active conformation of bFGF to protect them from proteolysis and enhance their interaction with specific cellular receptors. Alginate is a negatively charged polysaccharider. The carboxyl groups on alginate appear to bind with basic amino acid residues in the FGFs. Chitosan is a copolymer of glucosamine and N-acetylglucosamine obtained by N-deacetylation of chitin, which has structural characteristics similar to extracellular glucosaminoglycan. Chitosan-based biomaterials have been noted for its wound-healing acceleration, cartilage repairing and bone-forming ability in several studies. It is believed that the combination of chitosan-alginate, chondroitin sulfate and heparin is of benefit to binding bFGF for tissue repairing. Since alginate, chondroitin sulfate and heparin were very soluble in water, we want to couple the polysaccharides to chitosan respectively using glutaraldehyde, EDC and calcium ion for the preparation of stable polysaccharides complex scaffolds.
The process involves the construction of three-dimensional (3-D) porous films based on polysaccharides complex. To evaluate the interaction of growth factors (EGF, IP=4.6; bFGF, IP=9.6) with the polysaccharides complex scaffolds, the adsorption and release properties of EGF and bFGF-conjugated scaffolds are examined by ELISA studies. The bFGF or EGF releasing from the polysaccharides complex scaffolds retain its biological activity as examined by the in vitro proliferation of human fibroblast and in vitro histological examination of regenerative tissue.
The lyophilized product of the polysaccharides complex scaffolds show interconnected porous structures with pore size of 100-200μm. After one weeks of soaking in PBS solution, the weight loss of non-crosslinked polysaccharides complex scaffolds approach to 100%. Less than 40% of weight loss is observed from the chitosan-heparin (chitosan/heparin=2:1) and chitosan-alginate scaffold; however, almost 80% of weight loss can be found from the chitosan-heparin (chitosan/heparin=1:1) and chitosan-chondroitin sulfate scaffold. The protonation of amino groups and ionization of the carboxylic acid and sulfonate groups are responsible for the stability of prepared polysaccharides complex scaffolds. Weight loss of the polysaccharides complex scaffolds were reduced to less than 30% after deprotonation of amino groups. On the contrary, the polysaccharides complex scaffolds still retain more than 60% of weight loss after reduction of carboxylic ions.
After crosslinked by glutaraldehyde, all serious of chitosan/anion polysaccharide scaffolds were appeared anion polysaccharide losses seriously and brittle properties obvious with crosslinking time increased. The phenomenon due to amine group reaction with aldehyde to form semi-IPN and then anion polysaccharide were liberated. From literature report the crosslinked type of EDC was showed into full interpenetrating, but using in chitosan/ anion polysaccharide scaffolds will induce unstable during the initial stage due to its polyion chains destroyed by carboxyl group reaction to imime group of EDC. This phenomenon indicated both chitosan and anion polysaccharide with losses through EDC reaction, and weight loss increased obvious in three type chitosan/anion polysaccharide scaffolds by EDC reaction time increased through one week. But in this case, we can find that sulfate element content were raised after EDC crosslinked 24hours in chitosan/ chondroitin sulfate and chitosan/heparin scaffolds, the higher sulfate element content will benefit to absorption basic fibroblast growth factor. The third type crosslinked agent is calcium ion. Even though divalent calcium ion will stable aion polysaccharides (carboxyl and sulfuric group), but its competition reactions with amine on chitosan would resulting into chitosan and anion polysaccharide weight losses during the primary stage.
Due to the decrease of electronic groups, the efficiencies for the adsorption of growth factors (EGF and bFGF) to the cross-linked polysaccharides complex scaffolds were less than that of the non-crosslinked polysaccharides complex scaffolds. By cross-linked with glutaraldehyde, the bFGF- and EGF-adsorption efficiencies of the polysaccharides complex scaffolds decrease with the increase of reaction time for crosslinking. The bFGF-adsorption efficiencies of the polysaccharides complex scaffolds increase with the increase of reaction time for crosslinking; however, the EGF-adsorption efficiencies decrease with the increase of reaction time for crosslinking. In case of EDC crosslinked, the Basic-FGF absorption efficiencies increase through EDC reaction time increase; on the contrary, the EGF absorption amounts decrease with EDC reaction time increase. In other hand, divalent calcium ion crosslinked type polysaccharide scaffolds, such as chitosan/alginate and chitosan/chondroitin sulfate had same absorption model in Basic-FGF and EGF which efficiencies increase with the increase of reaction time for crosslinking. But both growth factors absorption efficiencies increase with the increase of reaction time for calcium ion crosslinking under chitosan/heparin scaffolds.
The release of growth factors (EGF and bFGF) determined by ELISA assay indicates that the release profiles are dependent on the electrostatic interaction between the polysaccharides complex scaffolds and growth factors. There are 1~12% of EGF release and 5~20% of bFGF release from the polysaccharides complex scaffolds. The biological activity of released EGF and bFGF are examined by the continued proliferation of human fibroblasts. The result indicates that the released bFGF retained its biological activity to enhance the proliferation of human fibroblasts, within one week of incubation.
By the animal experiment results show that the polysaccharide scaffold combination with mEGF and Basic-FGF will promote capillaries newborn and than modulate the fibroblast to accelerate the collagen hyperplasia in period of 30days. Compare with the control(inflammation reaction) in 60 days, the scaffold combine with growth factor can also accelerate the cell move into scaffold and then decompose the polysaccharide by enzyme and replace with newborn one, this phenomenon can be utilized to tissue repair or induce new-born organ regenerates of damaging. Final effects will benefit in the development of the tissue engineering research.關鍵字(中) ★ 肝素
★ 幾丁聚醣
★ 海藻膠
★ 硫酸軟骨素
★ 組織工程關鍵字(英) ★ alginate
★ tissue engineering
★ heparin
★ chondroitin sulfate
★ chitosan論文目次 中文摘要 ------------------------------------------------------------ Ⅰ
Abstract ------------------------------------------------------------ IX
目錄 ------------------------------------------------------------ IX
圖目錄 ------------------------------------------------------------ IX
表目錄 ----------------------------------------------------------- IX
符號表說明 ----------------------------------------------------------- IX
第一章 續論----------------------------------------------------- 1
第二章 文獻回顧----------------------------------------------- 4
2.1 組織工程----------------------------------------------- 4
2.2 組織架構材料來源----------------------------------- 4
2.2.1 固態孔洞架構體-------------------------------------- 5
2.2.2 水膠型態架構體-------------------------------------- 7
2.3 組織工程架構體之製備----------------------------- 8
2.3.1 紡織建構----------------------------------------------- 8
2.3.2 鹽析技術----------------------------------------------- 9
2.3.3 相分離技術-------------------------------------------- 9
2.3.4 結構設計----------------------------------------------- 9
2.4 幾丁聚醣----------------------------------------------- 10
2.4.1 幾丁聚醣簡介----------------------------------------- 10
2.4.2 幾丁聚醣相關生物性質----------------------------- 13
2.4.3 組織及傷口癒和的促進----------------------------- 13
2.4.4 幾丁聚醣於組織工程相關應用-------------------- 15
2.4.5 幾丁聚醣載藥及相關包覆-------------------------- 16
2.4.6 幾丁聚醣其餘相關應用與研究-------------------- 17
2.5 海藻膠-------------------------------------------------- 18
2.5.1 海藻膠介紹-------------------------------------------- 18
2.5.2 海藻膠相關研究-------------------------------------- 18
2.5.3 海藻膠於組織工程之應用-------------------------- 20
2.6 葡萄糖胺聚醣----------------------------------------- 21
2.6.1 葡萄糖胺聚醣介紹----------------------------------- 21
2.6.2 硫酸軟骨素-------------------------------------------- 23
2.6.3 硫酸軟骨素的類型----------------------------------- 23
2.6.4 肝素----------------------------------------------------- 26
2.6.5 肝素相關應用與研究-------------------------------- 26
2.7 生長因子----------------------------------------------- 29
2.7.1 表皮生長因子----------------------------------------- 29
2.7.2 纖維母細胞生長因子-------------------------------- 32
第三章 聚醣體複合材料製備及物性分析----------------- 35
3.1 前言----------------------------------------------------- 35
3.2 實驗目的----------------------------------------------- 35
3.3 實驗藥品----------------------------------------------- 36
3.4 實驗儀器設備----------------------------------------- 37
3.5 實驗項目----------------------------------------------- 39
3.5.1 膜材的製備-------------------------------------------- 39
3.5.2 掃描式電子顯微鏡(SEM)實驗--------------------- 42
3.5.3 紅外線光譜分析(FTIR)實驗----------------------- 42
3.5.4 X-ray光譜分析(XRD)實驗------------------------- 43
3.5.5 穩定度實驗-------------------------------------------- 43
3.5.6 元素分析(EA)實驗----------------------------------- 44
3.5.7 元素分析(EDX)實驗--------------------------------- 44
3.5.8 感應耦合電漿光譜分析鈣含量-------------------- 44
3.5.9 體外酵素裂解實驗----------------------------------- 44
3.5.10 細胞毒性與相容性測試實驗----------------------- 45
3.6 幾丁聚醣/海藻膠多醣體化性與物性分析------- 46
3.6.1 幾丁聚醣/海藻膠複合膜---------------------------- 46
3.6.2 幾丁聚醣/海藻膠多醣體SEM表面型態分析--- 46
3.6.2a 幾丁聚醣/海藻膠多醣體FT-IR官能基分析----- 46
3.6.2b 幾丁聚醣/海藻膠多醣體X-ray分析-------------- 49
3.6.2c 幾丁聚醣/海藻膠多醣體穩定度探討------------- 53
3.6.3 交聯型之幾丁聚醣/海藻膠複合膜---------------- 56
3.6.3a FTIR分析---------------------------------------------- 56
3.6.3b 穩定度分析-------------------------------------------- 59
3.7 幾丁聚醣/硫酸軟骨素多醣體化性與物性分析- 66
3.7.1 幾丁聚醣/硫酸軟骨素複合膜---------------------- 66
3.7.2 幾丁聚醣/硫酸軟骨素多醣體SEM表面型態分析-------------------------------------------------------- 66
3.7.2a 幾丁聚醣/硫酸軟骨素多醣體FT-IR官能基分析 68
3.7.2b 幾丁聚醣/硫酸軟骨素多醣體X-ray分析--------- 70
3.7.2c 幾丁聚醣/硫酸軟骨素多醣體穩定度探討------- 70
3.7.3 交聯型之幾丁聚醣/硫酸軟骨素複合膜---------- 72
3.7.3a FTIR分析---------------------------------------------- 72
3.7.3b 穩定度分析-------------------------------------------- 76
3.8 幾丁聚醣/肝素多醣體化性與物性分析---------- 83
3.8.1 幾丁聚醣/肝素複合膜------------------------------- 83
3.8.2 幾丁聚醣/肝素多醣體SEM表面型態分析------- 83
3.8.2a 幾丁聚醣/肝素多醣體FT-IR官能基分析--------- 85
3.8.2b 幾丁聚醣/肝素多醣體穩定度探討---------------- 85
3.8.2c 幾丁聚醣/肝素多醣體X-ray分析------------------ 85
3.8.3 交聯型之幾丁聚醣/肝素複合膜------------------- 89
3.8.3a FTIR分析---------------------------------------------- 89
3.8.3b 穩定度分析-------------------------------------------- 92
3.9 酵素裂解分析----------------------------------------- 94
3.10 細胞毒性之MTT測試分析-------------------------- 96
3.11 結論----------------------------------------------------- 99
第四章 聚醣體複合材料結合激素控制與釋放----------- 101
4.1 前言----------------------------------------------------- 101
4.2 實驗目的----------------------------------------------- 101
4.3 實驗藥品----------------------------------------------- 101
4.4 實驗儀器設備----------------------------------------- 102
4.5 實驗項目----------------------------------------------- 103
4.5.1 Basic-FGF & EGF生長因子吸附與生長因子包覆-------------------------------------------------------- 103
4.5.2 生長因子釋放與活性測試-------------------------- 104
4.5.3 ELISA(Enzyme-Linked Immunosorbent Assay)測試方法----------------------------------------------- 104
4.6 結果與討論-------------------------------------------- 106
4.6.1 幾丁聚醣/聚陰電性多醣體EGF吸附分析------ 106
4.6.1a 幾丁聚醣/海藻膠EGF吸附分析------------------ 106
4.6.1b 幾丁聚醣/硫酸軟骨素EGF吸附分析------------ 109
4.6.1c 幾丁聚醣/肝素吸附EGF吸附分析--------------- 110
4.6.2 幾丁聚醣/聚陰電性多醣體對於Basic-FGF吸附分析----------------------------------------------------- 110
4.6.2a 未交聯幾丁聚醣/海藻膠Basic-FGF吸附分析-- 113
4.6.2b 幾丁聚醣/硫酸軟骨素Basic-FGF吸附分析----- 115
4.6.2c 幾丁聚醣/肝素吸附Basic-FGF吸附分析-------- 115
4.6.3 EGF釋放分析----------------------------------------- 118
4.6.3a 幾丁聚醣/海藻膠吸附EGF釋放分析------------ 118
4.6.3b 幾丁聚醣/海藻膠吸附EGF釋放分析------------ 121
4.6.3c 幾丁聚醣/硫酸軟骨素吸附EGF釋放分析------- 123
4.6.3d 幾丁聚醣/肝素吸附EGF釋放分析---------------- 123
4.6.4 Basic-FGF釋放分析--------------------------------- 126
4.6.4a 幾丁聚醣/海藻膠包覆Basic-FGF釋放分析----- 126
4.6.4b 幾丁聚醣/海藻膠吸附Basic-FGF釋放分析----- 126
4.6.4c 幾丁聚醣/硫酸軟骨素吸附Basic-FGF釋放分析 129
4.6.4d 幾丁聚醣/肝素吸附Basic-FGF釋放分析------- 129
4.7 結合生長因子之多醣體複合膜生物活性測試分析----------------------------------------------------- 134
4.8 結論----------------------------------------------------- 134
第五章 聚醣體結合生長因子於動物實驗之表現-------- 136
5.1 前言----------------------------------------------------- 136
5.2 實驗目的----------------------------------------------- 136
5.3 實驗動物與材料與儀器設備----------------------- 136
5.4 實驗項目----------------------------------------------- 137
5.5 結果與討論-------------------------------------------- 139
5.5.1 In-vivo動物實驗觀察-------------------------------- 139
5.5.2 病理組織切片H&E分析--------------------------- 139
5.5.3 膠原蛋白變性溫度分析----------------------------- 148
5.6 結論----------------------------------------------------- 152
第六章 總結----------------------------------------------------- 153
參考文獻----------------------------------------------- 158
作者著作----------------------------------------------- 164參考文獻 1 Langer, R., and Vacanti, J. P., Science(1993) 260, 920
2 Yasuhiko, T., Biomater. Drug Delivery(2000) 48, 531
3 Peterson, L., et al., Am. J. Sports Med.(2002) 30, 2
4 Zhang, R., and Ma, P. X., Academic Press, San Diego, (2001) 715
5 Li, S., J. Biomed. Mater. Res.(1999) 48, 342
6 Reed, A., and Gilding, D., Polymer(1981) 22, 494
7 Zhang, R., and Ma, P. X., Polymer Preprint(2000) 41, 1618
8 Eling, B., et al., Polymer(1982) 23, 1587
9 Pitt, C. G., et al., Biomaterials(1981) 2, 215
10 Woodward, S. C., et al., J. Biomed. Mater. Res.(1985) 19, 437
11 Choi, S. H., and Park, T. G., J. Biomater. Sci. Polym. Ed.(2002) 13, 1163
12 Holland, S. J., et al., Biomaterials(1987) 8, 289
13 Miller, N. D., and Williams, D. F., Biomaterials(1987) 8, 129
14 Bell, E., et al., J. Biomech. Eng.(1991) 113, 113
15 Pachence, J. M., J. Biomed. Mater. Res.(1996) 33, 35
16 Yannas, I. V., J. Cell. Biochem.(1994) 56, 188
17 Mueller, S. M., et al., Biomaterials(1999) 20, 701
18 Choi, Y. S., et al., J. Biomed. Mater. Res.(1999) 48, 631
19 Altman, G. H., et al., Biomaterials(2002) 23, 4131
20 Shapiro, L., and Cohen, S., Biomaterials(1997) 18, 583
21 Madihally, S. V., and Matthew, H. W., Biomaterials(1999) 20, 1133
22 Solchaga, L. A., et al., Tissue Eng.(2002) 8, 333
23 Badylak, S. F., Semin. Cell Dev. Biol.(2002) 13, 377
24 Chen, M. K., and Badylak, S. F., J. Surg. Res.(2001) 99, 352
25 Probst, M., et al., BJU Int.(2000) 85, 362
26 van Wachem, P. B., et al., J. Biomed. Mater. Res.(2001) 55, 415
27 Izumi, K., et al., J. Dent. Res.(2000) 79, 798
28 LeGeros, R. Z., Clin. Orthop. Rel. Res.(2002) 395, 81
29 Ma, P. X., et al., J. Biomed. Mater. Res.(2001) 54, 284
30 Kuo, C. K., and Ma, P. X., Biomaterials(2001) 22, 511
31 Fisher, J. P., et al., J. Biomater. Sci. Polym. Ed.(2001) 12, 673
32 Burdick, J. A., et al., Biomaterials(2001) 22, 1779
33 Mann, B. K., et al., Biomaterials(2001) 22, 3045
34 Han, D. K., and Hubbell, J. A., Macromolecules(1997) 30, 6077
35 Sawhney, A. S., et al., Macromolecules(1993) 26, 581
36 West, J. L., and Hubbell, J. A., Macromolecules(1999) 32, 241
37 Lutolf, M. P., et al., Proc. Natl. Acad. Sci. USA(2003) 100, 5413
38 Behravesh, E., et al., Biomacromolecules(2002) 3, 374
39 Stile, R. A., and Healy, K. E., Biomacromolecules(2002) 3, 591
40 Tan, W., et al., Tissue Eng.(2001) 7, 203
41 Lee, J., et al., J. Biomater. Sci. Polym. Ed.(2001) 12, 229
42 Tamura, T., et al., Biomacromolecules(2000) 1, 552
43 Petka, W. A., et al., Science(1998) 281, 389
44 Ma, P. X., and Zhang, R., J. Biomed. Mater. Res.(2001) 56, 469
45 Zeltinger, J., et al., Tissue Eng.(2001) 7, 557
46 Clark R. A. F., Elsevier, New York, (1993) 29
47 Onishi H., Machida Y., Biomaterials(1999) 20, 175
48 Hirano S., Noishiki Y., J. Biomed. Mater. Res.(1985) 19, 413
49 Xu J., et al., Macromolecules (1996 )29,3436
50 Rao S. B., Sharma P., J. Biomed. Mater. Res. (1997) 34, 21
51 Biagini G., et al., Biomaterials (1991) 12, 281
52 Muzzarelli R. A. A., et al., Biomaterials(1994 ) 15, 1075
53 Kojima K., et al.,Carbohyd. Polym.(1998) 37, 109
54 Minami S., et al., Carbohyd. Polym.(1996) 29, 295
55 Ueno H., et al., Biomaterials(1999) 20, 1407
56 Chow, K. S., et al., J Polym Res.(2001) 8, 27
57 Wang, M., et al., J Mater Sci Mater Med (2001) 12, 855
58 Ma, J., et al., Biomaterials(2001) 22, 331
59 Zhang, Y., et al., J Biomed Maters Res.(2001) 55, 304
60 Risbud, M., et al., J Biomed Mater Res.(2001) 56, 120
61 Haipeng, G., et al., J Biomed Mater Res.(2000) 52, 285
62 Chung, T.W., et al., Biomaterials(2002) 23, 2827
63 Zhu, A., et al., Biomaterials(2002) 23, 4657
64 Zhu, H., et al., J Biomed Mater Res.(2002) 62, 532
65 Cai, K., et al., J Biomed Mater Res.(2002) 60, 398
66 Chung, T.W., et al., Biomaterials(2002) 23, 4803
67 Chandy, T., and Sharma, C. P., Biomaterials(1993) 14, 939
68 Shiraishi, S., et al., J. Control. Release.(1993) 25, 217
69 Fwu, L.M., et al., J Appl Polym Sci(2001)
70 Groboillot, A.F., et al., Biotechnol. Bioeng.(1993) 42, 1157
71 Shinonaga, M.A., et al., J Ferment. Bioeng.(1992) 74, 90
72 Chandy, T., and Sharma, C. P., Biomaterials(1996) 17, 61
73 Huguet, M.L., et al., J Appl. Polym. Sci(1994) 51, 1427
74 Jameela, S.R., et al., J Biomat. Sci-Polym E.(1994) 6, 621
75 Wan, W.S., et al., Ind. Eng. Chem. Res.(1999) 38, 1411
76 Modrzejewska, Z., and Kaminski, W., Ind. Eng. Chem. Res.(1999)38, 4946
77 Zeng, X., and Ruckenstein, E., J. Membrane. Sci(1998) 148,195
78 Guibal, E., et al., Ind. Eng. Chem. Res.(1999) 38, 4011
79 Lasko, C.L., and Hurst, M.P., Environ. Sci. Technol.(1999) 33, 3622
80 Qurashi. M.T., et al., J.Appl. Polym. Sci(1992) 46, 263
81 Amiji, M.M., Biomaterials(1995) 16, 593
82 Cruz J., et al., Anal. Chem.(2000) 72, 680
83 Uragami, T., et al., J. Membrane. Sci(1994) 88, 243
84 Painter, T.J., Academic Press: New York, (1983) 195
85 Schmiedeberg, JEO., Osterr Botan(1985) 99, 413
86 Smidsrd, O., and Draget, K.I., Carbohyd Eur (1996) 14, 6
87 Haug, A. Acta Chem Scand (1961) 15, 1794
88 Percival, E.G.V, and McDowell, R.H., Academic Press: UK, (1967)
89 Haug, A., et al., Acta Chem Scand(1967) 21, 768
90 Atkins, E.D.T., et al., Biopolymers(1973) 12, 1865
91 Atkins, E.D.T., et al., Biopolymers(1973) 12, 1879
92 Smidsrod, O., and Skjak-Brak G., TIBTECH(1990) 8, 71
93 Sennerby, L., et al., Biomaterials(1987) 8, 49
94 Cohen, S., et al.,Proc. Natl. Acad. Sci(1991) 88, 1040
95 Meshali, M.M. and Gabr, K.E.,Int. J. Pharm.(1993) 89, 177
96 Daly, M.D. and Knorr, D., Biotechol. Prog.(1988) 4, 76
97 Yao, K.D., et al., Macromol. Chem. Phys.(1995) 35, 150
98 Tay, L.F., et al., Biotechnol . Bioeng.(1993) 42, 449
99 Overgand, S., et al., J. Chem. Eng.(1992) 69, 439
100 Hugnat, M.L.,et al., J. Appl.Polym. Sci(1994) 11, 1427
101 Yoshihisa, S., et al., J Biomed Mater Res.(1999) 48, 522
102 Jon, A.R., et al., Biomaterials(1999) 20, 45
103 Lopina, S.T., et al., Biomaterials(1996) 17, 559
104 Matsuda, T., et al., J Polym. Sci(1993) 31, 589
105 Mooney, D.J., et al., Biotech. & Bioeng.(1996) 50, 422
106 Kuen, Y.L., et al., Macromolecules(2000) 33, 4291
107 Beeley, J.G., Elsevier Science, New York, (1985) 16
108 Baird, R.J., et al., J Vasc Surg(1990) 11, 4
109 Majerus, P.W., et al., Pergamon Press, New York, (1990) 1313
110 Gallagher, J., and Lyon, M., CRC Press, (1989) 135
111 Blaisdell, F.W., Cardiovasc Surg (1996) 4, 691
112 Dietrich, W., et al., J Thorac Cardiovasc Surg.(1991) 102, 505
113 Fernandez, F., et al., Thromb Res.(1986) 43, 491
114 Zucker, M.B., Fed Proc(1977) 36, 47
115 Grulich-Henn, J., et al., Thromb Haemost(1990) 64, 420
116 Ekre, H.P., et al., Plenum Press, New York, (1992) 329
117 Salzman, E.W., Ann. N. Y. Acad. Sci(1989) 556, 371
118 Bick, R.L., Hematology(1993) 1603
119 Dcykin, D., N Engl J Med(1982) 280, 937
120 David, J., et al., Tips(1995) 16, 198
121 Dallas, L., et al., Fed Euro Biochem Sci(1995) 216
122 Wissink, M.J.B., et al., J Controlled Release(2000) 67, 141
123 Pieper, et al., J Biomed Mater Res.(2002) 62, 185
124 Wang, X.H., et al., I J Biolog Macromolecules(2003) 33, 95
125 Chupa, J.M., et al., Biomaterials(2000) 21, 2315
126 Yoshihiro, I., Materials Sci and Eng C(1998) 6, 267
127 Bell, G.I., et al., Nucleic Acids Res(1986) 14, 8427
128 Pesonen, K., et al., J Clin Endocrinol Metab(1989) 68, 486
129 Fisher, D.A., et al., Endocr Rev(1990) 11,418
130 Brown, G.L., et al., J Exp Med(1986) 163, 1319
131 Schultz, G., et al., J Cell Biochem(1991) 45, 346
132 Nishida, T., et al., Jpn J Ophthalmol(1984) 196, 196
133 Wingeren, U., et al., J Surg Res(1992) 53, 48
134 O’Daniel, T.G., et al., Ann Otol Rhinol Laryngol(1990) 99, 80
135 Brown, G.L., et al., N Engl J Med(1989) 321, 76
136 Baird, A., and Bohlen, P., Springer Verlag, (1990) 369
137 Gospodarowicz, D., Clin Ortho Rel Res(1990) 257, 231
138 Rapraeger, A.C., et al., Science(1991) 252, 1705
139 Cordon-Cardo, C., et al., Lab Invest(1996) 63, 832
140 Colton, C.K., Cell Trans(1995) 4, 415
141 Ogawa, K., et al., Int J Biol Macromol(2004) 34, 1指導教授 徐新興(Shin-Shing Shyu) 審核日期 2004-7-20 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare