以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:49 、訪客IP:18.224.55.193
姓名 蔡佳樺(Chia-Hun Tsai) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 幾丁聚醣摻合PU基材之物性及抑菌研究
(Study on the Alloy of Water-borne Polyurethane and Chitosan)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本研究將實驗分成三大部分,一為水溶性羧甲基幾丁聚醣(O-
carboxymethyl-chitosan,OCC)之合成;二為陰離子型WPU/OCC系統及陽離子型WPU/幾丁聚醣快速交聯製程;三則為陽離子水性PU摻合幾丁聚醣之溼-乾製程,分別藉由DMA、SEM、拉力、抑菌等測試來探討其膜材物性及抑菌能力分析。
羧甲基幾丁聚醣/陰離子型WPU系統是利用化學修飾的方式進行水溶性羧甲基幾丁聚醣(OCC)之合成,即在幾丁聚醣第6個碳上之氫氧根上改接羧甲基。而改質過後之羧甲基幾丁聚醣具有良好的親水性,可以與陰離子型水性PU進行混摻。進而利用戊二醛、EGDE分別與混摻基材交聯形成一半互穿型網狀結構體(semi-IPN)來增加膜材的穩定性;再和陽離子型WPU與幾丁聚醣利用高濃度戊二醛交聯膜材作以比較;另一系統則將陽離子型WPU與幾丁聚醣以濕-乾製程法來備製膜材,以期得到一無交聯劑存在的素材。
在物性方面,發現兩款陰離子型WPU與羧甲基幾丁聚醣(OCC)混摻之薄膜,皆比原WPU有較佳熱穩定性及抗張強度,混摻性則以酯型WPU與OCC較好;而經戊二醛及EGDE交聯後之膜材,穩定性皆提升;斷裂點延伸率則以醚型WPU/OCC膜材隨EGDE交聯濃度增加而提升。陽離子型WPU與幾丁聚醣快速交聯之膜材物性則與前系統類似,不過幾丁聚醣的摻入其熱穩定性質的改變更明顯。而陽離子型WPU與幾丁聚醣濕-乾製程之混摻膜材,不但熱穩定性較原PU佳,在抗張強度上也遠大於兩混摻高分子,且仍具柔軟性。在抑菌方面,無論是陰離子型WPU與OCC之混摻膜材抑或是陽離子型
WPU與幾丁聚醣混摻膜材,皆隨OCC及幾丁聚醣的摻入,提升了原WPU對於E. coli的抑菌能力。摘要(英) Three research subjects were studied in this paper; first: Synthesis of O-Carboxymethyl Chitosan (OCC), second: blending of OCC with polyurethane anionomer (WPU-anionomer) and blending of chitosan with polyurethane cationomer (WPU-cationomer) by high concentration of crosslinking agent such as glutaradehyde; third: WPU-cationomer
/chitosan membrane prepared by wet process. Morphology and mechanical properties of membranes were studied by Scanning Electron Microscopy (SEM), Dynamic Machine Analysis (DMA) and Instron, antimicrobial ability of membranes was investigated by antibacterial test against E. coli.
OCC was prepared by chemical modify the OH- group in the sixth carbon of chitosan to CH2COO-. Owing to the good hydrophilic property of CH2COO- group, OCC can blend with polyurethane anionomer easily. In order to increase the thermal stability of the blend membranes, glutaraldehyde or Ethylene, Polyethlen Glycol Diglycidyl Ether (EGDE) was used as crosslinking agent to form semi-IPN. The physical properties of WPU-anionomer/OCC semi-IPN were compared with that of WPU-cationomer/chitosan crosslinked by high concentration glutaradehyde. In order to have a thermal stable membrane without any crosslinking agent, we also prepared a WPU-cationomer/chitosan membrane by wet process.
WPU-anionomer/OCC blend membranes have better thermal stability and mechanical properties than that of WPU-anionomer. The ultimate elongation of ether type WPU-anionomer/OCC membrane increase with increasing the concentration of crosslinking agent EGDE.
The WPU-cationomer/chitosan blend membrane proparaed by wet process maintain their original flexibility but have better thermal stability and mechanical strength than that of WPU-cstionomer. Antibacterial test demonstrate that WPU-cationomer blending with chitosan has better antimicrobial capability against E. coli.關鍵字(中) ★ 幾丁聚醣
★ 水性PU關鍵字(英) ★ O-Carboxymethyl Chitosan
★ chitosan
★ water-borne polyurethane論文目次 目錄
摘 要 I
英文摘要………………………….…………………………………….Ⅲ
目錄 V
圖目錄 X
表目錄 XIV
第一章 緒論 1
第二章 文獻回顧 3
2-1水性聚氨酯之性質 3
2-1-1水性聚氨酯的發展應用 3
2-1-2水性化PU技術之介紹 4
2-1-2-1親水基的導入 4
2-1-2-2水性PU的結構與常用的原料 6
2-1-3影響水性PU性質之因素 7
2-1-3-1硬段(Diisocyanate 及 chian extender)種類 7
2-1-3-2硬質段含量 7
2-1-3-3軟段種類 8
2-1-3-4軟段分子量 8
2-1-3-5離子基含量 8
2-1-3-6中和劑種類 9
2-1-4離子與非離子性水性PU系統之比較 9
2-2幾丁聚醣之性質 10
2-2-1幾丁質與幾丁聚醣介紹 10
2-2-2幾丁聚醣的製備 13
2-2-3幾丁聚醣溶解性的探討 14
2-2-4水溶性幾丁聚醣的發展 14
2-2-5幾丁聚糖的抗菌效果 15
2-3互穿型高分子網狀結構體(INTERPENETRATION POLYMER NETWORKS, IPNS ) 16
2-4實驗用之水性聚胺酯(WATER BORNE POLYURETHANE)介紹 18
第三章 水溶性羧甲基幾丁聚醣之合成 20
3-1前言 20
3-2實驗藥品 20
3-3實驗器材 21
3-4實驗方法 21
3-4-1水溶性羧甲基幾丁質(O-carboxymethyl chitin)的製備 21
3-4-2水溶性羧甲基幾丁聚醣(O-carboxymethyl chitosan,OCC)的製備 21
3-4-3霍氏紅外線光譜儀(FTIR) 22
3-4-4元素分析儀 22
3-4-5核磁共振分析(NMR) 22
3-5結果與討論 23
3-5-1霍氏紅外線光譜儀(FTIR) 23
3-5-2核磁共振分析(NMR) 24
3-5-3元素分析儀 26
第四章 陰離子型WPU/羧甲基幾丁聚醣系統及陽離子型WPU/幾丁聚醣系統 28
4-1前 言 28
4-2實驗藥品 29
4-3實驗器材 30
4-4實驗方法 31
4-4-1陰離子水性聚胺酯摻合水溶性羧甲基幾丁聚醣薄膜之製備 31
4-4-2陰離子水性聚胺酯與水溶性羧甲基幾丁聚醣混摻交聯薄膜之製備 31
4-4-3陽離子型水性聚胺酯與幾丁聚醣混摻交聯薄膜之製備 31
4-4-4粘度計測試 32
4-4-5交聯指數測試標準曲線製作 32
4-4-6交聯指數測試方法 32
4-4-7霍氏紅外線光譜儀(FTIR) 33
4-4-8掃描式電子顯微鏡(SEM)實驗 33
4-4-9拉力測試實驗 33
4-4-10動態機械分析(DMA)測試 33
4-4-11重量損失分析 33
4-4-12抑菌實驗 34
4-5結果與討論 35
4-5-1陰離子水性PU系列(未交聯之不同重量OCC與不同PU混摻) 35
4-5-1-1霍氏紅外線光譜儀(FTIR) 35
4-5-1-2動態機械分析(DMA) 35
4-5-1-3拉力測試分析(Instron) 38
4-5-1-4掃描式電子顯微鏡實驗(SEM) 41
4-5-1-5重量損失分析(Weight Lose) 41
4-5-2陰離子水性PU系列(不同WPU/OCC(重量比10:1)經不同交聯劑交聯) 44
4-5-2-1霍氏紅外線光譜儀(FTIR) 44
4-5-2-2交聯指數測定 46
4-5-2-3動態機械分析(DMA) 47
4-5-2-4拉力測試分析(Instron) 51
4-5-2-5掃描式電子顯微鏡實驗(SEM) 56
4-5-2-6重量損失分析(Weight Lose) 56
4-5-3陽離子水性系列 61
4-5-3-1黏度計測試 61
4-5-3-2交聯指數 61
4-5-3-3霍氏紅外線光譜儀(FTIR) 63
4-5-3-4動態機械分析(DMA) 63
4-5-3-5拉力測試分析(Instron) 65
4-5-3-6掃描式電子顯微鏡實驗(SEM) 65
4-5-3-7重量損失分析(Weight Lose) 68
4-5-4抑菌實驗 68
第五章 陽離子水性PU摻合幾丁聚醣之溼式製程 73
5-1 前言 73
5-2 實驗藥品 73
5-3 實驗器材 74
5-5 實驗方法 74
5-5-1 陽離子水性聚胺酯摻合幾丁聚醣(WPU cationomer/chitosan)之濕式製程薄膜製備74
5-5-2膜材分析試驗 75
5-6 結果與討論 75
5-6-1 霍氏紅外線光譜儀(FTIR) 75
5-6-2 動態機械分析(DMA) 77
5-6-3 拉力測試實驗(Instron) 79
5-6-4 掃描式電子顯微鏡實驗(SEM) 79
5-6-5 重量損失分析(Weight Lose) 79
5-7 抑菌測試 80
第六章 結 論 84
文獻回顧 86參考文獻 文獻回顧
(1)H. L. Needles, , Garland Pulishing, New York, 144-146 (1981)
(2)B. F. Faris, American Dyestuff Reporter, 35-37 (1963)
(3)A. Sternfield. Modern Plastic International, Vol. 58, p. 24 (1980)
(4)邱永亮,魏盛德,”染色化學”,Vol. Ⅲ,1-8,徐氏基金會 (1990)。
(5)嚴瑞瑄編,”水溶性高分子”,北京化學工業出版社,320-345,6
月(1998)
(6)U. S. Patent 4183836, Du Pont (1980)
(7)H. A. Al-Salah, K. C. Frisch, H. X. Xiao, J. A., Jr., J. Applied Polymer
Science A., 26, 1609-1620 (1988)
(8) S. H. Egboh, J. Macromol. Chem. A. Sci., 21(1), 35 (1984)
(9)U. S. Pantent 4190566, Bayer A.G. (1980)
(10)D. J. Hourston, G. Williams , R. Satguru , J. D. Padget , and D. Pears ,
J. Appl. Polym. Sci., 66 , 2035~2042 (1997)
(11)S. Y. Lee, J. S. Lee, and B. K. Kim, Polymer International, 42, 67~76
(1997)
(12)B. K. Kim and J. C. Lee, J. Polym. A Sci., Polym. Chemistry, 32,
1983~1989 (1994)
(13)B. K. Kim and J. C. Lee, J. Appl. Polym. Sci., 58, 1117~ 1124 (1995)
(14)B. K. Kim and T. K. Kim, J. Appl. Polym. Sci., 43, 393~398 (1991)
(15)B. K. Kim and J. C. Lee, J. Polym. A Sci., Polym. Chemistry, 34,
1095~1104 (1996)
(16)鄭詔仁,水性PU之流變性質研究,中央大學化工所 (2000)
(17) C. Y. and C. Yueh-Liang, J. Appl. Polym. Sci., 54, 435~443(1992)
(18)R. A. A. Muzzarelli, G. Barontini, and R. Rocchetti, Biotech. Bioeng,
20, 87 (1978)
(19)J. Ruiz-Herrera, R. A. A. Muzzarelli, and E. R. Pariser, Eds., MIT Sea Grant Program, Cambridge, Mass. P.11 (1978)
(20)R. A. A. Muzzarelli, chitin, Pergamon Press, Oxford (1977)
(21)Y. M. Lee, S. H. K., and S. J. K., Poly., 37, 5897 (1996)
(22)R. A. A. Muzzarelli, The Polysaccharides, Aspinalli, eds., Academic
Press Inc., Orlando, p417 (1985)
(23)R. H. Hackman, J. Biol. Sci., 18, 935 (1965)
(24)J. Blackwell and M. A. Weih, Zikakis, Eds., J. P. Academic Press.
P.257 (1984)
(25)R. J. Samules, J. Polym. Sci., 19, 1081 (1981)
(26) S. Bartnicki-Garcia, Ann Microbiol, 22, 87 (1968)
(27)王永安,李林田、王萍、劉宇明,Jounal of Dalian University of
Technology, 36, 677 (1996)
(28)謝雅明,可溶性甲殼質的製造和用途,化學世界,24,118 (1983)
(29)Q. P. Pensiton, and J. E. L., US patent 4159932 (1979)
(30)C. A. Kienzle-Sterzer, D. Rodriquez-Sanchez, and C. k. Rha, J. P.
Zikakis, Eds. Academic Press, Linc., London, pp.383-393 (1984)
(31)G. Lang and T. Clausen, Elservier Applied Sci., 139-147 (1989)
(32)S. Hirano, Y. Konda and K. Fuji, Carbohydr. Res., 144, 338-341
(1985)
(33)H. Sashiwa, H. Saimoto, Y. Shigemasa, R. Qgawa and S. Tokura,
Carbohydr. Polym., 16, 291-296 (1991)
(34)S. Tanioka, Y. Matsui, T. Lrie, Tanogawa, Y. Tandaka, H. Shibata, Y.
Sawa and Y. Kono, Biotech. Biochem., 60, 2001-2004 (1996)
(35)S. C. Fry, Biochem. J., 332, 507-515 (1998)
(36)M. Terbojevich, A. Cosani, R.A.A. Muzzarelli, Carbohydr. Polym.,
29, 63-68 (1996)
(37)T. Sannan, K. Kurita and Y. Lwakura, Chem., 177, 3589 (1979)
(38)M. Rinaudo, P. L. dung and M. Milas, Elserier Sci., 516-525 (1992)
(39) S. Fereidoon, Y. J. Jeon, Trends in Food Science and Technology, vol 10, pp 37-51 (1999)
(40)H. Seo, K. Mitsuhashi and H. Tanibe, Advance in Chitin and
Chitosan, pp 34-40 (1992)
(41)Y. Shin., Min. K. and Kim H. K., J. Polym. Sci., vol 74, pp 2911-2916 (1999)
(42)C. Hepburn, Applied Sci. Publishers, London and New York (1982)
(43)H. L. Frish and Br. Polym. J., 17, 149 (1985)
(44)K. C. Frish, D. Klempner and H. L. Frish, Polym. Eng. Sci., 22 (18),
1143 (1982)
(45)L. H. Sperling, Internpenetrating Polymer Networks and Related
Materials, Plenum Press, New York (1981)
(46)M. C. O. Chang, D. A. Thomas, E. C. Hickey and L. H. Sperling,
Polym. Mat. Sci. Eng., 55, 350 (1986)
(47)D. J. Hourston and R. Satgurunathan, J. Appl. Ploym. Sci., 29, 1969
(1984)
(48)M. Z. Elsabee, M. Dror, G. C. Berry and J. Appl. Polym. Sci., 28,
2151 (1983)
(49)A. N. D’ yakonov, L. Yu. Mitrofanova, A. L. Klyuchevskii and P. M
Zavlin, Institute of Motion-Picture Engineers, Translated from
Zhurnal Parikladnoi Khimii, 61, 11, 2311-2314 (1988).
(50) S.I. Nishimura, N. Nishi, A. Tsutsumi, and O. Somorin, J. Polym., Vol.
15, No. 6, pp 485-489 (1989)
(51)W. M. Xie, P. X. Xu, Q. Liu, Biooragnic & Medicinal Chemistry
Letters, 11, 1699-1701 (2001)
(52)孫逸民,陳玉舜等人,儀器分析課本,pp343-364
(53) S. I. Nishimura, N. Nishi, and S. Tokura, CarbohydrRes, 146,
251-258 (1986)
(54) N. Nishi, S. I. Nishimura, S. Tokura, J. Polym., Vol. 15, No. 8, pp 597-602 (1983)
(55)葉日豪,聚氨基甲酸酯/黏土奈米複合材料之製備與性質研究,中
原大學化學所 (2002)
(56)G. Sorates, Infrared Characteristic Group Frequencies (1980)
(57)F. L. Mi, Y. C. Tan, H. C. Liang, R. N. Huang, and H. W. Sung, J.
Biomater. Sci. Polym. Edn, 12 (8), 835-850 (2001)
(58)胡德,高分子物理與機械性質(上),pp1-30 (1994)
(59)財團法人中國紡織工業研究中心,人工皮革製程PowerPoint檔,
技術及產品開發部
(60)胡德,高分子物理與機械性質(下),pp5-56
(61)K. Ueberreiter and G. Kanig, J. Chem. Phys., 18, 399 (1950)
(62)G. M. Martin and L. Madaelkern, J. Res., Nat. Bur. Std., 62, 141
(1959)
(63)K. Ogura, T. Kanamoto, M. Itoh, H. Miyashiro and K. Tanaka,
Polym. Bull., vol 2, pp301-304
(64)F. A. Goosen Mattheus, Applcation of chitin and chitosan, 11, 171-184,
(1997)指導教授 徐新興(Shin-shing Shyu) 審核日期 2003-6-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare