博碩士論文 90324009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.118.152.234
姓名 許景翔(Jing-Hsiang Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 金奈米粒子合成及表面化學改質與其應用於DNA分子雜交動力學之探討
(Au Nanoparticle Synthesis and Surface Chemical Modification and Its Application for DNA Hybridization Kinetics Study)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究是利用表面化學改質的方法,在金奈米粒子(Au nanoparticle)表面形成一自我聚集單層膜(self-assembly monolayer; SAM),探討具有不同官能基之自我聚集單層膜改質對金奈米粒子分散或聚集的影響,並可經由UV/Vis spectrophotometer中之紅移(red shift)現象來量測金奈米粒子聚集之行為。我們也藉由恆溫滴定微卡計(Isothermal Titration Calorimetry; ITC)測量出具有不同官能基單層膜之金奈米粒子的稀釋熱(dilution heat),來表示金奈米粒子在溶液相中之分散行為。利用表面化學改質的方法與技術,可將不須經過硫修飾的單股DNA接在金奈米粒子上來當做探針(probe),再與另一互補單股亦接在金奈米粒子上標的(target)DNA進行雜交(hybridization),我們並改變不同的雜交環境:鹽濃度、雜交溫度及DNA序列中有錯誤鹼基配對等變因來了解其固定化於金奈米粒子的DNA分子雜交特性。本實驗之結果將有助於生物晶片及生物奈米科技之發展。
摘要(英) This study utilized the surface chemical modification methods to form a self-assembly monolayer (SAM) on the surface of Au nanoparticles, and discussed the aggregation or dispersion of the different functional groups SAM modified Au nanoparticles, and via the phenomena of red-shift to determine the behavior of Au nanoparticles aggregation by UV/Vis spectrophotometer. We also determined the dilution heat of different functional group SAM modified Au nanoparticles by isothermal titration calorimetry (ITC) to explain the dispersion mechanism and the behavior of Au nanoparticles in the aqueous phase. Using surface chemical modification methods and techniques, we can immobilize the unmodified single strand DNA on the Au nanoparticles as a probe, and hybridized with the complementary single strand DNA that immobilized on Au nanoparticles as a target. This study, therein investigated the DNA hybridization properties by UV/Vis spectrophotometer. The results of this investigation, hybridization properties were carried out by changing different conditions:salt concentration, hybridization temperature and number of mismatching bases in sequences of target DNA. This kind of experiment can supply the information to develop the biochip and bionanotechnology.
關鍵字(中) ★ 去氧核醣核酸
★ 表面化學改質
★ 金奈米粒子
★ 生物晶片
關鍵字(英) ★ biochip
★ surface chemical modification
★ DNA
★ Au nanoparticle
論文目次 中文摘要.....................................................................................................I
Abstract......................................................................................................II
目錄..........................................................................................................III
圖目錄.......................................................................................................V
表目錄...................................................................................................VIII
符號說明..................................................................................................IX
第一章 緒論..........................................................................................1
第二章 文獻回顧..................................................................................3
2.1.奈米科技在生物上的應用..........................................................3
2.2.金奈米粒子的合成法..................................................................6
2.3.金奈米粒子的光學性質..............................................................9
2.4.表面化學改質............................................................................13
2.5.DNA分子的簡介.......................................................................21
第三章 實驗藥品與儀器設備............................................................24
3.1.實驗藥品....................................................................................24
3.2.儀器設備....................................................................................26
3.3.實驗目的與實驗方法................................................................26
3.3.1.實驗目的..........................................................................26
3.3.2.實驗方法.........................................................................27
3.3.2.1.金奈米粒子的製備..............................................27
3.3.2.2.不同官能基單層膜的金奈米粒子製備..............28
3.3.2.3.金奈米粒子表面化學改質及DNA分子
固定化..................................................................30
3.3.2.4.銀奈米粒子的製備..............................................31
3.3.2.5.TiO2光觸媒奈米粒子的製備..............................32
第四章 結果與討論............................................................................33
4.1.金奈米粒子合成的結果.............................................................33
4.2.羧基(-COOH)單層膜在金奈米粒子上的分散現象................…36
4.3.氫氧基(-OH)及甲基(-CH3)單層膜在金奈米粒子上的分散現象...................................................................................………. 38
4.4.利用恆溫滴定微卡計來測量金奈米粒子分散現象的熱力學機制.................................................................................................40
4.5.金奈米粒子表面化學改質及DNA固定化..................................44
4.6.DNA分子固定化於金奈米粒子的光學性質...............................46
4.7.DNA分子固定化於金奈米粒子的雜交性質.............................49
第五章 結論........................................................................................53
第六章 參考文獻................................................................................54
參考文獻 1. 隋安莉, “奈米科技與DNA感測器”, 科學發展, 359期, 62-67, 2002
2. A. P. Alivisatos, K. P. Johnsson, X. P., T. E. Wilson, C. J. Loweth, M. P. Bruchez Jr, and P. G. Schultz, “Organization of‘nanocrystal molecules’using DNA”, NATURE, Vol. 382, 609-611 (1996)
3. M. A. Hayat (ed.), “Collodial Gold: Principle, Methods, and Applications”, (Academic, San Diego, 1989)
4. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloid Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization”, J. Am. Chem. Soc., Vol. 122, 9071-9077 (2000)
5. A. J. Haes, and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparicles”, J. Am. Chem. Soc., Vol. 124, 10596-10604 (2002)
6. L. A. Lyon, D. J. Peña, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence”, J. Phys. Chem. B, Vol. 103, 5826-5831 (1999)
7. L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Peña, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films”, Sensors and Actuators B, Vol. 54, 118-124 (1999)
8. R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films, Journal of Applied Physics, Vol. 92, No. 9, 5264-5271 (2002)
9. X. Su, S. F. Y. Li, and S. J. O’Shea, “Au nanoparticle and silver enhancement reaction-amplified microgravimetric biosensor”, Chem. Commun., 755-756 (2001)
10. T. Liu, J. Tang, H. Zhao, Y. Deng, and L. Jiang, “Particle size effect of the DNA sensor amplified with gold nanoparticles”, Langmuir, Vol. 18, 5624-5626 (2002)
11. I. Willner, F. Patolsky, Y. Weizmann, B. Willner, “Amplified detection of single-base mismatches in DNA using microgravimetric quartz-crystal-microbalance transduction”, Talanta, Vol. 56, 847-856 (2002)
12. Y. Weizmann, F. Patolsky, and I. Willner, “Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au nanoparticles”, Analyst, Vol. 126, 1502-1504 (2001)
13. Y. W. C. Cao, R. Jin, C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection”, SCIENCE, Vol. 297, 1536-1540 (2002)
14. L. A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney, and M. J. Natan, “Raman Spectroscopy”, Anal. Chem., Vol. 70, 341-361 (1998)
15. T. Vo-Dinh, K. Houck, and D. L. Stokes, “Surface-enhanced Raman gene probes”, Anal. Chem., Vol. 66, 3379-3383 (1994)
16. S. P. Mulvaney, L. He, M. J. Natan, and C. D. Keating, “Three-layer substrates for surface-enhanced Raman scattering: preparation and preliminary evaluation”, Journal of Raman spectroscopy, Vol. 34, 163-171 (2003)
17. P. C. Lee, and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols”, J. Phys. Chem., Vol. 86, 3391-3395 (1982)
18. R. G. Freeman, R. M. Bright, M. B. Hommer, and M. J. Natan, “Size selection of colloid gold aggregates by filtration: effect on surface-enhanced Raman scattering intensities”, Journal of Raman spectroscopy, Vol. 30, 733-738 (1999)
19. B. E. Baker, N. J. Kline, P. J. Treado, and M. J. Natan, “Solution-based assembly of metal surfaces by combinatorial methods”, J. Am. Chem. Soc., Vol. 118, 8721-8722 (1996)
20. H. Cai, C. Xu, P. He, and Y. Fang, “Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA”, Journal of Electroanalytical Chemistry, Vol. 510, 78-85 (2001)
21. M. Lahav, R. Gabai, A. N. Shipway, and I. Willner, “Au-colloid-‘molecular square’ superstructures: novel electrochemical sensing interfaces”, Chem. Commun., 1937-1938 (1999)
22. Hong Cai, Yanqing Wang, Pingang He, Yuzhi Fang, Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label, Analytica Chimica Acta, Vol. 469, 165-172 (2002)
23. P. Liesi, J. P. Julien, P. Vilja, F. Grosveld, and L. Rechardt, “Specific detection of neuronal cell bodies: in situ hybridization with a biotin-labeled neuronalfilament cDNA probe”, The Journal of Histochemistry and Cytochemistry, Vol. 34, No. 7, 923-926 (1986)
24. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials”, NATURE, Vol. 382, 607-609 (1996)
25. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles”, SCIENCE, Vol. 277, 1078-1081 (1997)
26. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger, “One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes”, J. Am. Chem. Soc., Vol. 120, 1959-1964 (1998)
27. R. A. Reynolds, C. A. Mirkin, and R. L. Letsinger, “Homogeneous, Nanoparticle-based quantitative colorimetric detection of oligonucleotides”, J. Am. Chem. Soc., Vol. 122, 3795-3796 (2000)
28. J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?”, J. Am. Chem. Soc., Vol. 122, 4640-4650 (2000)
29. L. M. Demers, C. A. Mirkin, R. C. Mucic, R. A. Reynolds, R. L. Letsinger, R. Elghanian, and G. Viswanadham, “A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles”, Anal. Chem., Vol. 72, 5535-5541 (2000)
30. T. A. Taton, C. A. Mirkin, R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes”, SCIENCE, Vol. 289, 1757-1760 (2000)
31. J. Lin, W. Zhou, and C. J. O’Connor, “Fomation of ordered array of gold nanoparticles from CTAB reverse micelles”, Materials Letters, Vol. 49, 282-286 (2001)
32. C. T. Seip, and C. J. O’Connor, “The fabrication and organization of self-assembled metallic nanoparticles formed in reverse micelles”, NanoStructured Materials, Vol. 12, 183-186 (1999)
33. J. Lin, W. Zhou, A. Kumbhar, J. Wiemann, J. Fang, E. E. Carpenter, and C. J. O’Connor, “Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly”, Journal of Solid State Chemistry, Vol. 159, 26-31 (2001)
34. E. E. Carpenter, “Iron nanoparticles as potential magnetic carriers”, Journal of Magnestism and Magnetic Matrials, Vol. 225, 17-20 (2001)
35. H. P. Khng, D. Cunliffe, S. Davies, N. A. Turner, and E. N. Vulfson, “The synthesis of sub-micro magnetic particles and their use for preparative purification of proteins”, Biotechnology and Bioengineering, Vol. 60, No. 4, 419-424 (1998)
36. W. L. Zhou, E. E. Carpenter, J. Lin, A. Kumbhar, J. Sims, and C. J. O’Connor, “Nanostructures of gold coated iron core-shell nanoparticles and the nanobands assembled under magnetic field”, Eur. Phys. J. D, Vol. 16, 289-292 (2001)
37. E. E. Carpenter, A. Kumbhar, J. A. Wiemann, H. Srikanth, J. Wiggins, W. Zhou, and C. J. O’Connor, “Synthesis and magnetic properties of gold-iron-gold nanocomposites”, Materials Science and Engineering, A286, 81-86 (2000)
38. B. Ravel, E. E. Carpenter, and V. G. Harris, “Oxidation of iron in iron/gold core/shell nanoparticles”, Journal of Applied Physics, Vol. 91, No. 10, 8195-8197 (2002)
39. M. H. Liao, and D. H. Chen, “Fast and efficient adsorption/desorption of protein by a novel magnetic nano-adsorbent”, Biotechnology Letters, Vol. 24, 1913-1917 (2002)
40. C. J. O’Connor, V. Kolesnichenko, E. Carpenter, C. Sangregorio, W. Zhou, A. Kumbhar, J. Sims, F. Agnoli, “Fabrication and properties of magnetic particles with nanometer dimensions”, Synthetic Metals, Vol. 122, 547-557 (2001)
41. D. H. Chen, and C. J. Chen, “Formation and characterization of Au-Ag bimetallic nanoparticles in water-in-oil microemulsions”, J. Mater. Chem., Vol. 12, 1557-1562 (2002)
42. Y. W. Cao, R. Jin, and C. A. Mirkin, “DNA-modified core-shell Ag/Au nanoparticles”, J. Am. Chem. Soc., Vol. 123, 7961-7962 (2001)
43. C. F. Bohren, and D. R. Huffman (ed.), “Absorption and Scattering of Light by Small Particles” (Wiley, New York, 1983)
44. R. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanoparticles to nanoprisms”, SCIENCE, Vol. 294, 1901-1903 (2001)
45. S. Huang, K. Minami, H. Sakaue, S. Shingubara, and T. Takahagi, “Optical spectroscopic studies of the dispersibility of gold nanoparticle solutions”, Journal of Applied Physics, Vol. 92, No. 12, 7486-7490 (2002)
46. D. A. Skoog, and J. J. Leary, “Principles of Instrumental Analysis, Fourth edition” (Saunders, Fort Worth, 1994)
47. E. Gizeli, and C. R. Lowe (ed.), “Biomolecular Sensors” (Taylor & Francis, London, 2002)
48. C. D. Bain, J. Evall, and G. M. Whitesides, “Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent”, J. Am. Chem. Soc., Vol. 111, 7155-7164 (1989)
49. C. D. Bain, and G. M. Whitesides, “Formation of monolayers by the coadsorption of thiols on gold: variation in the length of the alkyl chain”, J. Am. Chem. Soc., Vol. 111, 7164-7175 (1989)
50. Z. Li, R. Jin, C. A. Mirkin, and R. L. Letsinger, “Multiple thiol-anchor capped DNA-gold nanoparticle conjugates”, Nucleic Acids Research, Vol. 30, No. 7, 1558-1562 (2002)
51. G. B. Sigal, C. Bamdad, A. Barberis, J. Strominger, and G. M. Whitesides, “A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance”, Anal. Chem., Vol. 68, 490-497 (1996)
52. J. Lahiri, P. Kalal, A. G. Frutos, S. J. Jonas, and R. Schaeffler, “Method for fabricating supported bilayer lipid membranes on gold”, Langmuir, Vol. 16, 7805-7810 (2000)
53. M. K. Campbell (ed.), “Biochemistry3rd”(Saunders College Publishing, Philadelphia, 1999)
54. I. E. Alcamo (ed.), “DNA Technology2nd: The awesome skill” (Academic, San Diego, 2001)
55. R. F. Weaver (ed.), “Molecular Biology” (WCB McGraw-Hill, Boston, 1999)
56. J. D. Watson, and F. H. C. Crick, “Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid”, NATURE, No. 4356 (1953)
57. A. N. Shipway, M. Lahav, R. Gabai, and I. Willner, “Investigations into the electrostatically induced aggregation of Au nanoparticles”, Langmuir, Vol. 16, 8789-8795 (2000)
58. A. Zielenkiewicz, O. V. Kulikov, H. Piekarski, and W. Zielenkiewicz, “Thermodynamic investigations of interactions in aqueous solutions of glycine and some small peptides with caffeine and 1,3-dimethyluracil at 298.15 K”, Thermochimica Acta, Vol. 256, 237-248 (1995)
59. W. Y. Chen, C. S. Kuo, and D. Z. Liu, “Determination of the second virial coefficient of the interaction between microemulsion droplets by microcalorimetry”, Langmuir, Vol. 16, 300-302 (2000)
60. Y. Okahata, M. Kasanori, K. Niikura, F. Ohtake, H. Furusawa, and Y. Ebara, “Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance”, Anal. Chem., Vol. 70, 1288-1296 (1998)
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2003-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明