以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:21 、訪客IP:3.12.148.180
姓名 洪忠義(Chung-I Hung) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 奈米多孔性材料之製備 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究藉由溶膠凝膠法來製備奈米多孔性材料,多孔結構是在溶膠凝膠反應液中,以添加模板分子、添加反應性模板分子與不添加模板分子等三種方式來生成。此三種方式所製得之凝膠體再藉由鍛燒將有機物移除來獲得各種奈米多孔材。
在添加模板分子的系統中,先將四乙氧基矽烷(TEOS)、甲醇與水在酸性條件下進行水解縮合反應後,加入親水性模板分子,再經反應後形成凝膠體,藉由鍛燒移除有機物後,經氮氣吸附孔隙儀(ASAP)分析顯示隨著模板分子的量的增加或模板分子的極性增加,可得較大孔徑之奈米多孔材(2-5nm),而其孔徑分佈狹窄,而利用XRD,TEM觀測得知孔洞排列並不均一。
在添加反應性模板分子的系統,先將四乙氧基矽烷、乙醇和水之混合液與反應性模板分子混合,酸性條件下,導入過硫酸鉀(KPS)作為起始劑,使二氧化矽之網狀結構與聚合物能同時產生,形成有機無機奈米混成材料,藉由鍛燒移除有機物後,經ASAP分析顯示隨著反應性模板分子的量的增加,可得較大孔徑之奈米多孔材(2-2.5nm),證實添加反應性模板分子所製得之高分子是以奈米程度分散在矽網結構中,但所得之孔徑較添加模板分子下所製得之產物小。鍛燒前之混成材料利用TGA、DSC證實添加反應性模板分子所製得之有機無機混成體確實提昇有機相的熱性質,而由SEM表面結構分析亦無明顯顆粒存在,達到良好的混成效果。
在不添加模板分子藉由改變溶膠凝膠製備條件的系統,則是採用兩階段的反應方式,先將四乙氧基矽烷與水混合,酸性條件下反應形成溶膠態,再利用氨水促使其變成凝膠態,使孔洞結構迅速形成。藉由調整pH值,經不同溫度(600或200℃)鍛燒後,經ASAP分析顯示隨著系統pH值逐漸增加,其孔洞結構在600℃鍛燒所產生的崩塌現象有愈來愈小的趨勢。且由XRD分析結果發現將系統調至pH=8時,有一結晶峰產生,代表在此條件下,材料之孔洞排列較為均一。另外在改變水含量及反應時間上,結果顯示水含量增加,可獲得較大孔徑之多孔材(5.5nm);而反應時間增加能使系統反應更完全,可獲得較狹窄之孔徑分佈。關鍵字(中) ★ 溶膠凝膠法
★ 奈米多孔材
★ 模板分子關鍵字(英) 論文目次 目錄....................................................Ⅰ
圖索引..................................................Ⅳ
表索引..................................................Ⅷ
第一章緒論..............................................1
1-1溶膠凝膠法...........................................2
1-2以模板製備多孔性材料.................................5
1-2-1界面活性劑模板.....................................6
1-2-2非界面活性劑模板...................................8
1-3研究之目的..........................................10
第二章實驗.............................................11
2-1實驗藥品與儀器......................................12
2-1-1實驗藥品..........................................12
2-1-2儀器..............................................12
2-2多孔性材料之製備....................................13
2-2-1添加模板分子製備多孔性材料........................13
2-2-2添加反應性模板分子製備多孔性材料..................14
2-2-3不添加模板分子製備多孔性材料......................14
2-2-3-1改變pH值及不同鍛燒溫度..........................14
2-2-3-2改變水含量和反應時間 ............................18
2-3儀器分析............................................18
2-3-1孔徑參數之測定....................................18
2-3-2熱重損失測試......................................18
2-3-3玻璃轉移溫度(Tg)測試..............................20
2-3-4紅外線光譜分析....................................20
2-3-5 SEM表面結構分析..................................20
2-3-6 X-ray繞射分析....................................20
2-3-7 TEM表面結構型態..................................20
第三章結果與討論.......................................22
3-1添加模板分子製備多孔性材料..........................23
3-1-1 ASAP表面積、孔洞體積及孔徑大小分佈之分析.........23
3-1-1-1以丙烯酸為模板分子製備多孔性材料................25
3-1-1-2以順丁烯二酸、草酸為模板分子製備多孔性材料......29
3-1-1-3以乳酸為模板分子製備多孔性材料..................35
3-1-1-4四種模板分子製備多孔性材料之比較................39
3-1-2 FTIR分析.........................................39
3-1-3 X-ray繞射分析....................................43
3-1-4 TEM表面結構分析..................................43
3-2添加反應性模板分子製備多孔性材料....................47
3-2-1有機無機混成體之表面積、孔洞體積及孔徑大小分佈....47
3-2-2有機無機混成體熱重損失分析........................53
3-2-3有機無機混成體玻璃轉移溫度探討....................53
3-2-4 FTIR分析.........................................56
3-2-5有機無機混成體表面結構分析........................60
3-3不添加模板分子製備多孔性材料........................64
3-3-1改變pH值及不同鍛燒溫度之結果......................64
3-3-1-1 ASAP表面積、孔洞體積及孔徑大小分佈之分析.......64
3-3-1-2 X-ray繞射分析..................................68
3-3-1-3 TEM表面結構分析................................68
3-3-2改變水含量及反應時間之結果........................68
第四章 結論............................................75
參考文獻...............................................78
圖索引
Fig.1-1 The hydrolysis and condensation of silane.......................3
Fig.1-2 Gel structure for acid and base catalyst reaction...............4
Fig.1-3 Liquid-crystal templating(LCT) mechanism proposed by Beck et al. showing two possible pathways for the formation of MCM-41:(1) liquid-crystal-initiated and (2)silica-initiated.......................................7
Fig.2-1 Synthesis of the porous silica materials by adding template compound via sol-gelprocess.....................................................15
Fig.2-2 Synthesis of the porous silica materials by adding reactive template compound via sol-gel process...........................................16
Fig.2-3 Synthesis of the porous silica materials by adjusting pH value via sol-gel process............................................................17
Fig.2-4 Synthesis of the porous materials by changing reaction time via sol-gel process................................................................19
Fig.3-1 IUPAC classification of adsorption isotherms...................24
Fig.3-2 N2 adsorption-desorption isotherms for the porous silica materials prepared with acrylic acid as the template compound....................26
Fig.3-3 BJH pore size distribution curves derived from the desorption branches for the porous silica materials prepared with acrylic
acid as the template compound..........................................27
Fig.3-4 N2 adsorption-desorption isotherms for the porous silica materials prepared with maleic acid as the template compound.....................30
Fig.3-5 N2 adsorption-desorption isotherms for the porous silica materials prepared with oxalic acid as the template compound.....................31
Fig.3-6 BJH pore size distribution curves derived from the desorption branches for the porous silica materials prepared with maleic
acid as the template compound..........................................32
Fig.3-7 BJH pore size distribution curves derived from the desorption branches for the porous silica materials prepared with oxalic
acid as the template compound..........................................33
Fig.3-8 N2 adsorption-desorption isotherms for the porous silica materials prepared with lactic acid as the template compound.....................36
Fig.3-9 BJH pore size distribution curves derived from the desorption branches for the porous silica materials prepared with lactic
acid as the template compound..........................................37
Fig.3-10 The relationship between the a)BET surface area b)Total
pore volume and the content of the acrylic acid, maleic acid
and oxalic acid........................................................40
Fig.3-11 The relationship between the a)BET surface area b)Total
pore volume and the content of the acrylic acid and lactic acid........41
Fig.3-12 IR spectra of (a)SiO2 (b)LAC20 (c)LAC20-600(d)LAC80 (e)LAC80-600....................................................................42
Fig.3-13 Powder XRD pattern of the sample (a) LAC80 (b)AA80(c)MaA80 (d)OA80 after calcinations.....................................................44
Fig.3-14 TEM images for LAC80 after calcinations (a) 105 times (b) 4×105 times..................................................................45
Fig.3-15 N2 adsorption and desorption curves of PMAA/SiO2 hybrid materials with different PMAA weight content after calcinations.......................48
Fig.3-16 Pore diameter distribution of PMAA/SiO2 hybrid materials with different PMAA weight content after calcinations.......................49
Fig.3-17 N2 adsorption and desorption curves of PAA/SiO2 hybrid materials with different PAA weight content after calcinations........................50
Fig.3-18 Pore diameter distribution of PAA/SiO2 hybrid materials with different PAA weight content after calcinations..................................51
Fig.3-19 TGA curves of (a)SiO2gel (b)PMAA-29 (c)PMAA-42 (d)PMAA-59 (e)Pure PMAA...................................................................54
Fig.3-20 TGA curves of (a)SiO2 gel (b)PAA-23 (c)PAA-38 (d)PAA-55 (e)PAA-71 (f)Pure PAA...............................................................55
Fig.3-21 DSC curves of (a) Pure PMAA (b)PMAA-29 (c)PMAA-74.............57
Fig.3-22 DSC curves of (a)Pure PAA (b)PAA-23 (c)PAA-71.................58
Fig.3-23 IR spectra of (a)SiO2 (b)Pure PMAA (c)PMAA-74 (d)PMAA-74-600..59
Fig.3-24 IR spectra of (a)SiO2 (b)PAA-23 (c)PAA-71 (d)PAA-71-600.......61
Fig.3-25 SEM photographs of organic-inorganic hybrid materials
before calcinations (a) PMAA-29 (b) PMAA-74 (c) PAA-23 (d) PAA-71......62
Fig.3-26 SEM photographs of organic-inorganic hybrid materials after calcinations (a) PMAA-74 (b) PAA-71....................................63
Fig.3-27 N2 adsorption-desorption isotherms for the porous silica materials prepared at different pH values and calcinations temperature without adding template compounds.....................................................65
Fig.3-28 BJH pore size distribution curves derived from the desorption branches for the porous silica materials prepared at different pH values and calcinations temperature without adding template compounds.............66
Fig.3-29 Powder XRD pattern of (a)pH5-600 (b)pH6-600 (c)pH8-600........69
Fig.3-30 TEM images for pH8-600........................................70
Fig.3-31 N2 adsorption-desorption isotherms for the porous silica materials prepared at different H2O/TEOS ratio and reaction time without adding template compounds..............................................................72
Fig.3-32 BJH pore size distribution curves derived from the desorption branches for the porous silica materials prepared at different H2O/TEOS ratio and reaction time without adding template compounds........................73
表索引
Table3-1 Preparation conditions and the results of the porous silica
gels by adding acrylic acid as the template compound...................28
Table3-2 Preparation conditions and the results of the porous silica
gels by adding maleic acid and oxalic acid as the template compound....34
Table3-3 Preparation conditions and the results of the porous silica
gels by adding lactic acid as the template compound....................38
Table3-4 Preparation conditions of PMAA/SiO2 & PAA/SiO2 hybrid materials and its properties after calcinations......................................52
Table3-5 Preparation conditions and results of the porous silica
without adding template compounds.(Effect on pH values
and calcinations temperature)..........................................67
Table 3-6 Preparation conditions and results of the porous silica
without adding template compounds.(Effect on H2O/TEOS ratio and reaction time)..................................................................74參考文獻 1. J. Rayss, G. Sudolski, Sensors and Actuators B, 87 (2002) 397
2. F. Abdelmalek, J. M. Chovelon, M. Lacroix, N. Jaffrezic-Renault, V. Matejec, Sensors and Actuators B, 56 (1999) 234
3. J. Lin, Trends in analytical chemistry, vol. 16, no.4 (1997) 200
4. F. Schuth and W. Schmidt, Adv. Mater. 14, no.9 (2002) 629
5. G. Wirnsberger, P. Yang, B. J. Scott, B. F. Chmelka, G. D. Stucky, Spectrochimica Acta Part A, 57(2001)2049
6. K. H. Santo, M. Fichtner, K. Schubert, Applied Catalysis A: General, 220 (2001) 79
7. C.J. Brinker, K. D. Keefer, D. W. Schaefer and C. S. Ashley, J. Non-Cryst. Solids, 48 (1982) 47
8. T. M. Harris, E. T. Knobbe, J. Mater. Sci. Lett., 15 (1996) 132
9. M. Yamane, S. Aso, T. Sakaino, J. Mater. Sci., 13 (1978) 865
10. T. Adachi and Sakka, J. Mater. Sci., 25 (1990) 4732
11. M. A. Einarsrud, L. Rormark, S. Hareid, T. Grande, J. Non-Cryst. Solids, 211 (1997) 49
12. M. Nogami and Y. Abe, Phys.Rev. B, 55 (1997) 12108
13. M. Nogami and Y. Abe, J. Phys. Chem. B, 102 (1998) 5772
14. Y. Liu, L. Zhang, X. Yao and C. Xu, Mater. Lett., 49 (2001) 102
15. M. D. Curran, A. E. Stiegman, J. Non-Cryst. Solids, 249 (1999) 62
16. S. R. Kumar, P. K. Pillai and K. G. K. Warrier, Polyhedron, 17, 10(1998) 1699
17. A. M. M. Santos and W. L. Vasconcelos, J. Non-Cryst. Solids, 273 (2000) 145
18. Y. Xi, Z. Liangying, W. Sasa, Sensors and Actuators B, 24-25 (1995) 347
19. B. Sellergren, Trends in analytical chemistry, vol. 16, no. 6 (1997) 310
20. O. Bruggemann, Biomolecular Engineering, 18 (2001) 1–7
21. Yoldas, B. E., J. Mater. Sci., 14 (1979) 1843
22. Nogami, M. and Moriya, Y., J. Non-Cryst. Solids, 37 (1980) 191
23. Klein, L. C. and Garvey, G. J., J. Non-Cryst. Solids, 38 (1980) 39
24. Makherju, S. P., J. Non-Cryst. Solids, 42 (1980) 477
25. Partlow, D. P. and Yoldas, B. E., J. Non-Cryst. Solids, 46 (1981) 153
26. Yoldas, B. E., J. Non-Cryst. Solids, 51 (1982) 105
27. Paoting, Y., Hsiaoming, L. and Yuguang, W., J. Non-Cryst. Solids,52 (1982) 511
28. Pope, E. J. A. and Mackenzie, J. D., J. Non-Cryst. Solids, 87 (1986) 185
29. Zerda, T. W., Artaki, I. and Jonas, J., J. Non-Cryst. Solids, 81 (1986) 365
30. Himmel, B. Gerber, T. and Burger, H., J. Non-Cryst. Solids, 91 (1987) 122
31.詹佳樺,中央大學化學工程研究所碩士論文(2001)8-12
32. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature 359 (1992) 710
33. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt,C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L.Schlenker, J. Am. Chem. Soc. 114 (1992) 10834
34. S. A. Bagshaw, E. Prouzet, and T. J. Pinnavaia, Science 269 (1995) 1242
35. P. T. Tanev, and T. J. Pinnavaia, Science 267 (1998) 865
36. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Science 279 (1998) 548
37. D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, and G. D. Stucky, Adv. Mater. 10, No.16 (1998) 1380
38. S. Baskaran, J. Liu, K. Domansky, N. Kohler, X. Li, C. Coyle, G. Fryxell, S. Thevuthasan, and R. E. Williford, Adv. Mater., 4 (2000) 291
39. C. M. Yang, A. T. Cho, F. M. Pan, T. G. Tsai, and K. J. Chao, Adv. Mater., 14 (2001) 1099
40. H. Fan, H. R. Bentley, K. R. Kathan, P. Clem, Y. Lu, C. J. Brinker, J. Non-Cryst. Solids, 285 (2001) 79
41. Y. Wei, J. Xu, H. Dong, J. H. Dong, K. Y. Qiu, and S. A. Jansen-Varnum, Chem. Mater., 11 (1999) 2023
42. Y. Wei, D. Jin, T. Ding, W. H. Shih, X. Liu, S. Z. D. Cheng, and Q. Fu, Adv. Mater., 3 (1998) 313
43. J. Y. Zheng, J. B. Pang, K. Y. Qiu, and Y. Wei, J. Inorg. Organomet. Polym. Vol.10, No.1 (2000) 39
44. J. Y. Zheng, J. B. Pang, K. Y. Qiu, and Y. Wei, Microporous and Mesoporous Materials 49 (2001) 189
45. J. B. Pang, K. Y. Qiu, Y. Wei, Microporous and Mesoporous Materials 40 (2000) 299
46. Vaudry, F. Khodabandeh, S.; Davis, M. E. Chem. Mater. 8 (1996) 1451
47. J. Y. Zheng, J. B. Pang, K. Y. Qiu, and Y. Wei, J. Inorg. Organomet. Polym., Vol.10, No.3, (2000) 103
48. Y. Wei,Q. Feng, J. Xu, H. Dong, K. Y. Qiu, S. A. Jansen, R. Yin, and K. K. Ong, Adv. Mater., Vol.12, No.19 (2000) 1448
49. K. Moller, T. Bein, R. X. Fischer, Chem. Mater., 11 (1999) 665.
50. M. H. Lim, C. F. Blanford, A. Stein, J. Am. Chem. Soc., 119 (1997) 4090
51. T. Saegusa and Y. Chujo, J. Macromol. Sci.—Chem., A27(13&14) (1990) 1603
52. T. Saegusa, J. Macromol. Sci.—Chem., A27(9) (1991) 817
53. M. Toki, T. Y. Chow, T. Ohnaka, H. Samura, and T. Saegusa, Polym. Bull. 29 (1992) 653
54.Y. Chujo, E. Ihara, S. Kure, K. Suzuki, and T. Saegusa, Macromolecules, 26 (1993) 5681
55. K. Suzuki, T. Yumura, Y. Tanaka, M. Akashi, J. Controlled Release, 75 (2001) 183
56. R. Tamaki and Y. Chujo, Appl. Organometal. Chem., 12 (1998) 755
57.廖聖茹,黃依蘋,林仁章,黃瑞呈,工業材料雜,190期,(2002/10)
58. P. Innocenzi, J. Non-Cryst. Solids, 316 (2003) 309
59. H. K. Mahabadi, K. F. O’Driscoll,指導教授 陳暉(Hui Chen) 審核日期 2003-6-18 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare