博碩士論文 90324015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:116 、訪客IP:3.21.97.61
姓名 楊岳峰(YUEH-FENG YANG)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 在孔道均一的模板內合成聚苯胺奈米管
相關論文
★ 機車觸媒轉化器處理效能提升之研究★ SAPO-34之微波合成與CoAPO﹑CuO/CeO2﹑La1-xSrxCo1-yMnyO3之X光吸收光譜分析
★ 聚苯胺及三氧化鎢互補式電變色元件電變色性質研究★ NO在Perovskite oxide上的分解反應之研究
★ 電化學法合成聚苯胺及其複合材料電變色性質的研究★ 經摻雜之二氧化鈦觸媒膜光分解性質之研究
★ 在Perovskite氧化物上進行CO-NO反應之研究★ 聚苯胺與聚苯乙烯殼核複合材料之研究
★ 導電高分子與聚胺基甲酸酯複合材料之研究★ 梳狀聚苯乙烯磺酸與聚苯胺複合材料之合 成與分析
★ 在二氧化鈦上進行Salicylic acid可見光 光催化反應的研究★ 蒙脫土/環氧樹脂、蒙脫土/聚苯胺和聚苯胺管奈米材料之研究
★ 於陶瓷纖維紙上合成ZSM-5沸石與聚乙烯觸媒裂解之研究★ 二氧化鈦的合成與光催化性質的研究
★ 苯在Au/CeO2與Au/V2O5/CeO2上進行完全氧化反應之研究★ 聚苯胺金屬奈米複合管的合成及鑑定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
本研究的主要目的是結合導電性高分子及奈米技術兩項領域,將
導電性高分子-聚苯胺在模板中合成管狀結構。實驗中所選用的模板
分為無機濾膜-氧化鋁濾膜及高分子濾膜-聚碳酸脂膜,由於兩者的性
質截然不同,分別藉由兩種模板合成的聚苯胺管性質上有何差異,目
前並無文獻探討。本研究已藉由FT-IR 鑑定模板中合成的產物確實是
聚苯胺結構。並且以SEM、TEM 分別觀察兩者模板合成的聚苯胺管表
面型態之間的差異,證明了氧化鋁濾膜內電化學合成之聚苯胺管表面
型態較好。再藉由ESR 探討兩者聚苯胺管電子非定域化程度,得到氧
化鋁濾膜內電化學合成的聚苯胺管有較好的電子非定域化程度。從導
電度的測試結果得知,200 nm 氧化鋁濾膜內電化學合成之聚苯胺管
相較於聚苯胺塊材也有較好的導電度值。
本研究在相同模板下分別以電化學法及化學法合成聚苯胺管,並
且藉由SEM、TEM、ESR 及導電度討論電化學法及化學法對合成聚苯胺管有何影響。得到電化學法合成之聚苯胺管有較佳的性質。由於聚碳酸脂膜的孔徑變化較多且容易購得,本研究將以多樣規格之聚碳酸脂膜當做模板合成各種孔徑大小之聚苯胺管,並探討其性質發現,在孔徑愈小的聚碳酸脂膜內合成聚苯胺管會有單體溶液及氧化劑擴散的問題存在。最後,本研究自行製作孔徑60 nm、膜厚30 μm 且孔道均一的氧化鋁濾膜,並藉由它當做模板電化學合成60 nm 聚苯胺奈米管。
摘要(英) Abstract
The purpose of this study is to combine conducting polymer with
nanotechnology, by synthesis of polyaniline tubes inside the pore of
templates. In this study, both the inorganic membrane: Anodsic alumina
membrane and polymeric membrane: polycarbonate track-etched
membrane are used as templates to synthesize polyaniline tubes. Owing
to different characters of the two templates, it may effect the polyaniline
tubes synthesized in them. However the properties of those tubes
synthesized in different templates have not been carefully studied so far. FT-IR spectra show that the products synthesized inside the pores
of templates are polyaniline. The morphologies of polyaniline tubes have
been compared using SEM and TEM. The morphologies of polyaniline
tubes synthesized electrochemically in the Anodsic membrane are better
than the others. ESR spectra reveal that the degree of delocalization of
those tubes synthesized electrochemically in the Anodsic membrane are
better. The tubes synthesized inside the pore of Anodsic membrane
electrochemically show an enhancement of the electronic conductivity
compared to polyaniline bulk materials.
The polyaniline tubes by electrochemical synthesis will be shown
to have better properties compared to those tubes of chemical synthesis in
the same kind of templates using SEM、TEM、ESR and conductivity
measurement. With decreasing the pore diameter of polyaniline tubes, the
degree of delocalization increases.
Self-organized 60 nm Anodsic alumina membrane has been
synthesized successfully by two-step anodizing process, and polyaniline
tubes(rods) of 60 nm has been synthesized electrochemically inside the
pores.
關鍵字(中) 關鍵字(英) ★ Anodsic membrane
★ template
★ polyaniline
★ polycarbonate track-etched membrane and two step
論文目次 中文摘要…………………………………………………………………I
英文摘要………………………………………………………………..II
目錄……………………………………………………………………III
表目錄…………………………………………………………………..VI
圖目錄…………………………………………………………………VII
第一章緒論……………………………………………………………1
1-1 導電性高分子………………………………………………………1
1-1-1 簡介…………………………………………………………1
1-1-2 導電性高分子的聚合方式…………………………………3
1-1-3 導電性高分子的摻雜………………………………………4
1-1-4 共軛導電性高分子之導電理論……………………………5
1-2 聚苯胺………………………………………………………………7
1-2-1 簡介…………………………………………………………8
1-2-2 聚苯胺的結構………………………………………………9
1-2-3 聚苯胺紅外光光譜分析…………………………………..11
1-2-4 聚苯胺的紫外可見光譜…………………………………..12
1-2-5 聚苯胺的電子自旋共振光譜……………………………..13
1-2-6 聚苯胺之合成方法及合成機構…………………………..16
1-2-7 聚苯胺的應用……………………………………………..18
1-3 導電高分子奈米管………………………………………………..21
1-3-1 簡介………………………………………………………..21
1-3-2 導電高分子奈米管的應用及未來展望…………………..26
1-4 氧化鋁濾膜………………………………………………………..29
1-5 聚碳酸脂膜………………………………………………………..33
1-6 研究目的…………………………………………………………..34
第二章實驗部分……………………………………………………..35
2-1 實驗藥品…………………………………………………………..35
2-2 儀器………………………………………………………………..37
2-3 實驗方法…………………………………………………………..39
2-3-1 苯胺單體的還原…………………………………………..39
2-3-2 化學合成…………………………………………………..39
2-3-3 電化學合成………………………………………………..40
2-3-4 氧化鋁濾膜的製備………………………………………..41
2-4 實驗分析…………………………………………………………..43
2-4-1 場發式掃瞄式電子顯微鏡(Field-Emission Scanning
Electron Microscope,FE-SEM)…………………………43
2-4-2 霍氏轉換紅外光譜儀分析(Fourier Transform-Infrared
Spectrophotometer,FT-IR)……………………………..43
2-4-3 兩點探針導電度測試(Two-Point Conductive Meter)…43
2-4-4 四點探針導電度測試(Four-Point Conductive Meter)..44
2-4-5 穿透式電子顯微鏡測試(Transmission Electron
Microscope,TEM)…………………………………………45
2-4-6 電子順磁共振光譜儀(Electron Paramagnetic
Resonance Spectrometer,EPR)…………………………45
2-4-7 紫外可見光譜儀(UV-Visible Spectrophotometer ,
UV-VIS)……………………………………………………46
第三章結果與討論…………………………………………………..47
3-1 商業化氧化鋁濾膜(AnodiscTM membrane filters)……………47
3-2 以AnodiscTM 13, 0.2μm 氧化鋁濾膜電化學合成聚苯胺管……53
V
3-3 以AnodiscTM 13, 0.2 μm 氧化鋁濾膜化學合成聚苯胺管……..59
3-4 實驗室自製氧化鋁濾膜…………………………………………..63
3-5 以自製氧化鋁膜電化學合成60 nm 之聚苯胺管…………………66
3-6 聚碳酸脂膜(Polycarbonate track-etched membrane ,PTM)…68
3-7 以0.2 μm 之聚碳酸脂膜電化學合成聚苯胺管………………...70
3-8 以0.1 μm 及0.05 μm 之聚碳酸脂膜電化學合成聚苯胺奈米管
……………………………………………………………………73
3-9 聚苯胺管的穿透式電子顯微鏡(TEM)影像圖……………………76
3-10 聚苯胺管之紅外光光譜…………………………………………81
3-11 聚苯胺管之電子自旋共振光譜(Electron Spin Response,ESR)
……………………………………………………………………87
3-12 聚苯胺管的導電度測試…………………………………………96
第四章結論…………………………………………………………100
第五章未來發展……………………………………………………101
附錄……………………………………………………………………102
參考文獻………………………………………………………………103
參考文獻 參考文獻
1. H. Shirakawa, E. J. Louis, A.G. MacDiarmid, C. K. Chiang, and A.J.
Heeger, J. Chem. Soc. Chem. Comm., 1977, 579.
2. Y R. B. Seymour, New York: Plenum Press, Conductive polymers,
95-114.
3. A. Ohtani, M. Abe, M. Ezoe, T. Doi, T. Miyata and A. Miyake, Synth.
Met., 1993, 55-57, 3696.
4. B. P. Jelle, G. Hagen, S. Sunde and R. Odegard, Synth. Met., 1993,
54, 315.
5. 廖建勛,有機半導體材料與元件,2000
6. Cao, P. Smith and A. J. Heeger, Synth. Met., 1992, 48, 91.
7. J. Stejskal and P. Kratochvil, Polymer, 1996, 37 (2), 367-369.
8. E. C. Venancio, C. A. R. Costa, S.A.S. Machado, A.J. Motheo,
Electrochemistry Communications, 2001, 3, 229-233.
9. S. Uemura, K. Teshima, Synth. Met., 1999, 101, 701-702.
10. S. Uemura, K. Teshima, Synth. Met., 1999, 101, 701-702.
11. R. B. Seymour, New York: Plenum Press, Conductive polymers,
171-180.
12. R. B. Seymour, New York: Plenum Press, Conductive Polymers,
227-233.
13. A. O. Patil, Y. Ikenoue, F. Would and A. J. Heeger, J. Am. Chem. Soc.,
1987, 109, 1858.
14. R. B. Seymour, New York: Plenum Press, Conductive Polymers,
149-153.
15. T. A. Skothrim,“Handbook of Conducting Polymers”, New York:
Marcel Dekker , 1986, 2, 1195.
16. T. A. Skothrim , “Handbook of Conducting Polymers”, NewYork:
Marcel Dekker , 1986, 2, 325.
17. R. M. Baughman, J. L. Bredas, R. L. Elsenbaumer, and L. W.
Shacklette, Chem. Rev., 1982, 82, 209.
18. A. F. Diaz and K. K. Kanazdwd, in “Extended Linear Chain
Compounds” (G. S. Miller, ed.), Plenum, New York, 1982, p3.
19. K. Kaneto, S. Ura, K. Yoshino, and Y. Inuishi, Jap. J. of App. Phys.,
1984, 23, 189.
20. A. G. MavDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu,
N. L. D. Somasir, Mol. Cryst. Liq. Cryst., 1985, 121, 173.
21. H. Letheby, J. Chem. Soc., 1978, 26, 839.
22. A. S. Wood, “Tapping the power of intrinsic conductivity”, Modern
Plastic Int., Aug, 1991, 33.
23. M. C. Bernard, V. T. Bich, Synth. Met., 1999, 101, 811-812.
24. A. Kitani, M. Kaya, J. Yano, K. Yoshikawa, Synth. Met., 1987, 18,
341-346.
25. A. Malinauskas, R. Holze, Synth. Met., 1998, 97, 31-36.
26. J. C. Chang and A. G. MacDiarmid, Synth. Met., 1986, 13, 193.
27. W. S. Huang, B. D. Humphrey and A. G. MacDiarmid, J. Chem. Soc.
Fararday Trans., 1986, 82, 2385.
28. A. G. Green, and A. E. Woodhead, J. Chem. Soc. Trans., 1910, 97,
2388.
29. S. S. Pandey, S. Annapoorni, and B. D. Malhocra, Macromolecules,
1993, 26, 3190.
30. T. Ohsaka, Y. Ohnuki, N. Oyama, G. Katagiri and K. Kamisako, J.
Electroanal. Chem., 1984, 161, 399.
31. J. Tang, X. Jing, B. Wang and F. Wang, Synth. Met., 1988, 24, 231.
32. J. Tan, X. Jing, B. Wang and F. Wang, Synth. Met, 1988, 24, 234.
33. B. Wang J. Tang and F. Wang, Synth. Met. , 1987, 18, 323.
34. A. P. Monkman and P. Adams, Synth. Met. , 1991, 41, 891.
35. P. M. McManus, R. J. Cushman and S. C. Yang, J. Phys. Chem. ,
1987, 91, 744.
36. M. Inoue, R. E. Navarro and M. B. Inouo, Synth. Met. , 1989, 30,
199.
37. G. E. Matsubayashi, T. Doi and T. Tanaka, Synth. Met. , 1989, 33, 99.
38. F. Genoud, M. Nechtschein, C. Menardo, K. Mizoguchi, J. P. Travers
and B. Villeret, Synth. Met. , 1989, 29, E211.
39. J. M. Ginder, A. F. Richter, A. G. MacDiarmid and A. J. Epstein, Sol.
St. Commun. , 1987, 63, 97.
40. N. S. Saricifftci, A. J. Heeger and Y. Cao, Phys. Rev. B., 1994, 49(9),
5988.
41. K. Mizoguchi, T. Obana, S. Ueno and K. Kume, Synth. Met. , 1993,
55-57, 601.
42. A. G. MacDiarmid, J. C. Chiang and A. F. Richter, Synth. Met. , 1987,
18, 285.
43. M. Kaya, A. Kitai and K. Sasaki, Chcmistry Letter, 1986, 147.
44. S. H. Glarum and J. H. Marshall, J. Phys. Chem. , 1986, 90, 6076.
45. M. E. Jozefowicz, R. Laversanne, H. H. S. Javadi, A. J. Epstein, J. P.
Pouget, X. Tang and A. G. MacDiarmid, Phys. Rev. B, 1989, 39,
12958.
46. F. Genoud, K. Aasmundtveit, E. Houze and M. Nechtschein, Synth.
Met. , 1995, 69, 193.
47. T. C. Chang, S. Y. Ho and K. J. Chao, J. Chin. Chem. Soc. , 1992, 39,
209.
48. H. H. S. Javadi, R. Laversanne, A. J. Epstein, R. K. Kohli, E. M.
Scherr and A. G. MacDiarmid, Synth. Met. , 1989, 29, E439.
49. J. C. Chiang and A. G. MacDiarmid, Synth. Met., 1986, 13, 193.
50. W. W. Focke, G. E. Wnek and Y. Wei, J. Phys. Chem., 1987, 91,5813
51. A. G. MacDiarmid, J. C. Chiang, A. F. Richter, N. L. D. Somasiri and
A. J. Epstein, “polyaniline: Synthesis and Characterization of the
Emeraldine Oxidation State by Elemental Analysis” in L.
Alca’cer(ed.) “Conducting Polymer” D. Reidel Pub. Comp.
Dordrecht, Holland, 1987, 105.
52. G. E. Asturias, A. G. MacDiarmid, R. P. Mccall and A. J. Epstein,
Synth. Met., 1989, 29, E157.
53. M. Inoue, R. E. Navarro and M. B. Inoue, Synth. Met., 1989, 30,
199-207.
54. B. Wang, J. Tang, Synth. Met., 1986, 13, 329-334.
55. K. Koziel, M. Lapkowski and S. Lefrant, Synth. Met., 1995, 69,
217-218.
56. P. Rannou, M. Nechtschein, Synth. Met., 1997, 84, 755-756.
57. M. C. Bernard, V. T. Bich, Synth. Met., 1999, 101, 811-812.
58. (a) E. M. Genies, A. A. Syed and C. Jsintavis, Mol. Cryst. Liq. Cryst.,
1985, 121, 181.
(b) E. M. Genies and C. Tsintavis, J. Electroanal. Chem., 1985, 195,
109.
59. Epstein, A. J.; Yue, J. US Patent no. 5137991, 1992.
60. Joo, J.; Epstein, A. J. Appl Phys Lett, 1994, 65, 2278.
61. Makela, T.; Pienimaa, S.; Taka, T.; Jussila, S.; Isotalo, H. , Synth. Met.
1997, 85, 1335.
62. Racicot, R.; Brown, R.; Yang, S. C. , Synth. Met. , 1997, 85, 1263.
63. Kin, P. J.; Silverman, D. C.; Jeffreys, C. R. , Synth. Met. 1997, 85,
1327.
64. Bernard, M. C.; Goff, H. L.; Joiret, S.; Dinh, N. N.; Toan, N. N.Electrochem Soc, 1999, 146, 995.
65. Wessling, B.; Posdorfer, J. Electrochim Acta, 1999, 44, 2139.
66. Malik, M. A.; Galkowski, M. T.; Bala, H.; Grzybowska, B.; Kulesza,
P. J. Electrochim Acta, 1999, 44, 2157.
67. Li, C.; Wang, Y.; Wan, M.; Li, S. , Synth. Met. , 1991, 39, 90.
68. Ozaki, M.; Peebles, D. L.; Weinberger, B. R.; Hegger A. J.;
MacDiarmid, A. G. , J. Appl. Phys. , 1980, 51, 4252.
69. Kuo, C. T.; Chiou, W. H. , Synth. Met. , 1997, 88, 23.
70. Wang, H. L.; MacDiarmid, A. G.; Wang, Y. Z.; Gebler, D. D.; Epstein,
A. J. , Synth. Met. , 1996, 78, 33.
71. Wang, Y. Z.; Gebler, D. D.; Lin, L. B.; Blatchford, J. W.; Jessen, S.
W.; Wang, H. L.; Epstein, A. J. , Appl. Phys. Lett. , 1996, 68, 894.
72. Chen, S. A.; Chuang, K. R.; Chao, C. I.; Lee, H. T. , Synth. Met. ,
1996, 82, 207.
73. Gaponik, N. P.; Talapin, D. V.; Dmitri, V.; Rogach, A. L. , Phys.
Chem Chem. Phys. , 1999, 1, 1787.
74. Kobayashi, N.; Yamada, K.; Hirohashi, R. , Electrochim. Acta. , 1992,
37, 2101.
75. Morita, M.; J. Poly. Sci., Part B: Polymer Phys. , 1994, 32, 231.
76. Bernard, M. C.; Goff, H. L.; Wen, Z. , Synth. Met. , 1997, 85, 1347.
77. Bernard, M. C.; Goff, H. L.; Bich, V. T.; Wen, A. Z. , Synth. Met. ,
1996, 81, 215.
78. Barbero, C.; Miras, M. C.; Koetz, R.; Haas, O. , Synth. Met. , 1993,
55, 1539.
79. Tsutsumi, H.; Yamashita, S.; Oishi, T. , Synth. Met. , 1997, 85, 1361.
80. Kumar, G.; Sivashanmugam, A.; Muniyandi, N.; Dhawan, S. K. ,
Synth. Met. , 1996, 80, 279.
81. Cui, G.; Lee, J. S.; Kim, S. J.; Nam, H.; Cha, G. S.; Kim, H. D.
Analyst, 1998, 123, 1855.
82. Takeda, S. , Thin Solid Film, 1999, 343, 310.
83. Iijima, S. , Nature, 1991, 354, 56.
84. Deheer, W. A.; Chatelain, A.; Ugarte, D. Science, 1995, 270, 1179.
85. Dai, H.; Hafiner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E.
Nature, 1996, 384, 147.
86. Ebbesen, T. W. , Phys Today, 1996, June, 26.
87. Treay, M. M. J.; Ebbesen, T. W.; Gibson, J. M.; Synth. Met. , 1996,
381, 678.
88. B. B. Lakshmi, P. K. Dorhout et al. , Chem. Mater. , 1997,9:857.
89. J. C. Hulteen, V. P. Menon et al. , J. Chem. Soc. , Faraday Trans. ,
1996, 92:40, 29.
90. J. D. Klein, R. D. Herrick et al. , Chem. Mater. , 1993,5:902.
91. V. M. Cepak, J. C. Hulteen et al. , Chem. Mater. , 1997,9:1065.
92. S. K. Chakarvarti, J. Vettr. J. Micromech Microeng, Chem. Mater.
1993,3:57.
93. M. J. Tierney, C. R. Martin., J. Phys. Chem., 1998,93:2878.
94. Fan, J. H.; Wan, M. X.; Zhu, D. B.; Chang, B. H.; Pan, Z. W.; Xe, S.
S. , J. Appl. Polymer Sci. , 1999, 74, 2605.
95. Downs, C.; Nugent, J.; Aiayan, P. M.; Duguette, D. J.; Santhanam, S.
V. , Adv. Mater. , 1999, 11, 1028.
96. Cao, H. Q.; Tie, C. Y.; Xu, Z.; Hong, J. M.; Sang, H. , Appl. Phys.
Lett. , 2001, 78, 1592.
97. C. R. Martin. , Science, 1994,266:1961.
98. C. R. Martin. , Acc.Chem.Res. , 1995,28:61
99. J. C. Hulteen, C. R. Martin. , J.Mater.Chem. , 1997,7:1075.
100. C.-G. Wu, T. Bein. , Science, 1994,264:1757.
101. J. Lei, Z. Cai et al. , Synth. Met. , 1992,46:53.
102. Marc Delvaux, Jannick Duchet, Pierre-Yves Stavaux, Roger Legras
and Sophie Demoustier-Champagne; Synth. Met. , 2000, 113,275-280.
103. Alexander Kros, Roeland J. M. Nolte and Nico A. J. M.
Sommerdijk; Adv. Mater. , 2002, 14, 23, 1779.
104. Qiu, H. J.; Wan, M. X.; Matthews, B.; Dai, L. M. ,
Macromolecules , 2001, 34, 675.
105. Ozin, G. A. , Adv. Mater. , 1992, 4, 612.
106. Kanatzidis, M. G.; Tonge, L. M.; Marks, T. J.; Marcy, H. O.;
Kannewurf, C. R. , J. Am. Chem. Soc. , 1987, 109, 3797.
107. Kanatzidis, M. G.; Wu, C. G.; Marcy, H. O.; Kannewurf, C. R. , J.
Am. Chem. Soc. , 1989, 111, 4139.
108. Bein, T.; Enzel, P.; Beuneu, F.; Zuppiroli, L. , Adv. Chem. Ser. ,
1990, 226, 433.
109. Martin, C. R. , Acc. Chem. Res. , 1995, 259, 957.
110. Jerome, C.; Demoustier-Champagne, S.; Legras, R.; Jerome, R. ,
Chem. Eur. J. , 2000, 6, 3089.
111. Wu, C. G.; Bein, T. , Science , 1994, 266, 1013.
112. I. Willner, R. Blonder, E. Katz, A. Stocker, A. F. Buckmann, J. Am.
Chem. Soc. , 1996,118, 5310.
113. F. Keller, M. S. Hunter, D. L. Robinson, J. Electrochem. Soc., 1953,
100, 411.
114. D. Routkevitch, A. A. Tager, J. Haruyama, D. Almawlawi, M.
Moskovits, J. M. Xu, IEEE Trans. Electron Devices, 1996, 43, 1646.
115. C. G. J. Koopal, B. Eijsma, R. J. M. Nolte, Synth. Met. , 1993, 55,
3689.
116. Hideki Masuda and Kenji Fukuda, Science, 1995, 268, 1466
117. Jpn. J. Appl. Phys. , 1996, 35, L126-L129
118. Journal of Applied Physics, 1998, 84, 6023.
119. Hideki Masuda, Haruki Yamada, Masahiro Satoh and Hidetaka
Asoh, Appl. Phys. Lett. , 1997, 71(19), 2770
110
120. Wu, C. N.; Chao, K. J.; Tsai, T. G.; Chiou, Y. H.; Shih, H. C. , Adv.
Mater. , 1996, 8, 1008.
121. Pradhan, B. K.; Toba, T.; Kyotani, T.; Tomita, A. , Chem. Mater. ,
1998, 10, 2510.
122. Kyotani, T.; Tsai, L. F.; Tomita, A. , Chem. Mater. , 1996, 8, 2109.
123. Li, J.; Moskovits, M.; Haslett, T. L. , Chem. Mater. , 1998, 10,
1963.
124. Wu, Q.; Xue, Z. Qi, Z.; Wang, F. , Polymer, 2000, 41, 2029.
指導教授 楊思明(Sze-Ming Yang) 審核日期 2003-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明