博碩士論文 90324029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.119.131.178
姓名 伍家慶(Cha-Chin Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 汽機車尾氣在富氧條件下NOx之去除
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 耐高溫燃燒觸媒的配製及鑑定
★ 高效率醋酸乙酯生產製程研究★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究
★ Au/FexOy 奈米材料之製備 及CO 氧化的應用★ 非晶態奈米鐵之製備與催化性質研究
★ 奈米含銀二氧化鈦光觸媒之製備與應用★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究
★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用★ 非晶態奈米鎳的製備及其在對氯硝基苯氫化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,又愈來愈多有關汽機車尾氣在富氧條件下之NOx去除的研究,因為富氧的條件下去除汽機車尾氣可以節省油料的消耗。NOx 在富氧的條件下被觸媒所吸附儲存;而在缺氧的條件之下, 被儲存的NOx 會被還原成無害的N2。本研究利用濕式含浸法與反應沉澱法合成去除NOx的觸媒。在觸媒中加入可以作為吸附用的鹼土族(Ba,Sr)以作為吸附NOx之成分。另外再加入Ce與La作為提供氧氣儲存的成分。在鑑定樣品的物理性質上,藉掃描式電子顯微鏡與穿透式電子顯微鏡觀察顆粒大小;由氮吸附、脫附分析測定表面積;另外,對觸媒進行循環測試(cycle test),測試其吸附能力與反應性,並探討溫度對觸媒吸附力的影響與研究觸媒的吸附耐力測試。由實驗結果得知,利用反應沉澱法合成去除NOx的觸媒,雖然有極相同的成果,但由於反應沉澱法較為費時,而濕式含浸法在合成上較為簡便,故我們選用濕式含浸法。由一系列的濕式含浸法所得的觸媒比較,含有Ce的觸媒有較高的NO吸附能力;從實驗所得的圖形,可以知道被吸附的NO是由丙烯(C3H6)所還原而得氮氣。另外,比較Ce與La的效果,可以得知在反應一開始時,Ce的效果遠比La佳,因為La在一開始時吸附效果為零。但做耐力測試的結果,Ce與La有極相同的成果。由循環測試及耐力測試的結果作探討比較,我們得到最好的觸媒是利用濕式含浸法所配製的Pt2.5Ce30.5Ba33.4Al100 與 Pt2.5Ce22.5Ba41.7Al100,其中下標數字代表重量比。我們把濕式含浸法的觸媒做描式電子顯微鏡與穿透式電子顯微鏡分析,發現其顆粒為不規則與不均勻的聚集,顆粒大小約0.1μm到5.0μm,且為不規則的形狀,而且分散度不佳。
摘要(英) The performance and durability of NOx storage catalyst were studied. The catalysts were used to reduce nitrogen oxides from lean-burn condition. There are increasing interests in car engines in the lean-burn condition to improve fuel economy. In the catalysts, NOx emitted from an engine at lean A/F operation was stored and this stored NOx was reduced at rich-burn operation. The incipient-wetness impregnation and precipitation methods were used to synthesize the catalysts. The properties of the catalysts were characterized by scanning electron microscopy, transmission electron microscopy, N2 sorption. The catalysts were tested by the lean-rich cycle. The effects of reaction temperature for storage capacity and duration were also tested. To investigate the storage capability of the catalyst, the samples were prepared with different alkaline-earth metal additives and different rare-earth metal oxides. Comparing the effects of preparation methods between incipient-wetness impregnation and precipitation, both samples had similar storage capability, but the incipient-wetness impregnation was more convenient to synthesize the samples. Therefore, this method was used in this study. The transient experiments comprise a storing phase using a lean NO/O2/N2/C3H6/CO gas mixture, and a regeneration phase where the O2 flow was switched off. The De-NOx catalysts consisted of nonuniform aggregates of very small and distinct particles. The catalysts containing barium had better storage capability and duration. On the other hand, the catalyst containing cerium had a higher NO storage capability than that having no cerium.
關鍵字(中) ★ 還原
★ 循環測試
★ 缺氧條件
★ 富氧條件
★ NOx儲存觸媒
★ 再生
關鍵字(英) ★ cycle test
★ rich-burn condition
★ lean-burn condition
★ storage catalyst
★ NOx
論文目次 Table of Contents
Page
Abstract………………………………………………………………...…i
Table of Contents…………………………………………………...……....iii
List of Tables………………………………………………………………vii
List of Figures……………………………………………………….…viii
CHAPTER 1. INTRODUCTION………………………………………...1
1.1 Carbon monoxide (CO)…………………………...2
1.2 Nitrogen oxide (NOx)………………………..……….…………........2
1.3 Hydrocarbons………...…………………………………………........3
1.4 Heavy metal.........................................................................................5
1.4-1 Lead (Pb)………………………………………………………...5
1.5 Objective and Scope………………………………………………….6
CHAPTER 2. LITERATURE REVIEW……………………………….8
2.1 Process for the Operation of NOx Storage Catalysts………...…..........9
2.1-1 Lean/Rich Cycle…………………………………………..……...9
2.1-2 Influence of Inlet Gas Compositions……………………….......13
2.1-3 Influence of Temperature……………………………………….15
2.1-4 Break-Through Peaks…………………………………………...15
2.1-5 Removal of NOx from the Exhaust of a Lean–Burn Engine........17
2.2 Characteristics of the De-NOx Catalysts…………………………….19
2.2-1 Alumina (Al2O3)………………………………………………...21
2.2-2 Effects of Additives on γ-Alumina……………………………...22
2.2-3 Effects of Cerium Additives…………………………………….22
2.2-4 Effects of Lanthanum Additive……………………………........23
2.2-5 Effects of Alkaline-Earth Metals Additives…………………….25
2.2-6 Effects of Platinum Additive………………………………........28
2.3 Synthesis Procedure of De-NOx catalysts…………………………….28
2.3-1 Precipitation Methods………………………………………........30
2.3-2 Incipient-Wetness Impregnation Method………………………...30
2.3-3 Coating on a Ceramic Honeycomb…………………………........31
CHAPTER 3. EXPERIMENTAL…………………………………………..33
3.1 Chemicals………………………………….……………………..33
3.2 Synthesis Procedure………..……………….…………………….33
3.2-1 Synthesis with Incipient-Wetness Impregnation Method………33
3.2-2 Synthesis with Precipitation Method…………………………...34
3.3 Characterization………………………………………………….38
3.3.1 N2 adsorption-desorption isotherms………………………........38
3.3.2 Scanning electron microcopy (SEM)……………………….38
3.3.3 Transmission electron microscopy (TEM)…………………….38
3.3.4 Catalytic activity measurement………………………………...39
CHAPTER 4. Results and Discussion………………………….…….…….46
4.1 Morphology (SEM and TEM)………………….…………………...46
4.1-1 SEM……..………………………………………………….......46
4.1-2 TEM…………………………………………………………….52
4.2 BET Surface Area………………………………………...…………57
4.3 Catalytic activity measurements…………………………………….59
4.3-1 Pt2.5Ce30.5Ba33.4Al100 and Pt2.5Ce22.5Ba41.7Al100………………….59
4.3-2 Pt2.5Ce30.5Sr33.4Al100 and Pt2.5Ce22.5Sr41.7Al100…………….…….61
4.3-3 Pt2.5La30.5Ba33.4Al100 and Pt2.5La22.5Ba41.7Al100………………….62
4.3-4 Pt2.5La30.5Sr33.4Al100 and Pt2.5La22.5Sr41.7Al100……………….......62
4.3-5 Comparing the Storage Capacity of Strontium (Sr) and Barium (Ba)………………………………………………………………..64
4.3-6 Effects of Cerium Additives…………………………………….64
4.3-7 Comparing the Effects of Cerium and Lanthanum Additives…..65
4.3-8 The Precipitation Methods……………………………………………..66
4.3-9 The relationship between barium content and NOx storage…….65
CHAPTER 5. CONCLUSION …………………………………………….87
REFERENCE………………………………….………………………..88
Appendix: Synthesis and Characterization of Nano-Sized Zeolites……….93
摘要…………….…………………………………………………………..94
Abstract…………………………………………………………………….95
CHAPTER 1. INTRODUCTION………………………………………….96
1.1 Synthesis and Characteristics of Zeolites……..………...…………...96
1.2 Objective and Scope………………………..……………..................97
CHAPTER 2. LITERATURE REVIEW………….………………………..98
2.1 Applications of Nano-Sized Zeolites…………….…………………..98
2.2 The Formation Mechanism of Zeolites…………….………………..99
2.3 Synthesis and Characteristics of Nano-Sized Zeolites…….……….100
CHAPTER 3. EXPERIMENT…………………………………………....110
3.1 Chemical…………………………………………………………...110
3.2 Synthesis Method…………………………………………………..110
3.2-1 Synthesis of Silicate-1…………………………………………110
3.3 Characterization…………………………………………………….114
3.3-1 X-ray diffraction (XRD)………………………………………114
3.3-2 N2 sorption…………………………………………………….114
3.3-3 Scanning electro microscopy (SEM)………………………….114
3.3-4 Transmission electron microscopy (TEM)…………………….115
Chapter 4. RESULTS AND DISCUSSION………………………………116
4.1 Effects of Synthesis Temperature………………………………..116
4.1-1 Effects of the Synthesis Temperature on Silicalite-1………….116
4.1-2 Effects of the Synthesis Temperature on ZSM-5……………..121
4.2 Effects of Templates………………..………………………........125
4.3 Effects of Synthesis Time and SiO2/Al2O3Ratio………………...129
4.3-1 Effects of Synthesis Time………………………………………..129
4.3-2 Effects of SiO2/Al2O3 Ratio………………..…………………….136
Chapter 5. CONCLUSION……………………………………………….140
REFERENCE……………………………………………………………..141
List of Tables
Table 1-1 Volatile organic emissions of an Otto engine (Dulson, 1981)…….4
Table 2-1 Gas compositions in the different experiments (Fridell et al., 1998)………………….………………………………………..14
Table 3-1 De-NOx catalysts prepared by various additives and different synthesis procedure...………………………………………........37
Table 3-2 The inlet gas compositions…………………………………........45
Table 4-1 BET specific surface areas (SBET) of De-NOx catalysts..……….58
Table 4-2 The NO storage amounts of Pt2.5Ce30.5Ba33.4Al100 and Pt2.5Ce22.5Ba41.7Al100 for cycle test……………………………….67
Table 4-3 The NO storage amounts of Pt2.5Ce30.5Sr33.4Al100 and Pt2.5Ce22.5Sr41.7Al100 for cycle test………………………………..71
Table 4-4 The NO storage amounts of Pt2.5La30.5Ba33.4Al100 and Pt2.5La22.5Ba41.7Al100 for cycle test……………………………...75
Table 4-5 The NO storage amounts of Pt2.5La30.5Sr33.4Al100 and
Pt2.5La22.5Sr41.7Al100 for cycle test………………………………..79
Appendix: Synthesis and Characterization of Nano-Sized Zeolites
Table 3-1. The samples prepared by various conditions………………….111
Table 4-1. The physical properties of silicalite-1 prepared with various synthesis times…………………………………………….....135
List of Figures
Figure 2-1. NOx storage reduction mechanism (Matsumoto, 1996)….........10
Figure 2-2. The NO and NO2 concentration traces during a transient with the
gas compositions quoted in Table 2-1 over a Pt-Rh/BaO/Al2O3
catalyst. The dashed vertical lines mark the switches in gas
composition where the rich phase is indicated by the double arrow (Fridell et al., 1998)…….................................................12
Figure 2-3.1The NOx storage vs. inlet gas temperature with either NO or NO2 in the feed (Fridell et al., 1998)………………………….16
Figure 2-4. Figure 2-4 proposed by Hohne et al. (2001) is a graph which schematically represents the time dependence of nitrogen oxide sorption and desorption when the storage catalyst is operated according to the process of the invention……..........................18
Figure 2-5.1A / F window with three-way catalysts .
(Koberstein and Wannemacher, 1987)………………………..20
Figure 2-6.1The graph shows a relationship between cerium content and NOx removal rate on a catalyst (Iizuka et al., 2000)…..….......24
Figure 2-7.1The graph shows a relationship between strontium content and NOx removal rate of a catalyst (Iizuka et al., 2000)…………..27
Figure 2-8.1The graph shows a relationship between platinum content and NOx removal rate on a catalyst (Iizuka et al., 2000).................29
Figure 2-9. A graph of a honeycomb support (Suzuki et al., 1998)………..32
Figure 3-1. De-NOx catalysts prepared by incipient-wetness impregnation method………………………………………………………...35
Figure 3-2.1De-NOx catalysts prepared by precipitation method…….........36
Figure 3-3.1Micromeritics ASAP 2000……………………………….........41
Figure 3-4.1The schematic diagram of the De-NOx reaction apparatus…...42
Figure 3-5.1The diagram of the De-NOx reactor…………………………..43
Figure 3-6 The inlet O2 content for cycle test……………………………...44
Figure 4-1. SEM micrographs of (A)Pt2.5Ce30.5Ba33.4Al100 and (B) Pt2.5Ce22.5Ba41.7Al100………………………………………….47
Figure 4-2. SEM micrographs of (A)Pt2.5Ce30.5Sr33.4Al100 and (B)
Pt2.5Ce22.5Sr41.7Al100………………………………....................48
Figure 4-3. SEM micrographs of (A) Pt2.5La30.5Ba33.4Al100 and (B) Pt2.5La22.5Ba41.7Al100………………………………………….49
Figure 4-4. SEM micrographs of (A) Pt2.5La30.5Sr33.4Al10 and (B) Pt2.5La22.5Sr41.7Al100………..……………………………........50
Figure 4-5. Shematic showing extremes of micro-macropore distribution (Nortier and Soustelle, 1987)…………..................................51
Figure 4-6. TEM micrographs of (A) Pt2.5Ce30.5Ba33.4Al100 and (B) Pt2.5Ce22.5Ba41.7Al100………………….………………………53
Figure 4-7. TEM micrographs of (A) Pt2.5Ce30.5Sr33.4Al100 and (B) Pt2.5Ce22.5Sr41.7Al100…………………………………………..54
Figure 4-8. TEM micrographs of (A) Pt2.5La30.5Ba33.4Al100 and (B) Pt2.5La22.5Ba41.7Al100………………………………..………...55
Figure 4-9. TEM micrographs of (A) Pt2.5La30.5Sr33.4Al100 and (B) Pt2.5La22.5Sr41.7Al100…………………………………………..56
Figure 4-10. NO storage and conversion of (A) Pt2.5Ce30.5Ba33.4Al100 and (B) Pt2.5Ce22.5Ba41.7Al100 for cycle test in 400℃…………………..68
Figure 4-11. The NO storage vs. reaction temperatures of (A) Pt2.5Ce30.5Ba33.4Al100 and (B) Pt2.5Ce22.5Ba41.7Al100……..........69
Figure 4-12. NO storage and conversion for duration of 30 min of (A) Pt2.5Ce30.5Ba33.4Al100 and (B) Pt2.5Ce22.5Ba41.7Al100…….…….70
Figure 4-13. NO storage and conversion of (A) Pt2.5Ce30.5Sr33.4Al100 and (B) Pt2.5Ce22.5Sr41.7Al100 for cycle test in 400℃………………….72
Figure 4-14. The NO storage vs. reaction temperatures of (A) Pt2.5Ce30.5Sr33.4Al100 and (B) Pt2.5Ce22.5Sr41.7Al100………........73
Figure 4-15. NO storage and conversion for duration of 30 min of (A) Pt2.5Ce30.5Sr33.4Al100 and (B) Pt2.5Ce22.5Sr41.7Al100………........74
Figure 4-16. NO storage and conversion of (A) Pt2.5La30.5Ba33.4Al100 and (B) Pt2.5La22.5Ba41.7Al100 for cycle test in 400℃…………………76
Figure 4-17. The NO storage vs. reaction temperatures of (A) Pt2.5La30.5Ba33.4Al100 and (B) Pt2.5La22.5Ba41.7Al100…………..77
Figure 4-18. NO storage and conversion for duration of 30 min of (A) Pt2.5La30.5Ba33.4Al100 and (B) Pt2.5La22.5Ba41.7Al100……………78
Figure 4-19. NO storage and conversion of (A) Pt2.5La30.5Sr33.4Al100 and (B) Pt2.5La22.5Sr41.7Al100 for cycle test in 400℃…………………..80
Figure 4-20. The NO storage vs. reaction temperatures of (A) Pt2.5La30.5Sr33.4Al100 and (B) Pt2.5La22.5Sr41.7Al100……………81
Figure 4-21. NO storage and conversion for duration of 30 min of (A) Pt2.5La30.5Sr33.4Al100 and (B) Pt2.5La22.5Sr41.7Al100……………..82
Figure 4-22. NO storage for duration of 30 min of Pt2.5Ce30.5Sr33.4Al100 (-●-) and Pt2.5Ce30.5Ba33.4Al100 (--○--)…………………………..83
Figure 4-23. NO storage for duration of 30 min of Pt2.5Ce30.5Sr33.4Al100 (-●-) and Pt2.5Ba33.4Al100 (--○--)……………………..................83
Figure 4-24. NO storage for duration of 30 min of Pt2.5Ce30.5Ba33.4Al100 (-●-) and Pt2.5La30.5Ba33.4Al100 (--○--)…………………………84
Figure 4-25. NO storage and conversion for duration of 30 min of (A) Pt2.5Ti24K30Al100(R) and (B) Pt2.5Ti24Ba32Al100(R)…………...85
Figure 4-26 The relationship between barium content and NOx storage (%)…………………………………………………………….86
Appendix: Synthesis and Characterization of Nano-Sized Zeolites
Figure 2-1. XRD pattern of ZSM-5 synthesized after van Grieken (2000); crystallization time: 2 days (Reding et al., 2003)……………102
Figure 2-2. SEM image of ZSM-5 synthesized after van Grieken (2000); crystallization time: 2 days (Reding et al., 2003)………........102
Figure 2-3. XRD spectra of as-synthesized samples obtained at different reaction time. (a) t = 6 h, (b) t = 12 h, (c) t = 18 h, (d) t = 20 h, (e) t = 22 h, (f) t = 24 h, (g) t = 48 h, (h) t = 72 h, (i) t = 96 h, (j) t = 108 h and (k) t = 120 h (van Grieken et al., 2000)…………………………………………………….…..103
Figure 2-4. (a) Nitrogen adsorption-desorption isotherms at 77 K of calcined samples obtained at different synthesis time and (b) their corresponding pore size distribution (van Grieken et al., 2000)…………………………………………………………106
Figure 2-5. Preparation protocol for colloidal suspensions of template removal zeolite nanocrystals (Wang et al., 2000)……….…...107
Figure 2-6. SEM images of silicalite nanocrystals prepared without polymer network barrier: (a) after drying, (b) after calcinations (Wang et al., 2000)……………………………………………………..109
Figure 2-7. Confined space synthesis. The zeolite is crystallized within the pore system of mesoporous carbon matrix. The crystal size L1, is always smaller than the pore diameter, L2 (Jacobsen et al., 2000)…………………………………………………………109
Figure 3-1. The preparation method of ZSM-5…………………………...112
Figure 3-2. The preparation method of silicalite-1………………………..113
Figure 4-1. The XRD patterns of silicalite-1 prepared at various synthesis temperatures. (A) 80TMAS-2; reacted at 80℃; (B) 120TMAS-2; reacted at 120℃; (C) 170TMAS-2; reacted at 170℃……….118
Figure 4-2. SEM images of silicalite-1 prepared at various synthesis temperatures. (A) 80TMAS-2; reacted at 80℃; (B) 120TMAS-2; reacted at 120℃; (C) 170TMAS-2; reacted at 170℃……….119
Figure 4-3. TEM images of silicalite-1 prepared at various synthesis temperatures. (A) 80TMAS-2; reacted at 80℃; (B) 120TMAS-2; reacted at 120℃; (C) 170TMAS-2; reacted at 170℃……….120
Figure 4-4. The XRD patterns of ZSM-5 prepared at various synthesis temperatures. (A) 80TMAR60-2; reacted at 80℃; (B) 120TMAR60-2; reacted at 120℃; (C) 170TMAR60-2; reacted at 170℃……………………………………………………...122
Figure 4-5. SEM images of ZSM-5 prepared at various synthesis temperatures. (A) 80TMAR60-2; reacted at 80℃; (B) 120TMAR60-2; reacted at 120℃; (C) 170TMAR60-2; reacted at 170℃……………………………………………………...123
Figure 4-6. TEM images of ZSM-5 prepared at various reaction temperatures. (A) 80TMAR60-2; reacted at 80℃; (B) 120TMAR60-2; reacted at 120℃; (C) 170TMAR60-2; reacted at 170℃……………………………………………………...124
Figure 4-7. The XRD patterns of ZSM-5 prepared with different
templates. (A) 170TMAS-2; prepared with TMA;
(B) 170TPAS-2; prepared with TPA…………………………127
Figure 4-8. SEM images of ZSM-5 prepared with different templates. (A) 170TMAS-2; prepared with TMA; (B) 170TPAS-2; prepared with TPA……………………………………………………..128
Figure 4-9. The XRD patterns of silicalite-1 prepared at various synthesis times. (A) 170TPAS-1; synthesized for 1 d; (B) 170TPAS-2; synthesized for 2 d; (C) 170TPAS-3; synthesized for 3 d; (D) 170TPAS-4; synthesized for 4 d……………………………..131
Figure 4-10. SEM images of silicalite-1 prepared with various synthesis times. (A) 170TPAS-1; synthesized for 1 d; (B) 170TPAS-2; synthesized for 2 d; (C)170TPAS-3; synthesized for 3 d; (D)170TPAS-4; synthesized for 4 d……………………........132
Figure 4-11. TEM images of silicalite-1 prepared with various synthesis times. (A) 170TPAS-1; synthesized for 1 d; (B) 170TPAS-2; synthesized for 2 d; (C)170TPAS-3; synthesized for 3 d; (D)170TPAS-4; synthesized for 4 d…………………………133
Figure 4-12. The N2 sorption of silicalite-1 prepared with various synthesis
times. (A) 170TPAS-1; synthesized for 1 d; (B) 170TPAS-2;
synthesized for 2 d; (C)170TPAS-3; synthesized for 3 d; (D)170TPAS-4; synthesized for 4 d. The isotherms are offset vertically by 100 cm3/g, STP for clarity…………………….134
Figure 4-13. The XRD patterns of the samples synthesized with various SiO2/Al2O3 molar ratios. (A) 170TPAS-2; synthesized in the absence of aluminum; (B) 170TPAR60-2; SiO2/Al2O3 ratio of 60; (C) 170TPAR-30; SiO2/Al2O3 ratio of 30…………….....137
Figure 4-14. SEM images of the samples synthesized with various
SiO2/Al2O3 molar ratios. (A) 170TPAS-2; synthesized in the
absence of aluminum; (B) 170TPAR60-2; SiO2/Al2O3 ratio of
60; (C) 170TPAR-30; SiO2/Al2O3 ratio of 30…………….....138
Figure 4-15. TEM images of the samples synthesized with various
SiO2/Al2O3molar ratios. (A) 170TPAS-2; synthesized in the
absence of aluminum; (B) 170TPAR60-2; SiO2/Al2O3 ratio of
60; (C) 170TPAR-30; SiO2/Al2O3 ratio of 30…………….....139
參考文獻 REFERENCE
Becker, K. H., W. Fricke, J. Lobel and U. Schurath, “Formation, Transport and Control of Photochemical Oxidants in Air Pollution by Photochemical Oxidants”, Ecological Studies 52, (1985)
Burtin, P., Brunelle, J. P., Pijolat, M. and Soustelle, M. “Influence of Surface Area and Additives on the Thermal Stability of Transition Alumina Catalyst Supports. I: Kinetic Data”, Appl. Catal. 34, 225-238 (1987)
Burch, R. and Millington, P. J. “Selective Reduction of Nitrogen Oxides by Hydrocarbon under Lean-Burn Conditions Using Supported Platinum Group Metal Catalysts”, Catal. Tod. 26, 185-206 (1995)
Burch, R. and Ottery, D. “The Selective Reduction of Nitrogen Oxides Byhigher Hydrocarbons on Pt Catalyst under Lean-Burn Conditions”, Appl. Catal. B 13, 105-111 (1997)
Burch, R. Fornasiero, P. and Southward, B. W. L. “An Investigation into the Reactivity, Deactivity, and in Situ Regeneration of Pt-Based Catalysts for the Selective Reduction of NOx under Lean-Burn Conditions”, J. Catal. 182, 234-243 (1999)
Coburn R. F, Forster R. E., Kone P. B., “ Considerations of the Physiological Variables that Determine the Blood Carboxyhemoglobin Concentration in Man”, J. of Clinical Investigations 44, 1899-1910 (1965)
Chiron, M. “Effects of Motor Pollution on Health”, Stud. Surf. Sci. Catal. 30, 1-10 (1987)
Cho, B. K., Shanks, B. H., and Bailey, J. E., “Kinetics of NO Reduction by CO over Supported Rhodium Catalysts: Isotopic Cycling Experiment”, J. Catal. 115, 486-499 (1989)
Crucq, A. (Editor), “The Preparation of Molecular Sieve”, Stud. Surf. Sci. Catal. 71,125-290 (1991)
Ciambelli, P., Corbo, P., Migliardini, F. “Potentialities and Limitations of Lean-De-NOx Catalysts in Reducing Automotive Exhaust Emissions”, Catal. Tod. 59, 279-286 (2000)
Davies, B. E., “Plant Available Lead and Other Metals in British Garden Soils”, Science if Total Environment 9, 243-262 (1978)
Diwell, A. F., Rajaram, R. R., Shaw, H. A. and Truex, T. J. “”Stud. Surf. Sci. Catal. 71, 139- (1991)
Fornasiero, P., Di Monte, R., Rao, G. R., Kaspaar, J., Meriani, S., Trovarelli A. and Graziani, M. “Rh-Loaded CeO2-ZrO2 Solid Solutions as Highly Efficient Oxygen Exchangers: Dependence of the Reduction Behavior and the Oxygen Storage Capacity on the Structual Properties”, J. Catal. 151, 168-177 (1995)
Fujii, Jun, Suzuki, Kimura, and Kazuo, “Catalyst for cleaning exhaust gas with alumina, ceria, zirconia, nickel oxide, alkaline earth oxide, and noble metal catalyst, and method for preparing”, U. S. Patent 5,492,878 (1996)
Fridell, E., Skoglundh, M., Johansson, S., Westerberg, B., Torncrona A., and Smedler, G., ”Investigation of NOx Storage Catalysts”, Stud. Surf. Sci. Catal. 116, 537-547 (1998)
Feeley et al., “Method for Using a Regenerable Catalyzed Trap”, U. S. Pattern 5,792,436 (1998)
Golunski, S. E., Hatcher, Helen A., Rajaram, Raj R. and Truex, Timothy J. “Origins of Low-Temperature Three-Way Activity in Pt/CeO2”, Applied Catalysis B 5, 367-376 (1995)
Hindin, S. G. Engelhard Mineral and Chemical Co., U. S. Patent 3,870,455 (1973)
Hegedus, L. L., Summers, J. C., Schlatter, J. C. and Baron, K. “Poisson-Resistant Catalysts for the Simultaneous Control of Hydrocarbon, Carbon Monoxide, and Nitrogen Oxide Emission, J. Catal. 56, 321-335 (1979)
Herz, R. K., “Dynamic Behavior of Automotive Catalysts. 1. Catalyst Oxidation and Reduction”, Ind. Eng. Chem. Prod. Res. Dev. 20, 451-457 (1981)
Harrison, B., Diwell, A. F., Hallett, C., Platinum Metals Rev. 32, 73 (1988)
Engler, B. H., Leyer, J., Lox, E. S., and Ostgathe, K., Stud. Surf. Sci. Catal. 96, 529- (1996)
Hepburn, “Lean-Burn NOx Catalyst/NOx Trap System”, U. S. Patent 5,727,385 (1998)
Hohne, Turgen, Strnhlau, Wolfgang, Lox, Egbert, Kreuzer, Thomas, “Process for the Operation of a Nitrogen Oxides Storage Catalyst”, U. S. Pattern 6,171,565 (2001)
Impens, R. “Automotive Traffic Risks for the Environment”, Stud. Surf. Sci. Catal. 30, 11-29 (1987)
Inui, T., Iwamoto, S., Matsuba, K., Tanaka, Y., Yoshida, T. “On the Vital Roles of Zeolitic Matrix in Catalysts for De-NOx Reactions under Conditions Similar to Diesel Engine Exhaust”, Catal. Tod. 26, 23-32 (1995)
Iizuka et al., “Exhaust Gas Purifying Method and Catalyst Used Therefor”, U. S. Patent 6,045,764 (2000)
Kim, G., Ind. Eng. Chem. Prod. Res. and Dev. (21), 267- (1982)
Koberstein, E., and Wannemacher, G., “The A/F Window with Three-Way Catalysts Kinetic and Surface Investigations”, Stud. Surf. Sci. Catal. 30, 155-172 (1987)
Kimura, M., Masakani, O., Isogai, A. “Alumina Catalyst Support”, U. S. Patent 4,722,920 (1988)
Muramoto, “Process for Producing Exhaust-Gases-Purifying Catalyst”, U. S. Patent 5,547,913 (1996)
Matsumoto, S. “DeNOx Catalyst for Automotive Lean-Burn Engine”, Catal. Tod. 29, 43-45 (1996)
Needleman H. L., Leviton L. A., Bellinger D., “Lead Associated Intellectual Deficit”, New England J. Med., 306-367 (1982)
Nunan, J. G., Robota, H. J., Cohn, M. J. and Bradley, S. A., Stud. Surf. Sci. Catal. 71, 221- (1991)
Nunan, J. G., Cohn, M. J. and Donner, J. T. “Effect of High Temperature Lean Aging on the Performance of Pt, Rh/CeO2 and Rare Earth/Alkaline Earth Doped Pt, Rh/CeO2 Catalysts” Catal. Tod. 14, 277-291 (1992)
Ogawa, Hiroshi, Ito, Yukio, Nakano, Masao, Itabashi, Keiji, “Adsorbent for Ethylene, Method for Adsorbing and Removing Ethylene and Method for Purifying an Exhaust Gas”, U. S. Patent 6,103,208 (2000)
Oh, S. H. and Eickel, C. C. “Effects of Cerium Addition on CO Oxidation Kinetics over Alumina-Supported Rhodium Catalysts”, J. Catal. 112, 543-555 (1988)
Pearce, T. C., “Vehicle Emission at High Speed in Highway Pollution”, Second Intern. Symp. 7-11, 48-57 (1986)
Sergeys, F. J., Maselli, J. M., and Ernest, M. V., Grace, W. R., Co., U. S. Patent 3,903, 020 (1974)
Schaper, H., and Van Reijen, L. L., in Proceeding, 5th International Roundtable Conference on Sintering Portoroz, Yugoslavia, Elsevier, 173-176 (1982)
Schaper, H., Doesburg, E. B. M., and Van Reijen, L. L., “The Influence of Lanthanum Oxide on the Thermal Stability of Gamma Aluminum Catalyst Support”, Appl. Catal. 7, 211-220 (1983)
Sanchez, M. G. and Gazquez, J. L. “Oxygen Vacancy Model in Strong Metal-Support Interaction”, J. Catal. 104, 120-135 (1987)
Schwartz, S. M. and Schmidt, L. D. “Reactivity and Microstructure of Rh and Rh-Ce in NO+CO”, J. Catal. 148, 22-29 (1994)
Shimizu, K., Shibata, J., Yoshida, H., Satsuma A., and Hattori, T., “Silver-Alumina Catalysts for Selective Reduction of NO by Higher Hydrocarbons: Structure of Active Sites and Reaction Mechanism”, Appl. Catal. B 30, 151-162 (2001)
Tin, T., Zhou, Y., Mains, G. J., and Whiter, J. M., “Infrared and X-ray Photoelectron Spectroscopy Study of CO and CO2 on Pt/CeO2”, J. Phys. Chem. 91, 5931-5937 (1987)
Takeshima et al., “Device for Detecting Deterioration of NO.sub.x Absorbent”, U. S. Pattern 5,713,199 (1998)
Tu, Yau-Jen and Chen, Yu-Wen “Effects of Alkaline-Earth Oxide Additives on Silica-Supported Copper Catalysts in Ethanol Dehydrogenation”, Ind. Eng. Chem. Res. 37, 2618-2622 (1998)
Tsuji, “Catalyst for Purifying Exhaust Gas and Process for Producing the same”, U. S. Patent 6,251,820 (2001)
Xie, Y., Qian, M., and Tang, Y., Sci. Sin. Ser. B 6, 27, 549 (1984)
Yao, Y. Y. –F., “The Oxidation of CO and Hydrocarbons over Noble Metal Catalysts”, J. Catal. 87, 152-162 (1984)
Yao, Y. F., Yu and J. T. Kummer, “Low-Concentration Supported Precious Metal Catalysis Prepared by Thermal Transport”, J. Catal. 106, 307-312 (1987)
Yoshida, T., Murachi, M. and Tsuji, S. “Method of Producing Heat-Resistant Catalyst Support”, U. S. Patent 6,083,868 (2000)
REFERENCE
Argauer, R. J., Landolt, G. P. U. S. Patent 3,702,886 (1972)
Asefa, T., Maclachlan, M. J., Coombs, N., and Ozin, G. A. “Periodic Mesoporous Organosilicas with Organic Groups inside the Channel Walls”, Nature 402, 867-871 (1999)
Corma, A., “Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions”, Chem. Rev. 95, 559-614 (1995)
Corma, A. “From Microporous to Mesoporous Molecular Sieve Materials and Their in Catalysis”, Chem. Rev. 97, 2373-2419 (1997)
Camblor, M. A., Corma, A., Martinez, A., Martinez Soria, V., Valencia, S. “Mild Hydrocracking of Vacuum Gasoil over NiMo-Beta Zeolite Catalysts: The Role of the Location of the NiMo Phase and the Crystallite Size of the Zeolite”, J. Catal. 179, 537-547 (1998)
Castagnola, N. B. and Dutta, P. K. “Nanometer-Sized Zeolite X Crystal: Use as Photochemical Hosts”, J. Phys. Chem. B. 102, 1696-1702 (1998)
Chen, N. Y. and Degnan, T. F. Chem. Eng. Prog. 84 (2), 32 (1988)
Claus J. H. Jacobsen, Claus Madsen, Ton V. W. Janssens, Hans J. Jakobsen, and Jorgen Skibsted”, Zeolites by Confined Space Synthesis-Characterization of the Acid Sites in Nanosized ZSM-5 by Ammonia Desorption and 27Al/29Si-MAS NMR Spectroscopy”, Micropor. Mesopor. Mater. 39, 393-401 (2000)
Derouane, E. G. “Shape Selectivity in Catalysis by Zeolites : The Nest Effect”., J. Catal. 100, 541-544 (1986)
Hou, L. Y., Sand, L. B., Thompson, R. W., in: Y. Murakami, A. Iijima, J. W. Ward (Eds.), New Developments in Zeolite Science Technology, Stud. Surf. Sci. Cat. 28, 239 (1986)
Hegedus, L. L., Aris, R., Bell, A. T., Boudart, M., Chen, N. Y., Gates, B. C., Haag, W. O., Somorjai, G. A. and Wei, J. Catal. Design Progress and Perspectives, John Wiley and Sons, New York, Ch. 5 and 6 (1987)
Hayburst, D. T., Evanina, G., Hunag, F. J. Chem. 64, 295 (1990)
Huang, L. M., Wang, Z. B., Sun, J. Y., Miao, L., Li, Q. Z., Yan, Y. and Zhao, D. Y.”, Fabrocation of Ordered Porous Structures by Self- Assembly of Zeolite Nanocrystals”, J. Am. Chem. Soc. 122, 3530-3531 (2000)
Jones, C. W., Tsuji, K. and Davis, M. E. “Organic-Functionalized Molecular Sieves as Shape-Selective Catalysts”, Natures 393, 52-54 (1998)
Lowe, B. M., Nee, J. R., Casci, D. J. L. “Crystallization of “Inorganic” ZSM-5 in the System K2O-Al2O3-SiO2-H2O”, Zeolites 14, 610-619 (1994)
Lim, M. H., C. F. Balnford and A. Stein, “Synthesis of Order Microporous Silicates with Organosul for Surface Groups and Their Applications as Solid Acid Catalyst”, Chem. Mater. 10, 467-470 (1998)
Persson, A. E., Schoeman, B. J., Sterte, J. and Otterstedt, J. –E. “The Synthesis of Discrete Colloidal Particles of TPA-Silicalite-1”, Zeolite 14, 557-567 (1994)
Persson, A. E., Schoeman, B. J., Sterte, J. and Otterstedt, J. –E. “Synthesis of Stable Suspensions of Discrete Colloidal Zeolite (Na, TPA) ZSM-5 Crystals”, Zeolites 15, 611-619 (1995)
Regev, O., Cohen, Y., Kehat, E., and Talmon, Y., “Precursors of the Zeolite ZSM-5 Imaged by Cryo-TEM and Analyzed by SAXS”, Zeolites 14, 314-319 (1994)
Reding, G., Maurer, T., Bettina Kraushaar-Czarnetzki, “Comparing Synthesis Routes to Nano-Crystalline Zeolite ZSM-5”, Micropor. Mesopor. Mater. 57, 83-92 (2003)
Verduijn, J. P. WO 97/03019, to Exxon Chemical Patents Inc., (1997)
Feoktistova, N. N., Zhdanov, S. P., Lutz, W. K. and Bulow, M.,””, Zeolites 9, 136- (1989)
Van Grieken, R., Sotelo, J. L., Menedez, J. M., Melevo, J. A. “Anomalous Crystallization Mechanism in the Synthesis of Nanocrystalline ZSM-5”, Micropor. Mesopor. Mater. 39, 135-147 (2000)
Wang, H., Wang Z., and Yan, Y. “Colloidal Suspensions of Template-Removes Zeolite Nanocrystal”, Chem. Comm. 2333-2334 (2000)
Zhu, G. S., Qiu, S. L., Yu, J. H., Sakamoto, Y., Xiao, F. S., Xu, R. R. and Terasaki, O. “Synthesis and Characterization of High-Quality Zeolite LTA and FAU Single Nanocrystals”, Chem. Mater. 10, 1483-1486 (1998)
Zhang, W., Bao, X., Guo, X., and Wang, X., “A High-Resolution Solid-State NMR Study on Nano-Structured HZSM-5 Zeolite”, Catalysis Letters 60, 89-94 (1999)
Zhang, W., Smirniotis, P. G. “Effect of Zeolite Structure and Acidityon the Product Selectivity and Reaction Mechanism for n-Octane Hydroisomerization and Hydrocracking”, J. Catal. 182, 400-416 (1999)
Zhao, B. J., Davis, S. A., Mendelson, N. H. and Mann, S. “Bacterial Templating of Zeolite Fibers with Hierarchical Structure”, Chem. Commun. 781-782 (2000)
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2003-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明