博碩士論文 90324030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:3.138.124.61
姓名 黃祥羚(Hsiang-Ling Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 高速旋轉填充床於分離乙醇-水共沸混合物之研究
相關論文
★ 高速旋轉填充床應用於分離異丙醇-水共沸混合物之研究★ 水-醋酸-對位二甲苯-乙酸甲酯-乙酸異丁酯之汽液平衡
★ 進料不純物作為系統內自體共沸劑模擬回收醋酸之醋酸脫水程序及其效益分析★ 單電解水溶液離子活性係數與溫度之關係
★ 在超臨界CO2之溶解度量測及Poynting factor之探討★ 矽酸乙酯與乙醇在不同壓力之相平衡
★ 水-酚-對甲酚-鄰甲酚四成份系統之液液相平衡研究★ 單電解質水溶液離子活性係數之探討
★ 高速旋轉填充床於分離共沸混合物之研究★ 乙烯在甲苯、冰片烯及COC混合溶液之溶解度量測與關聯
★ 間氯酚與對氯酚之固液相平衡研究★ 二價單電解質水溶液之個別離子活性係數 量測與關聯
★ 雙參數個別離子活性係數模式應用於雙電解質水溶液蒸汽壓之估算★ β-胡蘿蔔素-二丁基羥基甲苯於超臨界二氧化碳之溶解度量測與關聯
★ 共溶劑對β-胡蘿蔔素於超臨界二氧化碳溶解度影響之研究★ 氫氣在甲苯、冰片烯及COC混合溶液 之溶解度量測與關聯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統醇類混合物的蒸餾分離程序中,最難處理的即是共沸點的存在。本研究以加鹽至共沸混合物中,以改變其相對揮發度進而達到分離共沸混合物的目的。此方法的優點在於所使用的鹽類便宜,回收容易,並且不需改變操作的壓力,因此可節省投資資本及能源。
  本論文研究乙醇-水系統,實驗結果發現只要當液體進料之乙醇莫耳濃度高於54%時,不論進料之汽液體積比及汽體進料之乙醇莫耳濃度為何,皆能有效提升乙醇的成分。以乙醇-水系統加鹽及不加鹽來比較,在相同的汽、液體乙醇莫耳組成下,添加醋酸鉀莫耳百分比4.04%比未添加醋酸鉀之結果,發現隨著液體比例的增加而提升的乙醇莫耳百分比在1.5%到4%之間。
本論文討論乙醇-水加鹽系統,利用旋轉填充床,嘗試分離此共沸混合物。研究結果發現只要所加入的鹽類恰當且夠量的話,確實能有效分離共沸混合物,且可得到很純的蒸餾液。結果發現醋酸鉀只需添加莫耳百分比6.35%就能分離乙醇-水共沸混合物,隨著增加醋酸鉀的量,旋轉床出口之汽體乙醇莫耳組成可從83.16%提高至94%。進料之汽液體積比1:1、2:3、1:2及1:3中,隨著液體的比例提高結果越好,又以1:2及1:3結果最為顯著。
關鍵字(中) ★ 旋轉填充 床
★ 乙醇
關鍵字(英) ★ rotating packed bed
★ ethanol
★ Higee
論文目次 目 錄
摘要……………………………………………………………………..Ⅰ
目錄……………………………………………………………………..Ⅱ
表目錄…………………………………………………………………..Ⅳ
圖目錄…………………………………………………………………..Ⅴ
第一章 緒 論…………………………………………………………..1
1-1 前言……………………………………………………………….1
1-2 研究目的………………………………………………………….1
第二章 文獻回顧………………………………………………………..3
2-1共沸物的定義及種類……………………………………………..3
2-2傳統蒸餾塔中之分離方法………………………………………..3
2-3鹽類(電解質)在混合溶劑中的效應……………………………6
2-3-1鹽效應原理……………………………………………...6
2-3-2鹽對相平衡中的影響…………………………………...7
2-3-3汽液相平衡中的鹽效應原理…………………………...8
2-3-4加鹽蒸餾…………………………………………………9
2-3-5加鹽萃取蒸餾………………………………………….9
2-4高速旋轉填充床分離技術…………………………… ………10
2-4-1高速旋轉填充床分離技術之構造與原理………………11
2-4-2高速旋轉填充床分離技術之流力特性質傳理論………13
2-4-3高速旋轉填充床分離技術之發展………………………15
2-4-4 高速旋轉填充床分離技術之應用…………………… 17
2-4-4-1 蒸餾……………………………………………17
2-4-4-2 吸收…….……………………………………18
2-4-4-3 氣提……….…………………………………19
2-4-4-4 反應…….……………………………………19
2-4-4-5 合成奈米粉體…………………………………20
2-4-4-6 其他….………………………………………21
2-4-5 高速旋轉填充床之加鹽萃取蒸餾……………………...22
2-4-6高速旋轉填充床之加鹽蒸餾…..……………………...22
第三章 實驗方法………………………………………………………24
3-1實驗儀器…………………………………………………………24
3-2實驗藥品…………………………………………………………25
3-3樣品分析之儀器…………………………………………………25
3-4實驗步驟…………………………………………………………25
3-4-1準備工作………………………………………………….25
3-4-2正式實驗………………………………………………….25
第四章 實驗結果與討論………………………………………………27
4-1實驗結果…………………………………………………………27
4-2加鹽蒸餾實驗結果討論…………………………………………27
4-3乙醇-水蒸餾實驗結果討論……………………………………...30
4-4乙醇-水與乙醇-水-醋酸鉀蒸餾實驗結果比較…………………32
4-5高速旋轉填充床之蒸餾操作的改善……………………………32
第五章 結 論…………………………………………………………34
附表……………………………………………………………………..35
附圖……………………………………………………………………..44
參考文獻………………………………………………………………..64
表目錄
Tabe 1. Compared of rotating packed bed and distillation tower………35
Tabe 2. Experimental data of rotating packed bed system used to separate ethanol-water azeotrope-1……………………………………...36
Tabe 3. Experimental data of rotating packed bed system used to separate ethanol-water azeotrope-2……………………………………...39
Tabe 4. Experimental data of rotating packed bed system used to separate ethanol-water azeotrope-3……………………………………...40
Tabe 5. Experimental data of rotating packed bed system used to separate ethanol-water azeotrope-4……………………………………...41
Tabe 6. Experimental data of rotating packed bed system used to separate ethanol-water azeotrope-5……………………………………...43
圖目錄
Figure 1. Sherwood液泛修正圖(Sherwood et al., 1938)………………44
Figure 2. Extractive distillation process………………………………...45
Figure 3. Azeotropic distillation used to separate ethanol and water system……………………………………………………….46
Figure 4. Salt in effect of methanol(1)-ethanol(2) VLE………………...47
Figure 5. Vapor-Liquid equilibrium data at atmospheric pressure for the ethanol (1)- water (2)-potassium acetate system……………48
Figure 6. Process of distillation with salt……………………………….49
Figure 7. Rotating packed bed…………………………………………..50
Figure 8. Three types of liquid flow in the rotating packed bed………..51
Figure 9. Experimental Setup…………………………………………...52
Figure 10. Pseudo-diagram of liquid distribution in rotating packed bed at low liquid quality……………………………………………53
Figure 11. Pseudo-diagram of liquid distribution in rotating packed bed at high liquid quality…………………………………………...53
Figure 12. Effect of rotor speed on the composition of outlet ethanol….54
Figure 13. Effect of volume ratio of vapor to liquid feed at potassium acetate 4.04%………………………………………………..55
Figure 14. Effect of volume ratio of vapor to liquid feed at potassium acetate 6.35%………………………………………………..55
Figure 15. Effect of volume ratio of vapor to liquid feed at potassium acetate 8.48%………………………………………………..56
Figure 16. Effect of volume ratio of vapor to liquid feed at potassium acetate 10.35%………………………………………………56
Figure 17. Effect of volume ratio of vapor to liquid feed at potassium acetate 12.51%………………………………………………57
Figure 18. Effect of volume ratio of vapor to liquid feed at potassium acetate 15.51%………………………………………………57
Figure 19. Effect of mole fraction of potassium acetate on the different volume ratios of vapor to liquid feed……………………...58
Figure 20. Effect of liquid feed composition on different volume ratios of vapor to liquid feed at potassium acetate 8.35%……………59
Figure 21. Effect of liquid feed composition on different volume ratios of vapor to liquid feed at potassium acetate 12.51%…………..60
Figure 22. Effect of purity at potassium acetate 12.51% on the different volume ratios of vapor to liquid feed………………………..61
Figure 23. Effect of purity at potassium acetate 14.48% on the different volume ratios of vapor to liquid feed………………………..62
Figure 24. Effect of liquid feed composition on the composition of vapor product at 5 min………..…………………………………...63
參考文獻 參考文獻
Burns, J. R. and Ramshaw, C. “Process Intensification: Visual Study of Liquid Maldistribution in Rotating Packed Beds,” Chem. Eng. Sci., 1996, 51, 1347
Chen, J. F., Wang, Y. H., Guo, F., Wang, X. M. and Zheng, C. “Synthesis of Nanopaticles with Novel Technology:High-Gravity Reavtive Precipitation,” Ind. Eng. Chem. Res., 2000, 39, 948
Fowler R. “Higee-a Status Report,” Chem. Engr., January, 35, 1989.
Green, A., Johnson, B., and John, A., “Process Intensification Magnifies Profits,” Chem. Eng., December, 1999, 66
Guo, K, Guo, F., Feng, Y., Chen, J., Zheng, C. and Gardner, N. C. “Synchronous Visual and RTD Study on Liquid Flow in Rotating Packed-bed Contactor,” Chem. Eng. Sci., 2000, 55, 1699
Haw, J. “Mass Transfer of Centrifugal Enhanced Polymer Devolatization by Using Foam Metal Packed Bed,” M.S. Thesis, Case Western Reserve University, Cleveland, USA. 1995.
Kelleher, T. and Fair, J. R. “Distillation Studies in a High-Gravity Contactor,” Ind. Eng. Chem. Res., 1996, 35, 4646-4655.
Liu, H. S., Lin, C. C., Wu, S. C. and Hsu, H. W. “Characteristics of a Rotating Packed Bed,” Ind. Eng. Chem. Res., 1996, 35, 3590-3596.
Matin, C. L. and Martelli M. “Preliminary Distillation Mass Transfer and Pressure Drop Results Using a Pilot Plant Scale High Gravity Contacting Unit,” AIChE Spring National Meeting, New Orleans, LA, USA, March 29-April 2, 1992.
Meranda, D. and Furter, W. F. “Vapor-Liquid Equilibrium Data for System: Ethanol-Water Saturated with Potassium Acetate,” Can. J. Chem. Eng. 1966, 44, 298-300
Meranda, D.; Furter, W. F. “Vapor-Liquid Equilibrium in Alcohol-Water Systems Containing Dissolved Halide Salt and Salt Mixtures,” J. Chem. Eng. 1972, 18, 111-116
Munjal, S.; Dudukovic, M. P.; Ramachandran, P. A. “Mass Transfer in Rotating Packed Beds: I. Development of Gas-Liquid and Liquid- Solid Mass-Transfer Coefficients,” Chem. Eng. Sci. 1989, 44, 2245-2268
Ramshaw, C. and Mallinson, R. H. “Mass Transfer Process,” United States Patent 4383255, 1981.
Ramshaw, C. “HIGEE DISTILLATION-an Example of Process Intensification,” Chem. Engr., February, 13, 1983.
Ramshaw, C. “The Opportunities for Exploiting Centrifugal Fields,” Heat Recovery Systems & CHP, 1993, 13, 493
Sherwood, T. K., Shipley, G. H. and Holloway, F. A. L. “Flooding Velocities in Packed Columns,” Ind. Eng. Chem., 1938, 30, 765
Short H. “New Mass-Transfer Find is a Matter of Gravity,” Chem. Eng., February, 23, 1983.
Singh, S. P. “Air Stripping of Volatile Organic Compounds from Groundwater : an Evaluation of a Centrifugal Vapor-Liquid Contactor,” Ph.D. Dissertation, University of Tennessee, Knoxville, USA., 1989.
Singh, S. P.; Wilson, J. H., Counce, R. M., Villiers-Fisher, J.F., Jennings, H. L., Lucero, A. J., Reed, G. D., Ashworth, R. A. and Elliott, M. G. “Removal of Volatile Organic Compounds from Groundwater Using a Rotating Air Stripper,” Ind. Eng. Chem. Res., 1992, 31, 574-580
Smelser, S. C., Bucklin, R. W., Ramanathan, R. V., Lamprecht, D. G. and Fowler, R. “Higee Technology Development Program - Phase I Topical Report,” Gas Research Institute Report No. GRI-89/002, Chicago, Illinois, 1988.
Tung, T. H. and Mah, R. S. H. “Modeling Liquid Mass Transfer in Higee Separation Process,” Chem. Eng. Commun., 1985, 39, 16, 147-153
舒芳安, 王聖潔, “萃取蒸餾程序之應用,” 觸媒與製程, 1995, 4, 3, 83-90
簡棄非, 鄧先和, 鄧頌九, “超重力旋轉床中的傳質研究,” 化工進展, 1996, 6, 6
郭鍇, 柳松年, 陳建峰, 鄭沖, “超重力工程技術應用的新進展,” 化工進展, 1997, 1, 1
竺潔松, 郭鍇, 馮元鼎, 鄭沖, “旋轉床填料中的傳質及其模型化,” 高校化學工程學報, 1998, 12, 3, 219
雷志剛, 周榮琪, “溶劑加鹽對醇水汽液平衡的影響, 精細化工, 2000, 15, 5, 307-309.
林幸如, “高速旋轉填充床於分離共沸混合物之研究,” 碩士論文, 2000, 7
林佳璋, 何宗仁, 劉文宗, “超重力場蒸餾技術,” 化工技術, 2000, 8, 9, 163-171
傅吉全, “特殊體系的相平衡和精餾模擬計算,” January, 2002
錢義隆, “共沸蒸餾系統之設計與控制,” 化工, 2002, 49, 4, 59-69
施瑞虎, 楊慕震, 李嘉甄, 溫明璋, 葉孟智, “超重力反應合成奈米粉體技術,” 化工資訊,2003, 02, 30-35.
指導教授 李亮三(Liang-Sun Lee) 審核日期 2003-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明