博碩士論文 90344009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:3.145.71.240
姓名 陳仁德(JEN TE)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 微量銅添加對Sn 硬度影響之研究
(Study of Hardness on Sn(Cu) Alloys)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 焊錫接合技術對於現代電子工業是非常重要,由於鉛(Pb)具有毒性本質與考
慮對環境和人體健康的危害,所以無鉛焊錫必須取代有鉛焊錫,然而高強度機械
性質和優良潛變阻抗與熱老化性質對焊錫接合的可靠度是一個重要問題,但在另
一方面銀的價格在現在與未來會越來越貴,低價格錫銅合金對未來無鉛焊錫使用
是有利。然而鎳(Ni)和銅(Cu)的墊層常常被使用在晶片接合端奌與電路載板上接
奌金屬結構焊接,從機械破壞測試的破裂SEM 圖得知,靠近Ni 端的微結構(Sn
相與eutectic 結構)比靠近Cu 端的微結構的機械強度弱,但是我們還是不了解在
焊料微接奌在鎳(Ni)端和銅(Cu)端之間相對應硬度的相關性,所以本論文最主要
目的是研究Sn(Cu)合金微結構與硬之關聯性。
隨著不同固化冷卻速率與老化時間來研究Sn(Cu)合金中亞共晶與過共晶的
微結構,對於Sn(Cu)合金中亞共晶合金(Sn0.4Cu and Sn0.7Cu ),它的微結構主要
包含錫晶粒相與Sn(Cu)共晶結構,而Sn(Cu)共晶結構是由錫相與Cu6Sn5 化合物
相所組成,錫晶粒相主要出現在Sn0.7Cu 亞共晶結構,其原因應該是由於在非平
衡冷卻過程中所產生。此外可發現粗Cu6Sn5 化合物均勻存在Sn1.0Cu 微結構中,
而包含粗胖Cu6Sn5 化合物與Sn(Cu)共晶結構(由錫相與Cu6Sn5 化合物相所組成)
則存在Sn1.4Cu 和Sn2.1Cu 合金。隨著微量銅的添加,錫(銅)合金硬度會隨著增
加,當微量銅的添加到1.0 wt%時可使硬度達到最高值,但此時硬度易開始隨銅
含量增加而下降。
根據硬度測試結果,硬度與Cu6Sn5 化合物的粒徑大小和間距成反比,此時硬
度可由-經驗化公式表示為Ln
H = k3 1 或Rn
H = k4 1 ,從先前Sn1.0Cu 的實驗結果
顯示,可進一步公式化經驗方程式為 或 ,總結論我
們對錫銅合金找出一個經驗通式 和H = H =
H =
5.6 , n 1 (hyper - eutectic) 0.3
0.8
=
R
E 3.64 , n 1 (hypo- eutectic) 0.3
0.8
<
R
摘要(英) Solder jointing technology is very important for the modern electronic industry.
Due to Pb has a toxic nature and the environmental and health hazard concerns. So,
Pb-free solders are developed to replace SnPb. Yet, high strength mechanical
property, the superior creep resistance and thermal fatigue are the important issues for
the solder joint reliability. On the other hand, silver would be very costy in the
future. The low-cost Sn(Cu) alloys offer good advantages for the future Pb-free
solders. However, Cu and Ni are often used in the bond pads on the chip and broad
side for the current flip-chip interconnect structure. It has been reported that the
solder microstructure (Sn phase and eutectic structure) near the Ni side is weaker than
that near the Cu. But, we do not clearly understand the relation between solder joint
microstructure with hardness along Ni and Cu bond pad. So, the main objective of
this thesis is to study the correlation between the hardness and the microstructure of
Sn(Cu) alloys.
The microstructure of hyper-eutectic and hypo- eutectic of Sn(Cu) alloys are
investigated under different cooling rates and aging times. For the hypo-eutectic
Sn(Cu) alloys (Sn0.4Cu and Sn0.7Cu ), their microstructure mainly contain the
primary Sn grains and the eutectic structure. The eutectic structure is composed of
Sn phase and Cu6Sn5 compound phase. The major reason for the appearance of Sn
grains in the eutectic Sn0.7Cu should be due to the non-equilibrium cooling during
the solidification process of Sn0.7Cu alloy. Furthermore, for the Sn1.0Cu alloy,
round primary Cu6Sn5 particles was uniformly exhibited in Sn1.0Cu. For Sn1.4Cu
and Sn2.1Cu alloys, contain chunky Cu6Sn5 particles and eutectic structure of Sn and
Cu6Sn5 compound phase. It found that the hardness initially would increase with Cuadditives in Sn(Cu) alloys. As the Cu concentration reaches 1.0 wt%, the hardness
has a maximum value. Then, hardness started decreasing with Cu concentration.
According to our hardness testing results, the hardness is inversely proportional
to the Cu6Sn5 compound particle size and space. Thus, the hardness can be further
formulated as Rn
H = k4 1 and Ln
H = k3 1 , respectively. From Sn1.0Cu results
shown previously, it was further formula as empirical equation can be expressed as :
or , In conclusion, we formulate an the empirical
equation for regulating the hardness of Sn(Cu) solder alloys ;
and
or and .
關鍵字(中) ★ Sn(Cu)合金
★ 經驗通式
★ 硬度
★ Sn(Cu)共晶微結構
關鍵字(英) ★ Sn(Cu) alloys
★ hardness
★ microstructure
★ Hardness model
★ hyper-eutectic and hypo- eutectic
★ cooling rates
★ aging times
論文目次 Table of Contents
Abstract (Chinese)………………………………………………………I
Abstract (English)…………………………………..…………………III
Table of Contents………………………………………….……………V
Figure Captions……………………………………………...………VII
Table Lists……………………………………………………………XI
Chapter 1 Introduction……………….………………………………1
Chapter 2 Experiment Procedure……………………………......3
2-1 Pb-free solder alloys preparation…………..…………………………………3
2-2 Sample preparation……………………………………...……………………3
2-2-1 Different cooling rate.…………………………………………….........3
2-2-2 Different aging time……………………………………………………4
Chapter 3 Results and discussions………………...….…………..6
3-1 Microstructure characterization of Sn(Cu) alloys at various cooling rates…..
………………………………………………………………………………...6
3-2 Microstructure characterization of Sn(Cu) alloys at a constant cooling rate
0.5℃ s-1……………………………………..................................................10
3-3 Analysis of SnCu alloys on various cooling rates……………………….....17
3-4 Microstructure evolution of thermal aged SnCu alloys at 150 ℃……….....33
3-5 Analysis of SnCu alloys at 150 ℃ for various aging times …………...……33
3-6 Hardness model of Sn(Cu) alloys………………………………………..39
Chapter 4 Conclusion……………….………………………………....53
4-1 Conclusion…………………………………………………………………53
Chapter 5 Appendix…………………………………………………....55
5-1 Appendix…………………………………………………………...……..55
Reference……………………………………………………………….67
參考文獻 References
[1] S. W. Chen, C. A. Chang, J. Electron. Mater. 33(2004)1071.
[2] K. N. Tu, K. Zeng, Mater. Sci Eng, 34, 1-58(2001).
[3] Official journal the European Union, pp. L37/19-L37/23, 13.2. (2003).
[4] J.glazer, lnt. Mater. Rev, 40, 65-69 (1995).
[5] W. J. Plumbridge, C. R. Gagg, and S. Peter, J. Electron. Mater, 30,
1178-83(2001).
[6] J. W. Jang, A. P. De Silva, T. Y. Lee, J. K. Lee, and D. R. Frear. Appl. Phys. Lett,
79, 482-84(2001).
[7] K. J. Puttlitz and K. A. Stalter, Handbook of lead-Free Solder, Technology for
Microelectronic Assemblies, Marcel Dekker lnc, New York, NY,211(2004).
[8] C. Zhang, J. K. Lin, L. Li, Electronic Components and Technology Conference,
463-470(2001).
[9] D. R. Frear. Jang, J. K. Lin, C, Zhang, JOM, 55,28(2001).
[10] M. Abtew and G. Selvaduray, Mater, Sci, Eng, 27, 95(2000).
[11] S. J. Wang, C. Y. Liu, Electron. Mater,32(11),1303(2003).
[12] C. Y. Liu, S. J. Wang, J. Electron. Mater, 31(1), L1(2003)
[13] S. J. Wang, C. Y. Liu, Scripta. Materialia, 55, 347-350(2006)
[14] K. Zeng. K. N. Tu, Mater. Sci. Eng. R38, 55(2002).
[15] S. K. Kang, D. Y. Shih, D.Leonard, D. W. Henderson, T. Gosselin, S. Cho, Jin Yu,
W.K. Choi, JOM, 56(2004).
[16]Courtney, Thomas H, Mechanical behavior of materials, 2nd, 127-129 and
175-177.
[17]The National Technology Roadmap for Semiconductors. San Jose, CA:
Semiconductor Industry Association; 2003.
[18] K. N. Tu, Appl. Phys. 2003; 94:5452-5456.
[19] Brandenberg S, Yeh S. Surface Mount International Conference and Exposition,
SMI 98 Proceeding: 1998; p.337.
[20] Zeng K, Stierman R, Chiu TC, Edwards D, Ano K, Tu KN. J. Appl. Phys. 2005;
97: 024508.
[21] Lee TY, Tu KN. J. Appl. Phys. 2001; 90: 4502.
[22] Lee TY, Tu KN, Kuo SM, Frear DR. J. Appl. Phys. 2001; 89: 3189.
[23] Gan H, Tu KN. J. Appl. Phys. 2005; 97: 63514.
[24] H. B. Huntington, “Electromigration in Metals” in “Diffusion in Solids:Recent
Developments” ed. by A. S. Nowick and J. J. Burton, Academic Press, New
York (1979) , pp. 303-352.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2008-10-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明