博碩士論文 91324002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.119.118.216
姓名 吳旻珈(Ming-Chia Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用表面電漿共振生物感測器及單分子模型槽研究蛋白質在固/液及氣/液界面上之結構
(Studies of Protein Conformation at Solid/Liquid and Air/Liquid Interfaces by Surface Plasmon Resonance and Langmuir-Blodgett Trough)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本研究利用表面電漿共振生物感測器(SPR)測出角度的變化量,進而得到金膜上蛋白質構型的改變,再利用單分子模型槽(L-B Trough)、圓二色光譜儀(CD)與螢光光譜儀(Fluorescence)得到蛋白質更精確的結構藉以輔佐SPR的結果;實驗上利用溶菌酶(Lysozyme)與核醣核酸酶(Ribonuclease A)這兩種蛋白質,利用有無添加還原劑(i.e. DTT)與不同濃度變性劑(i.e. Urea與GuHCl)的環境下看蛋白質構形的改變。
SPR實驗利用Self-Assembly Monolayer(SAM)及表面活化的方法把蛋白質固定在金膜上,再通入還原劑與不同濃度的變性劑;在沒有添加還原劑的環境下,SPR角度變化量有一個正的趨勢,認為在只有變性劑下的蛋白質結構並沒有完全被破壞,變性劑只是吸附在蛋白質的表面,因變性劑的折射係數(refractive index)較緩衝溶液來的大,因此較高濃度的變性劑下得到較高的角度變化量;在有還原劑的環境下,SPR則是一個負的趨勢,因為雙硫鍵被打斷後,加入變性劑能穩定不穩定的去摺疊狀態,造成蛋白質結構變較鬆散,使得折射係數降低,進而得到一個負的趨勢。而在L-B trough的實驗中,所得到在氣/液界面上每分子所佔據的面積與平衡的表面壓,也可說明以上的現象。最後在輔以CD及Fluorescence能更清楚的知道影響SPR訊號主要是以蛋白質三級結構為主。
摘要(英) Abstract
Behaviors of proteins immobilized on a gold surface were investigated using a home-made biosensor utilizing surface plasmon resonance(SPR). In order to examine the possibility of the use of SPR for high sensitive, real-time and label-free monitoring of the protein conformation of unfolding and refolding process, the protein immobilized on a self-assembled monolayer (SAM) layer was analyzed. Specific structure was assigned to the changing surface plasmon resonance(SPR) signals of the immobilized proteins using Langmuir-Blodgett Trough(L-B Trough), Circular Dichroism(CD) and Fluorescence spectroscopies, which are established techniques for the conformational analysis of proteins.
For the oxidized proteins, from L-B trough, CD and fluorescence infer that the hydrophobic region was not exposed and retain most of the ordered secondary and tertiary structure. The denaturants(i.e. urea and guanidine hydrochloride) were bound to the protein at specifically hydrophobic sites, therefore SPR angle shift was increasing with concentration of denaturants.
The reducing agent affect the conformational changes of proteins in SPR signal, make a positive SPR angle shift. From L-B truogh experiments reveal a compact conformation and hydrophobic region exposed unobviously, therefore, protein film became compactly and increase the refractive index of protein layers. For the reduced proteins, the denaturants not only destroy the ordered secondary and tertiary structure but also stabilize the unfolded conformation, that would increase the thickness of the protein layers and decrease the refractive index of the protein layers, and therefore SPR angle shift was decreasing with the concentration of denaturants.
關鍵字(中) ★ 蛋白質摺疊與去摺疊
★ 單分子模型槽
★ 表面電漿共振
★ 蛋白質構型
關鍵字(英) ★ protein unfoldimg and refolding
★ Langmuir-Blodgett trough
★ surface plasmon resonance
★ protein conformation
論文目次 目錄
摘要 ……………………………………………………………………Ⅰ
Abstract ……………………………………………………………… Ⅱ
誌謝 ……………………………………………………………………Ⅲ
目錄 ……………………………………………………………………Ⅳ
第一章 緒論 ………………………………………………………… 1
第二章 文獻回顧
2-1 蛋白質介紹 …………………………………………………… 3
2-1-1 蛋白質的組成及結構…………………………………… 3
2-1-2 穩定蛋白質結構的作用力……………………………… 8
2-2 蛋白質的變性 ………………………………………………… 10
2-3 蛋白質介紹 …………………………………………………… 12
2-3-1 核醣核酸酶(Ribonuclease A;RNase A)介紹 ……… 12
2-3-2 溶菌酶(Lysozyme)介紹………………………………… 14
2-4 表面電漿共振生物感測器 …………………………………… 17
2-4-1 表面電漿共振生物感測器之光學系統………………… 17
2-4-2 表面電漿共振生物感測器應用在蛋白質構形之探討… 20
2-5 單分子模型槽 ………………………………………………… 22
2-5-1 蛋白質於氣/液界面上的吸附行為 …………………… 22
2-5-2 表面張力的定義與量測 ……………………………… 23
2-5-3 單分子層(monolayer) ………………………………… 26
2-5-3-1 氣/液界面之單分子層 ……………………………… 26
2-5-3-2 蛋白質單分子層 …………………………………… 27
2-5-3-3 氣/液界面單分子層行為 …………………………… 28
2-6 圓二色光譜儀 ………………………………………………… 31
2-6-1 圓二色光譜儀測量原理………………………………… 31
2-6-2 蛋白質或多胜肽的圓二色光譜 ………………………… 34
2-7 螢光光譜儀 …………………………………………………… 36
第三章 實驗部分
3-1 實驗藥品 ……………………………………………………… 38
3-2 實驗設備 ……………………………………………………… 39
3-3 實驗步驟 ……………………………………………………… 40
3-3-1 溶液配製 ……………………………………………… 40
3-3-1-1 緩衝溶液的配製 ……………………………………… 40
3-3-1-2 變性劑和/或還原劑溶液的配製 …………………… 40
3-3-1-3 蛋白質溶液的配製…………………………………… 40
3-3-1-4 晶片改質步驟 ……………………………………… 41
3-3-2 實驗量測 ……………………………………………… 42
3-3-2-1 表面電漿生物感測器………………………………… 42
3-3-2-2 單分子模型槽………………………………………… 43
3-3-2-3 圓二色光譜儀………………………………………… 45
3-3-2-4 螢光光譜儀…………………………………………… 45
第四章 結果與討論
4-1 表面電漿共振生物感測器實驗………………………………… 46
4-1-1 蛋白質與溶液的效應 ………………………………… 48
4-1-2 變性劑對固定化蛋白質構形的影響 ………………… 50
4-1-3 固定化蛋白質的復性…………………………………… 55
4-2 單分子模型槽實驗……………………………………………… 58
4-2-1 蛋白質單分子層經不同濃度變性劑和/或還原劑前處理後於氣/液界面上每分子佔據面積………………………… 58
4-2-2 蛋白質單分子層經不同濃度變性劑和/或還原劑前處理後在氣/液界面上之表面壓力與時間的等溫線…………… 70
4-2-2-1 經變性後的RNase A單分子層在氣/液界面上的平衡表面壓…………………………………………………… 78
4-2-2-2 經變性後的Lysozyme單分子層在氣/液界面上的平衡表面壓………………………………………………… 80
4-3 圓二色光譜儀實驗……………………………………………… 82
4-3-1 利用圓二色光譜儀量測RNase A的結構變化………… 82
4-3-2 利用圓二色光譜儀量測Lysozyme的結構變化 ……… 85
4-4 螢光光譜儀實驗………………………………………………… 88
4-4-1 經不同濃度變性劑和/或還原劑處理後的RNase A螢光變化量 ……………………………………………………… 88
4-4-2 經不同濃度變性劑和/或還原劑處理後的Lysozyme螢光變化量 ……………………………………………………… 93
第五章 結論………………………………………………………… 97
參考文獻……………………………………………………………… 99
參考文獻 參考文獻
1. Kelly, S. M. and N. C. Price, “The application of circular dichroism to studies of protein folding and unfolding.” Biochim. Biophys. Acta., 1338, 161-185 (1997)
2. Denisov, V. P. , B. H. Jonsson, B. Halle, “Hydration of denatured and molten globule proteins.” Nature, 6, 253-260 (1999)
3. Eliezer, D., P. A. Jennings, P. E. Wright, S. Doniach, K. O. Hodgson, and H. Tsuruta, “The radius of gyration of an apomyoglobin folding intermediate.” Science, 270, 487-488 (1995)
4. Sota, H. and Y. Hasegawa, “Detection of conformational changes in an immobilized protein using surface plasmon resonance.” Anal. Chem. 270, 2019-2024 (1998)
5. Donohue, M. D. and G. L. Aranovich, “Classification of Gibbs adsorption isotherm”, Advances in Colloid and Interaface Science, 77, 137-152 (1998)
6. Georgiou, G. and E. D. Bernardez-Clerk, “Protein Refolding”, p.1-49 American Chemical Society (1991)
7. McKee, T., “Peptide and protein”, Biochemistry, Wm. C. Brown Publishers, 78-116 (1996)
8. Carrett, R. H.and C. M. Grisham,. Biochemistry. Saunders College Publishing. (1999).
9. Armstrong, F. B. Biochemistry. Oxford, (1983)
10. Darby, N. J., and T. E. Creighton, Protein structure. IRL Press at Oxford University Press. (1993)
11. Bailey, P. D. An introduction to peptide chemistry. John Wiley & Sons, Ltd., 1990.
12. 趙世彬、鄒煦杕、蔡東璣、陳河吉、周大中、李文齡 生物化學. 藝軒圖書出版社. (1998)
13. 董有蘭 化學與生命 國立編譯館. (1999)
14. 吳偉崧,球蛋白質吸附於自組吸附性單分子膜之吸附熱力分析,碩士論文,國立陽明大學醫學工程研究所 (2000)
15. Lehninger, A. L., D. L Nelson, M. M. Cox, Principles of Biochemistry, Second Edition, New York, 1993.
16. Neurath, H., J. P. Greenstein, F. W. Putnam, J. O. Erickson, “Thechemistry of protein denaturation”, Chemical Reviews, 32, 157-265 (1943)
17. Matsubara, M., D. Nohara, T. Sakai, “Difference between guanidinium chloride and urea as denaturants of globular protein: The possibility of application to improve refolding process.” Chem. Pharm. Bull., 40, 550-552 (1992)
18. Anfinsen, C. B., “Principles that govern the folding of protein chains”, Science, 181, 223-230 (1973)
19. Oxender, D. L. and C. F. Fox , Protein engineering, Alan R. Liss, Inc., New York (1987)
20. Santoro, J., C. Gonzalez, , M. Bruix , J. L. Neira , J. L. Nieto , J. Herranz, M. Rico , “High-resolution three-dimensional structure of Ribonuclease A in solution by nuclear magnetic resonance spectroscopy”, J. Mol. Biol., 229, 722-734 (1993)
21. Richards, F. M. and H.W. Wyckoff, in: The Enzymes, p.647-, Academic Press, New York(1971)
22. NCBI網站:http://www.ncbi.nlm.nih.gov/
23. Blake, C. C. F., D. F. Koenig , G. A. Mair, A. C. T. North, D. C. Phillips, V. R.Sarma "Structure of hen egg-white lysozyme." Nature, 22, 757-761, (1965)
24. Osserman, E. F., R. E. Canfield, S. Beychok "Sections 3: biological and clinical studies", in Lysozyme. Osserman, E. F., R. E. Canfield, S. Beychok, (Eds). Academic press. (1974)
25. Berges, H., E. Kassah, D. Conte, E. Adjadj, C. Houee-Levin ”Ab-Initio calculations on arginine-disulfide complexes modeling the one-electron reduction of lysozyme. Comparison to an experimental reinvestigation.” J. Phys. Chem., 101, 7809-7817 (1997)
26. Rothwarf, D. M., and H. A. Scheraga “Role of non-native aromatic and hydrophobic interaction in the folding of hen egg white lysozyme.” Biochemistry, 35, 13797-13807 (1996)
27. Raford, S. E., C. M. Dobson, P. A. Evans “The folding of hen lysozyme involves partially structure intermediates and multiple pathways.” Nature, 358, 302-307 (1992)
28. van den B. Berg, E. W. Chung, C. V. Robinson, C. M. Dobson “Characterization of the dominant oxidative folding intermediate of hen lysozyme.” J. Mol. Biol., 290, 781-796 (1999)
29. Hamaguchi, K. “Conformation and enzymatic activity of lysozyme.” Tampakushitsu. Kakusan Kosa., 13, 98 (1968)
30. Phillips, D. C. “Chapter 2: The properties of lysozyme”, in Lysozyme. E. F. Osserman, R. E. Canfield, S. Beychok (Eds). Academic press. (1974)
31. 美商法瑪亞公司網站http://www.biacore.com/
32. Mannen, T., S. Yamaguchi, J. Honda, S. Sogimono, A. Kitayama, T. Nagamune “Observation of charge state and conformational change in immobilized protein using surface plasmon resonance sensor.” Anal. Biochem., 293, 185-193 (2001)
33. Paynter S., and D. A. Russell “Surface plasmon resonance measurement of pH-induced responses of immobilized biomolecules: conformational change or electrostatic interaction effects?” Analytical Biochemistry, 309, 85-95 (2002)
34. Yamaguchi S., T. Mannen, T. Zako, N. Kamiya, T. Nagamune “Measuring adsorption of a hydrophobic probe with a surface plasmon resonance sensor to monitor conformational changes in immobilized proteins.” Biotechnol. Prog., 19, 1348-1354 (2003)
35. Gestwicki, J. E., H. V. Hsieh, J. B. Pritner “Using receptor conformational change to detect low molecular weight analytes by surface plasmon resonance.” Anal. Chem., 73, 5732-5737 (2001)
36. Zako T., K. Harada, T. Mannen, S. Yamaguchi, A. Kitayama, H. Ueda, and T. Nagamune “Monitoring of the refolding process for immobilized firefly luciferase with a biosensor based on surface plasmon resonance.” J. Biochem., 129, 1-4 (2001)
37. Luck L. A., M. J. Moravan, J. E. Garland, B. Salopek-Sondi, and D. Roy “Chemisorptions of bacterial receptors for hydrophobic amino acids and sugars on gold for biosensor applications: a surface plasmon resonance study of genetically engineered proteis.” Biosens. Bioelectron, 19, 249-259, (2003)
38. Boussaad S., J. Pean, N. J. Tao “High-resolution multiwavelength surface plasmon resonance spectroscopy for probing conformational and electronic changes in redox proteins” Anal. Chem., 72, 222-226 (2001)
39. Mitchell, J. R., L. Irons, G. Palmer J. Biochim. Biophys. Acta, 200, 138-150 (1970)
40. Graham, D. E., and M. C. Phillips, in A.L. Smith (Ed), Theory and Practice of Emulsion Technology, Academic Press, London, 75-98 (1974)
41. Graham, D. E., and M. C. Phillips,” Proteins at liquid interfaces.” J. Colloid Interface Sci., 70, 403-414 (1979)
42. Norde, W., and J. P. Favier, “Structure of adsorbed and desorbed proteins”, Colloids Surfaces, 64, 87-93 (1992)
43. van Aken, G. A., Dickinson, in E., Lorient, D. (Eds), “Food macromolecules and colloids”, Roy. Soc. Chem., 43-59 (1995)
44. MacRitchie, F.,” Proteins at interfaces.” Adv. Protein Chem., 32, 283-326 (1978)
45. Tornberg, J. M., J. Colloid Interface Sci., 64, 391-402 (1978)
46. Patino, J. M. R., and M. R. R. Niño, “Protein adsorption and protein-lipid interactions at the air-aqueous solution interface”, Colloid Surface A: Physicochem. Eng. Aspects, 103, 91-103 (1995)
47. Ghannam, M. M., M. M. Mady, W. A. Khalil, “Interaction of type-I collage with phospholipid monolayer”, Biophys. Chem. 80, 31-40, (1999)
48. 何怡瑱,三團聯共聚物(PF-127)和磷脂質間交互作用力量測和磷脂質微脂粒穩定度之探討,碩士論文,國立中央大學化學工程研究所,2001。
49. 張素華,蛋白質分子在氣/液界面上的行為研究與其在蛋白質復性上的應用,碩士論文,國立中央大學化學工程研究所,2002。
50. Jones, M. N., and D. Chapman, Micells, Bilayers, and Biomembranes, Wiley-Liss, Inc.: New York, 1995, Chapter 4.
51. Alexandridis P., and T. A. Hatton, “Poly (ethylene oxide)–poly (propylen oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces : thermodynamics , structure , dynamics, and modeling”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 96, 1-46 (1995)
52. Martin, P. and M. Szablewski, Tensiometers and Langmuir-Blodgett Troughs, Operating manual 5th Edition, Frank Grundfeld Ed, Nima, 1999
53. Shaw, D. J., chap.4 膠體及界面化學入門(introduction to Collid and Surface Chemistry 4/e), 高立書局1997
54. Gazová, Z., M. Antalík, J. Bágel’ová, Z. Tomori, “Effect of ionic strength on the interfacial properties of cytochrome c”, Biochim. Biophys. Acta, 1432, 82-91 (1999)
55. Suttiprasit, P., V. Krisdhasima, J. McGuire,” The surface activity of α-lactalbumin, β-lactoglobulin, and bovine serum albumin I. Surface measurements with single-component and mixed solutions.” J. Colloid Interface Sci., 154, 316-326 (1992)
56. Suzawa, T., and H. Shirahama, “Adsorption of Plasma-Proteins Onto Polymer Lattices”, Adv. Colloid Interface Sci., 35, 139-172 (1991)
57. Rodger, A., and B. Nordén, "Circular dichroism and linear dichroism." Oxford (1997)
58. Lightner, D. A., J. E. Gurst, “Organic conformational analysis and stereochemistry from circular dichroism spectroscopy.” John Wiley & Sons, Inc. (2000)
59. Velluz, L., M. Legrand, M. Grosjean, “Optical circular dichroism.” Academic Press, Inc., (1965)
60. Jirgensons, B., A. K. Philadelphia, G. F. S. Evanston, H. G. W. Berlin, “Optical rotatory dispersion of proteins and other macromolecules.” Springer-Verlag New York Inc., (1969)
61. Charney, E. “The molecular basis of optical activity: Optical rotatory dispersion and circular dichroism.” John Wiley & Sons, Inc. (1979)
62. Fasman, G. D. “Circular dichroism and the conformation analysis of biomolecules.” Plenum Press. (1996)
63. 程郁郁,含假異胞嘧啶及其衍生物之去氧寡核酸鏈在水溶液中形成核酸三螺旋之研究,碩士論文,中國文化大學應用化學研究所,1997。
64. Nakanishi, K., N. Berova, Woody, R. W. Circular dichroism principles and applications. VCH Publishers, Inc. (1994)
65. 江建民 應用螢光及旋光技術於生命薄膜的研究 科儀新知, 18(6), 44-57, 1997
66. Yang, J. T., C. -S. C. Wu, H. M. Martinez, “Calculation of protein conformation from circular dichroism.” Meth. Enzymol., 130, 208-269 (1986)
67. Greenfield, N.J. “Review: Methods to estimate the conformation of proteins and polypeptides from circular dichroism data.” Anal. Biochem., 235, 1-10 (1996)
68. Copeland, R. A. Methods for protein analysis. Chapman & Hall, 1994
69. 陳美方,酸鹼度和相對黏度對於神經毒蛋白的開放與回疊路徑的探討,碩士論文,台灣大學化學研究所,2000。
70. 孫逸民、陳玉舜、趙敏勳、謝明學、劉興鑑 儀器分析. 全盛圖書有限公司. 1997
71. Wetlaufer, D. B. “Ultraviolet spectra of proteins and amino acids.” Adv. Protein Chem., 17, 303-309 (1962)
72. Mathews, C. K., K. E. V. Holde, K.G. Ahern, Biochemistry. Addison Wesley Longman, Inc. 2000
73. Teale, F. W., and G. Weber, “Ultraviolet fluorescence of the aromatic amino acids.” Biochem. J., 65, 476-482 (1957)
74. Trurnit, H.J., “A theory and method for the spreading of protein monolayers”, J. Colloid Interface Sci. 15, 1 (1960)
75. Tabak, S. A. and R. H. Notter, “Effect of plasma proteins on the dynamic Π-A characteristics of saturated phospholipid film”, J. Colloid Interface Sci. 59, 293 (1977)
76. Mita, T., “Thermotropic behavior of proteins and acylated proteinsin monolayers”, Bull. Chem. Soc. Jpn. 62, 2299-2306 (1989)
77. Cho, D., G. Narsimhan, , E.I. Franses, “Adsorption dynamics of native and alkylated derivatives of bovine serum albumin at air-water interfaces”, J. Colloid Interface Sci. 178, 348 (1996)
78. Kurihara, K.; and K. Suzuki “Theoretical Understanding of an Absorption-Based Surface Plasmon Resonance Sensor Based on Kretchmann's Theory” Anal. Chem., 74, 696-701 (2002)
79. Chah, S., C.V. Kymar, M. R. Hammond, R. N. Zare “Denaturation and renaturation of self-assembled yeast iso-1-cytichrome c on Au.” Anal. Chem., 76, 2112-2117 (2004)
80. C. M. Shekhar, amd M. E. Sobhia “Structural characterization of protein-denaturant interaction: crystal structure of hen egg-white lysozyme in complex with DMSO and guanidinium chloride.” Protein Eng., 13, 133-141 (2000)
81. Makhatadze G. I., and P. L. Privalov “Protein interactions with urea and guanidinium chloride a calorimetric study” J. Mol. Biol., 226, 491-505 (1992)
82. Privalov, P. L., and G. I. Makhatadze “Heat capacity of protein. II. Partital molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects.” J. Mol. Biol., 213, 358-391 (1990)
83. May, M. L., and D. A. Russell “The characterization of biomolecular secondary structures by surface plasmon resonance.” Analyst, 127, 1589-1595
84. Takeda K., K. Sasa, M. Nagao, P. P. Batra “Secondary structural changes of non-reduced and reduced ribonuclease A in solutions of urea, guanidinium hydrochloride and sodium dodecyl sulfate.” Biochim. Biophys. Acta, 957, 340-344 (1988)
85. 李雅雯,Ribonuclease A於逆微胞系統中的復姓及其界面現象之研究,碩士論文,國立中央大學化工研究所,2001。
86. Lu, J. R., T. J. Su, B. J.Howin, “The effect of solution pH on the structural conformation of lysozyme layers adsorbed on the surface of water”, J. Phys. Chem. B., 103, 5903-5909 (1999)
87. Sudah, O. S., G. Chen, Y. C. Chiew “Adsorption of single component and binary mixtures of protein and surfactants at the oil–water interface” Colloid. Surface. B, 13, 195-202 (1999)
88. Rico, M. S. J., C. Gozález, M. Bruix, J. L. Nieto, J. Herranz “3D structure of bovine pancreatic ribonuclease A in aqueous solution: an approach to the tertiary structure determination from a small basis of 1H NMR NOE correlations.” J. Biomol. NMR, 1, 283-298, (1991)
89. 周茂村,不同化學變性劑、溫度和還原劑對溶菌酶結構改變之研究,碩士論文,國立中央大學化工研究所,2002。
90. Moriyama, Y., K. Hirao, K. Takeda “Conformational changes of lysozymes with different numbers of disulfide bridges in sodium dodecyl sulfate solutions.” Colloid Polym. Sci., 278, 979-985, (2000)
91. Wedemeyer, W. J., E. Welker, M. Narayan, H. A. Scheraga “Disulfide bonds and protein folding.” Biochemistry, 39, 4207-4216, (2000)
92. Berges J., E. C. D. Kassab, E. Adjadj, C. Houeelevin “Ab-initio calculations on arginine-disulfide complexes modeling the one-electron reduction of lysozyme - comparison to an experimental reinvestigation” J. Phys. Chem., 101, 7809-7817 (1997)
93. Sasahara, K., M. Sakurai, K. Nitta “The volume and compressibility change of lysozyme associated wiyh guanidinium chloride and pressure-assisted unfolding.” J. Mol. Biol., 291, 693-701, (1999)
94. Neira, J. L., P. Sevilla, M. Menendez, M. Bruix, M. Rico “Hydrogen exchange in ribonuclease A and ribonuclease S: evidence for residual structure in the unfolding state under native conditions.” J. Mol. Biol., 285, 627-643, (1999)
95. Hutter E., S. Cha, J-F. Liu, J. Park, J. Yi, J.H. Fendler, D. Roy "The role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging." J. Phys. Chem., 105, 8-12 (2001)
96. 數據是由本實驗室林仕淳學姊所提供。
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2004-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明