博碩士論文 91324016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:13.58.201.240
姓名 徐志宗(Chih-Tsung Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氧化鋅奈米結晶之製備與分散
(The synthesis and dispersion of ZnO nano-crystals)
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 奈米結晶氧化鋯合成與分散★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質
★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積★ 沸石晶核的製備與排列
★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備★ 聚芳香羧酸酯之合成及性質研究
★ MFI沸石超微粒子之製作★ 四氯化鈦之控制水解研究
★ 具環氧基矽烷包覆奈米粒子之研究★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究的目的為製作可分散之氧化鋅奈米結晶。我們在控制酸鹼值下,將溶於乙二醇之氯化鋅及氫氧化鈉透明溶液進行中和,形成白色乳液。由於氧化鋅在酸與鹼中溶解度都很高,故中和時之酸鹼值必須在8到10之間。假若酸鹼度控制適當,只要將中和液直接加熱即可得到分散在乙二醇中之氧化鋅奈米結晶透明分散液。在大於10wt%濃度下,分散液之可見光(600nm)穿透度大於90%,而波長小於370nm之光線則會被吸收。由吸收起始波長及粉體XRD峰寬可計算出之結晶大小約5~6nm。但實際之聚集粒子的大小則因加熱溫度與時間的不同會聚集成十到數十奈米不等。
若將中和液過濾後再將濾餅加熱也可得到氧化鋅奈米結晶的分散液,不但濃度高(約27wt%),鹽類離子的含量也較少,但粒子聚集的情況較嚴重,即使再分散到乙二醇中最多只能呈現半透明的狀態。
分散液中的氧化鋅可以利用有機溶劑將凝絮、沉降、清洗後即可得到氧化鋅結晶的粉體。經過X光繞射分析,可確定產物為氧化鋅Zincite結晶。從結晶峰的半高寬估計其結晶大小也是5~6nm之間。但是因為形成粉體時未作表面保護,所以已經聚集,無法再回復成為透明分散液。
摘要(英) The objective of this research is to synthesis ZnO nano-crystals and to disperse it in an appropriate solvent. ZnO nanocrystals were successfully prepared by neutralizing ethylene glycol solution of Zinc chloride and sodium hydroxide under controlled the pH. A white colloidal was produced after neutralization, which turned to a transparent sol upon heating at 80oC. At a ZnO concentration of 2.5wt%, the optical transmittance of the sol can be higher than 90%. The ZnO in the transparent sol are nanocrystals, whose domain size is only about 5~6 nm calculated from the onset of UV absorption as well as powder XRD peak width. DLS analysis of the transparent sol indicated colloidal particles of about 10nm. The size and of the particles became larger as the heating temperature and time are increased.
To remove the NaCl salt produced during the neutralization, the precipitation was filtered and washed. Upon heating, the filtered cake also transformed into ZnO nanocrystals. However, only a translucent sol (at 27wt%) could be obtained by this method, as the aggregation of the nanocrystals was more severe due to the high concentration.
The produced ZnO nanocrystals could be collected as solid powder, by the flocculation under appropriate organic solvents. XRD analysis of the so obtained powder suggested that the ZnO formed were pure zincite crystalline about 5~6 nm domain size. The salts impurity can be further removed by washing with alcohol. However, since no surface capping was attempted, the powder thus obtained could no longer be dispersed in solvent.
關鍵字(中) ★ 氧化鋅
★ 分散
關鍵字(英) ★ dispersion
★ ZnO
論文目次 摘要 I
目錄 III
圖目錄 IV
表目錄 VI
第一章 緒論 1
1.1 奈米氧化鋅材料簡介 1
1.2 文獻回顧 3
1.3 研究目的 9
第二章 奈米氧化鋅結晶分散液製備 10
2.1 藥品製備 10
2.2 實驗步驟 11
2.3 儀器分析 13
第三章 結果與討論 16
3.1 中和液直接加熱之分散液性質分析 16
3.2中和液過濾後再加熱之分散液性質分析 23
第四章 結論與未來研究方向 35
參考文獻 38
附錄一 實驗使用之藥品 41
附錄二 實驗使用之分析儀器 42
參考文獻 [1]Schuler T., Aegerter M.A., “Optical, Electrical and Structural Properties of Sol Gel ZnO:Al Coatings”, Thin Solid Films, 1999, 351, 125-131
[2]Govender K., Boyle D.S., O’Brien P., Binks D., West D., Coleman D., “Room-Temperature Lasing Observed from ZnO Nanocolumns Grown by Aqueous Solution Deposition”, Advanced Materials, 2002, 14, 1221-1224
[3]Bao D., Gu H., Kuang A., “Sol-gel-derived c-axis oriented ZnO thin films”, Thin Solid Films, 1998, 312, 37-39
[4]Abdullah M., Lenggoro I.W., Okuyama K., “In situ Synthesis of Polymer Nanocomposite Electrolytes Emitting a High Luminescence With a Tunable Wavelength”, J. Phys. Chem. B, 2003, 107, 1957-1961
[5]Wu J., Xie C., Bai Z., Zhu B., Huang K., Wu R., “Preparation of ZnO-Glass Varistor from Tetrapod ZnO Nanopowders”, Materials Science and Engineering, 2002, B95, 157-161
[6]Base, Jr. C.F., Mesmer, R.E., “The Hydrolysis of Cations”, Krieger Pub., Florida, USA , 1986.
[7]Bahnemann D.W., Kormann C. and Hoffmann M.R., “Preparation and Characterization of Quantum Size Zinc Oxide: a Detailed Spectroscopic Study”, J. Phys. Chem., 1987, 91, 3789-3798
[8]Blus L., “Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory”, J. Phys. Chem, 1986, 90, 2555-2560
[9]Oskam G., Hu Z., Penn R.L., Pesika N., Searson P.C., “Coarsening of Metal Oxide Nanoparticles”, Phys. Rev. E, 2002, 66, 011403
[10]Wong E.M., Bonevich J.E., Searson P.C., “Growth Kinetics of Nanocrystalline ZnO Particles from Colloidal Suspensions”, J. Phys. Chem. B, 1998, 102, 7770-7775
[11]Wong E.M., Hoertz P.G., Liang C.J., Shi B.M., Meyer G.J., Searson P.C., “Influence of Organic Capping Ligands on the Growth Kinetics of ZnO Nanoparticles”, Lanmuir , 2001, 17, 8362-8367
[12]Spanhel L., Anderson M.A., “Semiconductor Clusters in the Sol-Gel Process: Quantized Aggregation, Gelation, and Crystal Growth in Concentrated ZnO Colloids”, J. Am. Chem. Soc., 1991, 113, 2826-2833
[13]Chen D., Jiao X., Cheng G., “Hydrothermal Synthesis of Zinc Oxide Powders with Different Morphologies”, Solid state communication, 2000, 113, 363-366
[14]Taubert A., Wegner G., “Formation of Uniform and Monodisperse Zincite Crystals in the Presence of Soluble Starch”, J. Mater. Chem., 2002, 12, 805-807
[15]Ali H.A., Iliadis A.A., Mulligan R.F., Cresce A.V.W., Kofinas P., Lee U., “Properties of Self-assembled ZnO Nanostructures”, Solid-State Electronics, 2002, 46, 1639-1642
[16]Mondelaers D., Vanhoyland G., Van den Rul H., D’Haen J., Van Bael M.K., Mullens J., Van Poucke L.C., “Synthesis of ZnO Nanopowder via an Aqueous Acetate-Citrate Gelation Method”, Materials Research Bulletin, 2002, 37, 901-914
[17]Kaneko D., Shouji H., Kawai T., Konno K., “Synthesis of ZnO Particles by Ammonia-Catalyzed Hydrolysis of Zinc Dibutoxide in Nonionic Reversed Micelles”, Langmuir ,2000, 16, 4086-4089
[18]Wu R., Wu J., Xie C., Zhang J., Wang A., “Morphological Characteristic of Zn/ZnO Nanopowders and the Optical Properties”, Materials Science and Engineering, 2002, A328, 196-200
[19]Li J.Y., Chen X.L., Li H., He M., Qiao Z.Y., “Fabrication of Zinc Oxide Nanorods”, Journal of Crystal Growth, 2001, 233, 5-7
[20]Lao J.Y., Huang J.Y., Wang D.Z., Ren Z.F., “ZnO Nanobridges and Nanonails”, Nano Letters, 2003, 3, 235-238
[21]Feldmann C., “Polyol-Mediated Synthesis of Nanoscale Functional Materials”, Advanced Functional Materials, 2003, 13, 101-107
[22]Lu C.H., Yeh C.H., “Influence of Hydrothermal Conditions on the Morphology and Particle Size of Zinc Oxide Powder”, Ceramics International, 2000, 26, 351-357
指導教授 蔣孝澈(A.S.T. Chiang) 審核日期 2004-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明