博碩士論文 91324019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.135.202.224
姓名 張建偉(Chien-wei Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 在銲料中交互作用對兩界面反應之影響
(THE CROSS-INTERACTION OF TWO INTERFACIAL REACTIONS IN SOLDER JOINTS)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究
★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究
★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究
★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究★ 新穎太陽能電池基板表面粗糙化結構之研究
★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究
★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究
★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究
★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在電子原件封裝的接點中金、銅、鎳、錫是常見的元素,本論文以Au/Sn/Ni、Au/SnPb/Ni、Ni/Sn/Cu以及Au/Sn/Cu擴散偶試著來探其相互間的關係,由於在接點迴銲的過程中,這些元素已經快速的反應,為使反應的現象更為釐清清處,本論文的實驗試品是利用電鍍的方法在銅或鎳的基板上電鍍我們所需的擴散偶,由此方式製做有兩項主要的優點,一、此試片可以單純只觀察熱處理的結果並摒除迴銲過程的影響,二、由於使用電鍍的方式製作,可以有效的控制Sn與SnPb的厚度,這樣既可做定量的計算。將這些擴散偶置於160oC做熱處理,來探討元素兩端的交互影響,並與單一的Sn/Cu與Sn/Ni作為對照組來討論。
由實驗結果顯示,雖然擴散偶兩端的元素中間隔了一層Sn 或SnPb,在熱處理1 hr內,即可以看到兩端元素的相互作用,在長時間的熱處理後,可以觀察到許多有趣的現象,在Au/Sn/Ni及Au/PbSn/Ni擴散偶中AuSn4會穿越Sn或PbSn層生成於Ni3Sn4與solder的界面上,在Ni/Sn/Cu擴散偶中Cu會穿越Sn層生成(Cu,Ni)6Sn5於Ni與solder的界面上,原本的於Sn/Ni擴散偶中會生成的Ni3Sn4被(Cu,Ni)6Sn5取代,在Au/Sn/Cu擴散偶中Cu會穿越Sn層生成(Cu,Au)6Sn5於Au與solder的界面上,並且 AuSn4被(Cu,Au)6Sn5取代。由以上結果可得知,在Au、Cu、Ni、Sn四元素中,Cu6Sn5為主要生成介金屬,在其次是AuSn4,最後是Ni3Sn4。
摘要(英) The Au, Cu, Ni and Sn are the most common materials in the solder joints of electronic packages. In this thesis, the Au/Sn/Ni, Au/SnPb/Ni, Ni/Sn/Cu and Au/Sn/Cu ternary diffusion couples were used to investigate the solder volume effect on the cross-interaction. All the materials were electroplated on the structure. The diffusion couples were aged at 160°C for different periods of time. With this technique, the diffusion couples were assembled without experiencing any high temperature process, such as reflow, which would have accelerated the interaction and caused difficulties in analysis.
This thsis revealed that the cross-interaction of Au/Sn/Ni and Au/SnPb/Ni could occur in as short time. The difference in migration kinetics of AuSn4 in eutectic PbSn and SnAg was ascribed to the difference in the magnitudes of the Au flux and the Ni flux. In eutectic PbSn, the Au flux was much greater than that of the Ni flux, and the Au and Ni flux were of the same order of magnitude in eutectic SnAg. The relative magnitude of the Au and Ni flux changed in eutectic PbSn and SnAg because the homologous temperatures of PbSn and SnAg were different.
The cross-interaction of Ni/Sn/Cu could occur in as short as 30 min. A detailed atomic flux analysis showed that the Cu flux through the Sn layer was about 25-40 times higher than the Ni flux. Moreover, it was found that (Cu1-xNix)6Sn5 on the Ni side reduced the consumption rate of the Ni layer, and the cross-interaction also reduced the Cu3Sn thickness on the Cu side.
The cross-interaction of Au/Sn/Cu could occur in as short as 1 hr. Evidence of this cross-interaction included the formation of (Cu1-xAux)6Sn5 on the Au side of the diffusion couples as well as on the Cu side. The reaction products on the Au side included the Au-Sn binary compounds. Between the Au-Sn compounds and the Sn was (Cu1-xAux)6Sn5. The reaction products on the Cu side initially was only (Cu1-xAux)6Sn5, but a layer of Au-free Cu3Sn eventually formed between (Cu1-xAux)6Sn5 and Cu. The results of this study show that the cross-interaction of Au and Cu in solders is extremely rapid, and cannot be ignored in those solder joints that have both elements present.
關鍵字(中) ★ 銅
★ 錫
★ 鎳
★ 金
★ 介面反應
★ 無鉛銲料
★ 交互作用
關鍵字(英) ★ Ni-Sn-Cu
★ interfacial reaction
★ lead-free solder
★ Au-Sn-Ni
★ Au-Sn-Cu
論文目次 Abstract (in Chinese) i
Abstract (in English) ii
Table of Contents v
Table of Figures vii
List of Tables xii
Chapter1 Introduction
1.1 The Interaction of Two Interfacial Reactions in Solder Joints
1.1.1 Formation and Migration of AuSn4 in Solder Joints 1
1.1.2 Copper Concentration Effect on the Interfacial Reaction 9
1.1.3 The Importance of Gold, Tin and Copper 17
1.2 The Objective of this Thesis 22
Chapter 2 Experimental Procedures 23
Chapter 3 Reactions at Au/Sn/Ni & Au/PbSn/Ni Diffusion Couples
3.1 Sn3.5Ag soldered over Au/Ni BGA substrates 28
3.2 Electroplated Au/solder/Ni diffusion couples 39
3.3 Kinetic Rationales For (Au1-xNix)Sn Migration 49
Chapter 4 Reactions at Ni/Sn/Cu Diffusion Couples
4.1 The Reaction of Ni/Sn/Cu Diffusion Couples 53
4.2 The Kinetics of Ni/Sn/Cu Diffusion Couples 63
Chapter 5 Reactions at Au/Sn/Cu Diffusion Couples
5.1 The Reaction of Au/Sn/Cu Diffusion Couples 73
5.2 The Kinetics of Au/Sn/Cu Diffusion Couples 75
Chapter 6 Conclusion 80
References 87
參考文獻 [ALA1] M.O. Alam, Y.C. Chan, and K.N. Tu, J. Mater. Res., 19, p.1303, 2004.
[ALA2] M.O. Alam and Y.C. Chan, Chem. Mater., 17, p.927, 2005.
[ANH] S. Anhöck, H. Oppermann, C. Kallmayer, R. Aschenbrenner, L. Thomas, and H. Reichl, 1998 IEEE/CPMT Berlin Intl Manufacturing Tech. Symp. Proceeding, p.156, 1998.
[CHA1] K.C. Chang, and K.N. Chiang, J. Electron. Mater., 33, p.1373, 2004.
[CHA2] C. W. Chang, Q. P. Lee, C. E. Ho, and C. R. Kao, J. Electron. Mater., 35, p.366, 2006.
[CHA3] C. W. Chang, C. E. Ho, S. C. Yang, and C. R. Kao, Journal of Electronic Materials, 35, p.1948, 2006.
[CHE1] S. W. Chen, and Y. W. Yen, J. of Electron. Mater., 30, p.1133, 2001.
[CHE2] W. T. Chen, C. E. Ho, and C. R. Kao, Journal of Materials Research, 17, p.263, 2002.
[CHE3] S. W. Chen, S. H. Wu, and S. W. LEE, Journal of Electronic Materials, 32, p.1188, 2003.
[DYS1] B. F. Dyson, T. R. Anthony, and D. Turnbull, Journal of Applied Physics, 38, p.3408, 1967
[DYS2] B. F. Dyson, J. Appl. Phys., p. 2375, 1966.
[FRE] H. P. R. Frederikse, R. J. Fields, and A. Feldman, Journal of Applied Physics., 72, p.2879, 1992
[GUO] F. Guo, J. Lee, S. Choi, J.P. Lucas, T.R. Bieler, and K.N. Subramanian, Journal of Electronic Materials, 30, p.1073, 1999.
[HO1] C. E. Ho, Y. M. Chen, and C. R. Kao, J. Electron. Mater., 28, p.1231, 1999.
[HO2] C. E. Ho, S.Y. Tsai, and C.R. Kao, IEEE Trans. Adv. Packaging, 24, p.493, 2001.
[HO3] C. E. Ho, R. Zheng, G. L. Luo, A. H. Lin, and C. R. Kao, J. Electron. Mater., 29, p.1175, 2000.
[HO4] C. E. Ho, L. C. Shiau, and C. R. Kao, J. Electron. Mater. 31, p.1264, 2002.
[HO5] C. E. Ho, Y.L. Lin, J.Y. Tsai, and C.R. Kao, J. Chin. Inst. Chem. Eng., 34, p.387, 2003
[HO6] C. E. Ho, Ph. D. Thesis, National Central University, Taiwan, R.O.C., 2002
[HO7] C. H. Ho, W.T. Chen, and C.R. Kao, J. Electron. Mater., 30, p.379, 2001.
[HO9] C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, Journal of Electronic Materials, 31, p.584, 2002.
[HO10] C. E. Ho, Y. L. Lin, and C. R. Kao, Chemistry of Materials, 14, p.949, 2002.
[HO11] C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao, and D. S. Jiang, Journal of Electronic Materials, 35, p.1017, 2006.
[HO12] C. E. Ho, S. C. Yang, and C. R. Kao, Journal of Materials Science – Materials in Electronics, 18, p.155, 2007.
[HO13] C.E. Ho, L.C. Shiau, and C.R. Kao, Journal of Electronic Materials, 31, p.1264, 2002
[HOM] C. E. Homer and H. Plummer, J. Inst. Met., 64, p.169, 1939.
[KAN] S.K. Kang, W.K. Choi, M.J. Yim, and D.Y. Shih, J. Electron. Mater., 31, p.1292, 2002.
[KIM] P. G. Kim and K. N. Tu, J. Appl. Phys., 80, p.3822, 1996.
[KUM] A. Kumar, M. He, Z. Chen, Surf. Coat. Technol., 198, p.283, 2005
[LAU1] T. Laurila, V. Vuorinen, T. Mattila, and J. K. Kivilahti, J. Electron. Mater., 34, p.103, 2005.
[LAU2] T. Laurila, V. Vuorinen and J.K. Kivilahti, Mater. Sci. Eng. R, R49, p. 1, 2005.
[LEE1] J.H. Lee, J.H. Park, D.H. Shin, Y.H. Lee, and Y.S. Kim, J. Electron. Mater., 30, p.1138, 2001.
[LEE2] K.Y. Lee and M. Li, J. Electron. Mater., 32, p.906, 2003.
[LEE3] J.H. Lee, J.W. Park, D.H. Shin, and Y.S. Kim, J. Electron. Mater., 33, p.28, 2004.
[LEE4] K.Y. Lee, M. Li, and K.N. Tu, J. Mater. Res., 18, p.2562, 2003.
[LEE5] T. Y. Lee, W. J. Choi , K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, K. Zeng, and J. K. Kivilahti, J. Mater. Res., 17, p.291, 2002.
[LEE6] C. B. Lee, J. W. Yoon, S. J. Suh, S. B. Jung, C. W. Yang, C. C. Shur, and Y. E. Shin, J. Mater. Sci., 14, p.487, 2003.
[LIN1] Y. L. Lin, W. C. Luo, Y. H. Lin, C. E. Ho, and C. R. Kao, J. Electron. Mater., 33, p.1092, 2004.
[LIN2] C. H. Lin, S. W. Chen, and C. H. Wang, Journal of Electronic Materials, vol. 31, p. 907, 2002.
[LIU] C. M. Liu, C.E. Ho, W.T. Chen, and C.R. Kao, J. Electron. Mater., 30, p.1152, 2001.
[LUO] W. C. Luo, C. E. Ho, J. Y. Tsai, Y. L. Lin, and C. R. Kao, Materials Science and Engineering A, 396, p.385, 2005.
[MAS] T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, editors., Binary Alloy Phase Diagrams, 2nd ed, vol. 3. Ohio: ASM Intermational, p. 2863, 1990.
[MEI] Z. Mei, M Kaufmann, A. Eslambolchi, and P. Johnson, Proc. 48th IEEE Electron. Comp. Tech. Conf., p.952, 1998.
[MIN1] A.M. Minor and J.J.W. Morris, J. Electron. Mater., 29, p.1170, 2000.
[MIN2] A.M. Minor and J.W. Morris, Metall. Mater. Trans., 31A, p.798, 2000.
[OKA] H. Okamoto and T. B. Massalski, eds., Phase Diagram of Binary Gold Alloys, ASM International, Metals Park, OH, p.278, 1978.
[RAT] P. Ratchev, B. Vandevelde, and I.D. Wolf, IEEE Trans. Device Mater. Rel., 4, p.5, 2004.
[ROE] J. Roeder, Doctoral Dissertation, Lehigh University, 1988.
[SAU] N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase Diagrams, 11, p. 278, 1990.
[SON] H.G. Song, J.P. Ahn, A.M, A.M. Minor and J.J.W. Morris, J. Electron. Mater., 30, p.409, 2001.
[SHI] L. C. Shiau, C.E. Ho, and C.R. Kao, Solder. Surf. Mt. Technol., 14, p.25, 2002
[TSA1] J.Y. Tsai, Y.C. Hu, C.M. Tsai, C.R. Kao, Journal of Electronic Materials, 32, p.1203, 2003.
[TSA2] C. M. Tsai, W. C. Luo, C. W. Chang, Y. C. Shieh, and C. R. Kao, Journal of Electronic Materials, 33, p.1424, 2004.
[TSA3] J. Y. Tsai, C. W. Chang, Y. C. Shieh, Y. C. Hu, and C. R. Kao, J. Electron. Mater., 34, p.182, 2005.
[ZAK1] E. Zakel and H. Reichl, in Flip Chip Technologies, ed. By J. H. Lau, Chapter 15, McGraw-Hill, New York, 1995.
[ZAK2] E. Zakel, thesis, Technical University-Berlin, 1994.
[ZEN] K. Zeng and K.N. Tu, Mater. Sci. Eng. R, R38, p. 55, 2002.
[ZRI] A. Zribi, R.R. Chromik, R. Presthus, K. Teed, L. Zavalij, J. DeVita, J. Yova, E.J. Cotts, J.A. Clum, R. Erich, A. Primavera, G. Westby, R.J. Coyle, and G.M. Wenger, IEEE Trans. Comp. Pack. Technol., 23, p.383, 2000.
指導教授 高振宏、鄭紹良
(C. Robert Kao、Shao-Liang Cheng)
審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明