博碩士論文 91324022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.21.44.115
姓名 張琬君(Wan-Chun Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 一種兼具低消耗速率及抗氧化作用之銲點墊層材料
(A New Surface Finish for Solder Joints Exhibiting both Low Consumption Rate and Oxidation Resistance)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 球矩陣式電子封裝中鎳與鉛錫合金及鉛鉍錫合金界面反應之研究
★ Sn-3.5Ag無鉛銲料與BGA墊層反應之研究★ 矽鍺半導體材料與鈷矽鍺化合物間相平衡與擴散之探討
★ 58Bi-42Sn無鉛銲料與球矩陣封裝中Au/Ni/Cu墊層界面反應之研究★ 金濃度對球矩陣構裝銲點剪力強度影響之研究
★ 927℃ Nb-Si-Ge與600℃ Cu-Si-Ge兩三元平衡相圖之研究★ 以Lactobacillus reuteri菌發酵glycerol生成reuterin做為生物組織材料天然滅菌劑的探討
★ 錫銅無鉛銲料與Ni基材界面反應之研究★ 電遷移效應對錫微結構影響之探討
★ 先進半導體封裝技術中之金脆效應及其有效抑制方法★ SnAgCu無鉛銲料與BGA之Au/Ni墊層反應之研究
★ Reuterin的發酵生成與化學合成及其在生物組織材料上的應用★ 覆晶封裝中電遷移效應導致之銅溶解現象
★ 覆晶接點與錫電路之電遷移微結構變化模式研究★ 電遷移對銅原子在熔融錫鉛銲料中擴散行為之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電子元件上有數以千計的銲點,通常元件中最易失效的部位就在於銲點。事實上,若其中有一銲點失效,都易造成整個元件的故障。因此提高銲點的可靠性及壽命是電子業界相當重要的一個課題,故本研究也將朝這方面去執行。
擴散阻障層在銲點底層金屬(Under Bump Metallurgy, UBM)中扮演了一個相當重要的角色。目的在於避免銲料與導電基材發生反應,而導致元件失效。目前最常使用且具低消耗速率的阻障層材料為Ni。由於Ni易氧化,故還需鍍一抗氧化層(Au層)。但Au層也會引發Au會進入銲料中,生成易脆之介金屬(Au1-xNix)Sn4,而影響銲點的可靠性。因此,本論文將著重於提高銲點墊層的使用壽命,期望尋找一相較於Ni基材具有更低消耗速率之阻障層材料。由於作為一良好的擴散阻障層須具備有低的消耗速率以及良好的潤濕性質。故本研究將針對此兩項性質進行測試。
本研究藉由Ni、Co、Pt墊層與液態錫進行固/液反應,以模擬銲接時的反應。實驗結果顯示,Pt墊層的消耗速率在任何溫度及時間下均較Ni、Co墊層慢,其順序為Pt<Ni<Co。且Pt墊層之消耗厚度約為Ni墊層的1/3 ~ 1/2左右。另外,界面觀察時,發現Pt/Sn系統所生成之介金屬PtSn4厚度反而比Ni/Sn系統所生成之介金屬Ni3Sn4厚。這是因為1莫耳的Pt需消耗4莫耳Sn才能生成1莫耳的PtSn4,而1莫耳Ni僅消耗4/3莫耳Sn即可生成Ni3Sn4。因此,造成所觀察到PtSn4之厚度會稍厚於Ni3Sn4。
由於擴散阻障層需具備良好之潤濕效果,因此也針對Pt基材作潤濕性測試,並且以Ni墊層當作對照組加以比較。由實驗結果中得知,不管是使用松香類助銲劑或水溶性助銲劑,Pt基材之潤濕性均較Ni基材差一些,但Pt基材之潤濕效果仍屬於許可範圍內。
由兩部分的實驗結果中顯示,Pt墊層之消耗速率僅約為Ni墊層之1/3 ~ 1/2。且知Pt墊層屬於貴金屬,因此它亦具有抗氧化的作用,故使用一Pt墊層即可取代原先的Au/Ni兩層表面處理層,亦可簡化製程上的步驟。另外,雖然Pt基材之潤濕性不及Ni基材,但其潤濕性仍屬於許可範圍內。因此,由本研究結果中顯示,Pt墊層是一極具潛力之銲點墊層材料。
摘要(英) Solder joints are the most friable links in microelectronic devices. In fact, a failure in solder joints is the easiest root which would take the responsibility for malfunction in electronic products. Therefore, to improve the reliability of solder joints is one of the most important tasks for electronic industry.
In microelectronic, optoelectronic, and MEMS packaging, the contact pads for solder usually use the Au/Ni bi-layers, such as UBM(Under Bump Metallurgy)and surface finish. The Ni layer needs to be plated an oxidation protection layer, such as Au. However Au will get into the solder and form many Au-bearing intermetallic particles, e.g.(Au1-xNix)Sn4. In addition, the Ni layer is easily to be consumed that causes the solder reacting with the conducting layer fast and results the failure of the devices as the consequence. This paper emphasized on the improvement of solder joints, whereas we probed the solder reacting with the diffusion barrier layer and measured the consumption degree of the diffusion barrier layer at different temperatures and time.
In this paper, it was mentioned that the Ni, Co and Pt pads reacted with liquid tin. The results could be obtained that the consumption rate of Pt pad was slower at different temperatures and time. The order of the consumption rate was Pt<Ni<Co, then the consumption thickness of Pt pad was about 1/3 ~ 1/2 of Ni pad. Moreover, it was discovered that the thickness of PtSn4 is thicker than the thickess of Ni3Sn4, because one mole of Pt required to consume four mole of Sn, and then produced one mole of PtSn4. Nevertheless one mole of Ni only consumed 4/3 mole of Sn, and then produced one mole of Ni3Sn4. As a result, it caused the thickness of PtSn4 is thicker than the thickess of Ni3Sn4.
The diffusion barrier layer was considered that required better wetting. We did a wetting test for the platinum and compared with the nickel. The results showed that the wettability of the platinum was worse than the nickel, however we used RMA or water-soluble flux. But the wetting time of the platinum still is lower 5sec.
Finally, we summarized the results into two parts. Firstly, it was obtained that the thickness of consumption was about 1/3 ~ 1/2 of Ni pad for Pt pad. Secondly, the platinum was a noble metal which could be also considered to serve as the oxidation protection layer. Furthermore, the wettability of the platinum had an acceptable range and the wetting time was reduced when using water-soluble flux. In other words, a single Pt layer could be utilized to replace both the oxidation protection layer and diffusion barrier layer. Hence these results showed that the Pt pad had a potential to be applied for solder joints.
關鍵字(中) ★ Ni
★ 擴散阻障層
★ 消耗速率
★ Co
★ Pt
關鍵字(英) ★ diffusion barrier layer
★ Ni
★ Co
★ Pt
★ consumption rate
論文目次 目 錄
摘 要.......................................................1
目 錄.......................................................III
圖 目 錄.......................................................VI
表 目 錄.......................................................XII
第一章 緒論................................................1
1.1 研究背景...................................................1
1.1.1 微電子構裝...............................................2
1.1.2 接合技術.................................................6
1.1.3 銲接....................................................10
1.1.4 銲接隆點材料與製程技術..................................13
1.1.4.1 銲接隆點結構..........................................13
1.1.4.2 銲接隆點之製程技術....................................15
1.1.5 界面接合反應............................................15
1.2 研究目的..................................................17
第二章 文獻回顧..............................................20
2.1 擴散阻障層之原理..........................................20
2.2 界面反應之文獻回顧........................................25
2.2.1 Ni/Sn反應....................................25
2.2.2 Pt/Sn反應....................................34
2.3 潤濕現象..................................................39
2.3.1 潤濕天平之原理................................43
2.3.2 潤濕天平潤濕性之相關文獻......................48
2.3.2.1 參考文獻中之參數設定...................48
2.3.2.2 影響潤濕性之相關文獻...................50
2.4 實驗規劃…................................................54
2.4.1 固/液反應-消耗速率之比較......................54
2.4.2 潤濕性之測試..................................54
第三章 實驗方法與步驟........................................56
3.1 基材(Ni、Co、Pt)與純錫間之固/液反應.....................56
3.1.1 試片處理及金相觀察、分析................................58
3.2 Pt、Ni基材與銲料間之潤濕性................................63
3.2.1 基材(Pt、Ni)之製備....................................63
3.2.2 銲料之製備..............................................64
3.2.3 潤濕性質之測試..........................................64
3.2.4 潤濕性質之分析..........................................66
第四章 Ni、Co、Pt基材與液態Sn反應之實驗結果與討論............67
4.1 Ni、Co、Pt墊層之消耗速率比較..............................67
4.1.1 Ni、Co墊層之消耗速率比較................................67
4.1.2 Ni、Pt墊層之消耗速率比較................................71
4.2 界面金相觀察..............................................76
4.2.1 Pt墊層與液態Sn之界面反應................................76
4.2.1.1 Pt/Sn系統介金屬之動力學探討...........................91
4.2.2 Co墊層與液態Sn之界面反應................................95
4.2.3 Ni墊層與液態Sn之界面反應................................102
第五章 Ni、Pt潤濕性測試之實驗結果與討論......................108
5.1 Pt與Ni基材之潤濕時間比較..................................112
5.2 Pt與Ni基材之最大潤濕力比較................................114
5.3 不同助銲劑之比較..........................................116
第六章 結論.................................................117
6.1 Pt、Ni、Co基材與液態錫之固/液反應.........................117
6.2 Pt、Ni基材之潤濕測試......................................118
文獻回顧......................................................120
參考文獻 ﹝ABB1﹞ D. C. Abbott, R. M. Brook, N. McLelland, and J.S. Wiley, IEEE Trans. Comp. Hybrids Man. Tech., 14, p.567(1991)
﹝ADA﹞ W. Adamson,〝Physical Chemistry of Surfaces〞, 4th rd., A Wiley-Interscience Publication, New York(1982)
﹝AVI﹞ R. R. de Avillez, M. F. S. Lopes and A.L. M.Silva, J. Mater. Science. Eng A, 205, p. 209(1996)
﹝BAD1﹞ S. Bader and W. Gust.,〝Dissolution of Au、Ag、Pd、Pt、Cu and Ni in a Molten Tin-l-Lead Solder〞, Welding Res. Supp., 48, p.551,(Dec. 1969)
﹝BAD2﹞ S. Bader, W.Gust and H. Hieber, Acta Metallurgica et Materialia, 43(1), p.329-337(1995)
﹝BAN1﹞ C. Baldwin and T. E. Such, Tran. Institute Metal Finish., 46, p.73, (1968)
﹝BER﹞ John. C. Berg, 〝Wettability〞, Marcel Dekker. Inc., New York, Chapter1(1993)
﹝CHA﹞ H.-Y. Chang, S. W. Chen, David Shan-hill Wong, and Hsiu-Feng Hsu, J. Materials Research Society., 18(6)(Jun. 2003)
﹝CHE﹞ Shou Chang Cheng and Kwang Lung Lin, J. Electron. Mater., 31(9)(2002)
﹝DAE﹞ D. H. Daebler, Journal of SMT, October(1991)
﹝DAR2﹞ J. Y. Park, C. S. Kang, and J. P. Jung, J. Electron. Mater., 28(11), p.1256-1262(1999)
﹝DAV﹞ E. M. Davis, W. E. Harding, R.S. Schwartz, and J. J. Corning, 〝Solid Logic Technology:Versatile High Performance Microelectronics 〞, IBM , J. Res. Develop., 8, p.102(1964)
﹝DUC﹞ R. Duckett and M. L. Ackroyd, Electroplat. Met. Finish., 29, p.13(1976)
﹝ENW﹞ S. Enwright, Electronic Packaging &Production, p.68, June(1998)
﹝FOS﹞ F. G. Foster, ASTM STP 319, p.13(1962)
﹝FRE﹞ D. D. Frear, W. B. Jones, and K. R. Kinsman, Solder Mechanics: A State of the Art Assessment, TMS(1995)
﹝GLA1﹞ J. Glazer, Journal of SMT, October(1991)
﹝GOO﹞ F. C. Goodrich, Proceedings of the Royal Society of London. Ser. a:Mathematical, Physical and Engineering Sciences., A 260, p.481(1961)
﹝GRE﹞ Simon Green, Deborah Lea and Christopher Hunt, NPL Report CMMT(A)213,p.1-10(Aug. 1999)
﹝GUR﹞ D. Gur and M.Bamberger, Acta Meter., 46, p.4917(1998)
﹝HAH﹞ T. Hahn, International Tables for Crystallography, 3rd ed., KAP(1992)
﹝HAI﹞ J. Haimovich, Welding Research Supplement, 68(3), p.102-111(1989)
﹝HON﹞ Soon-Min Hong, Jae-Yong Park, Jae-Pil Jung, and Choon-Sik Kang, J. Electron. Mater., 30(8), p.937-944(2001)
﹝HUA﹞ C. Y. Huang and K. Srihari, IEEE/CPMT Int'l Electronics Manufacturing Technology Symposium, p.344-350(1995)
﹝JAN﹞ Se-Young Jang and Kyung-Wook Paik, IEEE/CPMT Electronics Packaging Technology Conference, p.69-75(1998)
﹝JUN﹞ E. Jung, R. Aschenbrenner, E. Busse, and H. Reichl, Proceedings of 1st Electronic Packaging Technology Conference, p.238(1997)
﹝KAN1﹞ S. K. Kang and V. Ramachandran, Scripta Metall., 14, p.421(1980)
﹝KAN2﹞ S. K. Kang, R. S.Rai and S. Purushothaman, J. Electron. Mater., 25, p.1113(1996)
﹝KAW﹞ T. Kawanobe, K. Miyamoto, Y. Inabe, and H. Okudaira, Proc. IEEE 31th Electronic Comp. Conf., p.149, May(1981)
﹝KIE﹞ R. Kieffer and F. Kolbl, Z. anorg. Chemie., 262, 229, (1950)
﹝KIM﹞ H. K. Kim, H. K. Liou, and K. N. Tu, J. Appl. Phys. Lett., 66, p.2237(1995)
﹝KLE﹞ R. J. Klein Wassink,〝Solder is Electronics〞, 2nd ed., Electrochemical Publications, Isle of Man, British Isles, England, p.300-370(1989)
﹝KLO﹞ J.Kloeser, K. Heinricht, K.Kutzner, and E. Jung, Proceedings of 47th Electronic Components and Technology Conference, p.254(1997)
﹝LAN﹞ A. Lang and W. Jeitschko, Zeitschrift fur Metallkunde, 87, p.759-764(1996)
﹝LAU1﹞ J. H. Lau, 〝Flip Chip Technologies〞, McGraw-Hill, New York(1993)
﹝LAU2﹞ J. H. Lau, 〝Flip Chip Technologies〞, McGraw-Hill, New York, Chapter 1、3、6、15(1996)
﹝LAU3﹞ J. H. Lau, Chip on Board Technologies for Multichip Modules, Van Nostrand Reinhold, An International Thomson Publishing Company, New York, Chapter 5(1994)
﹝LEE﹞ J-I. Lee, S-W. Chen, H-Y. Chang, and C-M. Chen, J. Electron. Mater.,32(3), p.117(2003)
﹝LIN﹞ K. L. Lin and C. J. Chen, J. Mater. Sci. Materials in Electronics, 7(6), p.397-401(Nov. 1996)
﹝LOP﹞ E. P. Lopez, P. T. Vianco, and J. A. Rejent, J. Electron. Mater.,32(4), p.254-260(2003)
﹝MA﹞ C. H. Ma and R. A. Swalin, Acta Meter., 8, p.388(1960)
﹝MAR﹞ Z. Marinkovic and V. Simic, Thin Solid Films, 98, p.95-100(1982)
﹝MIN﹞ M. L. Minges et al., 〝Packaging〞, Electronic Materials Handbook, 1, ASM International, Materials Park, Ohio(1989)
﹝MIY﹞ M. Miyazaki, S. Nomura, and T. Takei, IEEE/Hokkaido Industrial Research Institute, p.1076(2001)
﹝MIZ﹞ K. Mizuishi and T. Mori, IEEE Transactions on Components, Hybrids, And Manufacturing Technology, 11(4), p.481-484(1988)
﹝MOR﹞ J. E. Morris, Workshop, 〝The Design and Processing Technology of Electronic Packaging〞(1997)
﹝NAS﹞ P. Nash and A. Nash, in〝Binary Alloy Phase Diagrams〞, ed. by Thaddeus B. Massalski, ASE International, Vol.3, p.2863-2864(1990)
﹝MAS﹞ Thaddeus B. Massalski and H. Okamoto,〝Binary Alloy Phase Diagrams〞, Vol.3, p.3130-3132(1990)
﹝NIC1﹞ M. A. Nicolet and M. Bartur, J. Vac. Sci. Technol., 19(3), p.786-793(1981)
﹝NIC2﹞ M. A. Nicolet, Thin Solid Films, 52, p.415(1978)
﹝OPP﹞ T. Oppert, E. Zakel and T. Teutsch, IEMT/IMC Proceeding, p.106-113(1998)
﹝PAR1﹞ J. Y. Park, J. S. Ha, C. S. Kang, and K. S. Shin, J. Electron. Mater, 29(10), p.1145-1152(2000)
﹝PAR2﹞ J. Y. Park, C. S. Kang and J. P. Jung, J. Electron. Mater, 28(11), p.1256-1262(1999)
﹝PAR3﹞ J. Y. Park, J. P. Jung, and C. S. Kang, IEEE Transction on Component and Packaging Technoloy, 22(3), p.372-377(1999)
﹝RAH﹞ A. Rahn, The Basics of Soldering, John Wiely & Sons, New York(1993)
﹝RAT﹞ 〝CRC Handbook of Metal Etchants〞, Boca Raton : CRC Press, p.896(1991)
﹝REY﹞ H. L. Reynolds and J. W. Morris, J. Electron. Mater, 24(10), p.1429-1434(1995)
﹝SAT﹞ S. V. Sattiraju, R. W. Johnson, D. Z. Genc, and M. J. Bozack, IEEE/CPMT Int`l Electronics Manufacturing Technology Symposium, p.253-262(2000)
﹝SER﹞ D.P. Seraphim, R. C. Lasky and C-Y. Li, McGraw-Hill, New York(1993)
﹝SWA﹞ R. A. Swalin,〝Thermodynamics of Solid〞, 2nd ed. John and Sons(1972)
﹝TOT﹞ P. A. Totta,Advances in Electronic Packaging, ASEM, 1, p.337(1997)
﹝TUM2﹞ R. R. Tummala, E. J. Rymaszewski and A. G.. Klopfenstein, 〝Microelectronic Packaging Handbook〞, Chapman, New York(1997)
﹝VIA﹞ P. T. Vianco, F. M. Hosking and J.A. Rejent, in Proc. Conf.〝Nepcon West〞, p.1730-1738(1992)
﹝VIL﹞ P. Villars and L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phase, ASM International, Materials Park, OH(1991)
﹝WAD1﹞ O. Wada and T. Kumai, Appl. Phys. Lett., 58(9), March(1991)
﹝WAD2﹞ O. Wada, T. Kumai, H. Hamaguchi, M. Makiuchi, A. Kuramata and T. Mikawa, Electron. Lett., 26, p.1484(1990)
﹝WAN﹞ Y. Wang, H. K. Kim, H. K. Liou, and K. N. Tu, Scripta Metallurgica et Materialia, 32(12), p.2087-2092(1995)
﹝WAS1﹞ R. J. Wassink, Soldering in Electronics, Electrochemical Pub. Ltd., p.99(1984)
﹝WAS2﹞ R. J. Wassink, Soldering in Electronics, 2nd ed ., Electronchemical Pub. Ltd., p.523(1989)
﹝WIL﹞ R.N.Wild, NEPCON, p.198(1968)
﹝WU﹞ C. M. L. Wu, C. M. T. Law, D. Q. Yu, and L. Wang, J. Electron. Mater, 32(2)(2003)
﹝YOO﹞ S. W. Yoon, W. K. Choi and H.M.Lee,Scripta Materialia, 40(3), p.297-302(1999)
﹝YOS﹞ F. G. Yost, 〝The Metal Science of Joining〞, p.49-59(1992)
﹝呂宗興﹞ 呂宗興,電子構裝技術的發展歷程,工業材料115期,p.49(1996)
﹝林光隆﹞ 林光隆,電子構裝覆晶接合銲錫隆點材料及製程,Cheinese Journal of Materials Science,31,No.3,p.153-159(1999)
﹝孔令臣﹞ 孔令臣,〝覆晶凸塊技術〞,工業材料139期,p.155(1998)
﹝張俊彥﹞ 張俊彥,鄭晃忠,〝積體電路製程及設備技術手冊〞,中華民國電子材料與元件協會等出版,p.7-85(1998)
﹝張秀玉﹞ 張秀玉碩士論文,國立清華大學化工所(2002)
﹝潘金平﹞ 潘金平,〝基板型半導體構裝市場及技術趨勢〞,工業材料151期,p.78-85(1999)
﹝李宗銘﹞ 李宗銘,〝覆晶構裝用液狀封裝材料技術與應用〞,工業材料127期,p.121-126(1997)
﹝李柔儀﹞ 李柔儀碩士論文,國立清華大學化工所(2001)
﹝陳俊仁﹞ 陳俊仁、林光隆,〝銲錫性之量測-濕潤天平〞,銲接與切割,7(2),(1997)
﹝劉家明﹞ 劉家明碩士論文,國立中央大學化材所(2000)
﹝陳文泰﹞ 陳文泰碩士論文,國立中央大學化材所(2002)
指導教授 高振宏(Cheng-Heng Kao) 審核日期 2004-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明